Lecture 2: Intermediate macroeconomics, autumn 2008

Lars Calmfors

Pos	ition 1970	Index
1	Switzerland	154
2	USA	147
3	Luxembourg	119
2 3 4 5 6	Sweden	113 (105*)
5	Canada	111
6	Denmark	109
	France	105
8	Australia	103
9	Netherlands	102
10 11	New Zeeland	100
11	Great Britain	96
12	Belgium	95
13 14	Germany	93
14	Italy	89
14	Austria	89
16 17	Norway	88
17	Japan	86
18	Finland	85
19		83
20	Spain	66
21 22	Ireland	55
22	Greece	53
23	Portugal Mexico	46
24	Mexico	40
25	Turkey	28

Pos	sition 1980	Index
1	USA	140
2	Switzerland	137
3	Canada	118
4	Luxembourg	115
4 5 6 7 7	Iceland	110
6	France	109
7	Norway	107
7	Sweden	107 (98*)
9	Denmark	105
10	Belgium	104
11	Australia	101
11	Netherlands	101
11	Austria	101
14	Italy	97
14	Germany	97
16	Japan	95
17	Great Britain	93
18	Finland	92
19	New Zeeland	89
20	Spain	68
21	Greece	61
21	Ireland	61
23	Portugal	53
24	Mexico	45
25	Turkey	27

GDP per capita, percent of OECD average, PPP-adjusted

* If Mexico and Turkey are excluded.

Position 1990		Index Position 1998		sition 1998	Index
1	Luxembourg	141	1	Luxembourg	156
2	USA	137		USA	138
3	Switzerland	131	3	Norway	124
4	Canada	114		Switzerland	120
5	Japan	110	5	Denmark	119
6	Norway	108	5	Iceland	119
7	France	107	7	Canada	111
7	Iceland	107	8	Belgium	109
9	Denmark	105	8	Japan	109
9	Sweden	105 (94*)	10	Austria	108
11	Belgium	103	11	Netherlands	104
11	Austria	103	12	Australia	103
13	Finland	100	12	Germany	103
13	Italy	100	14	Ireland	102
15	Australia	99	15	France	100
15	Germany	99	16	Finland	98
17	Netherlands	98	16	Italy	98
17	Great Britain	98	18	Great Britain	96
19	New Zeeland	82	18	Sweden	96 (85*)
20	Spain	73	20	New Zeeland	80
21	Ireland	70	21	Spain	76
22	Portugal	59	22	Portugal	69
23	Greece	57	23	Greece	65
24	Mexico	36		Mexico	36
25	Turkey	29	25	Turkey	30

GDP per capita, percent of OECD average, PPP-adjusted

* If Mexico and Turkey are excluded.

		2006
1	Luxembourg	247
2	Norway	165
3	United States	138
4	Ireland	129
5 6	Switzerland	119
6	Canada	116
7	Iceland	115
8	Netherlands	115
9	Austria	113
10	Australia	112
11	Denmark	111
12	Sweden	110
13	Belgium	106
14	United Kingdom	104
15	Finland	103
16	Japan	101
17	Germany	101
18	France	99
19	Euro area	98
20	Spain	93
21	Italy	91
22	Greece	86
23	New Zealand	83
24	Korea	73
25	Czech Republic	69
26	Portugal	66
27	Hungary	57
28	Slovak Republic	55
29	Poland	46
30	Mexico	38
31	Turkey	36
Source	OECD	

GDP per capita, US dollars, PPP-adjusted, percent of OECD average, ranking by country

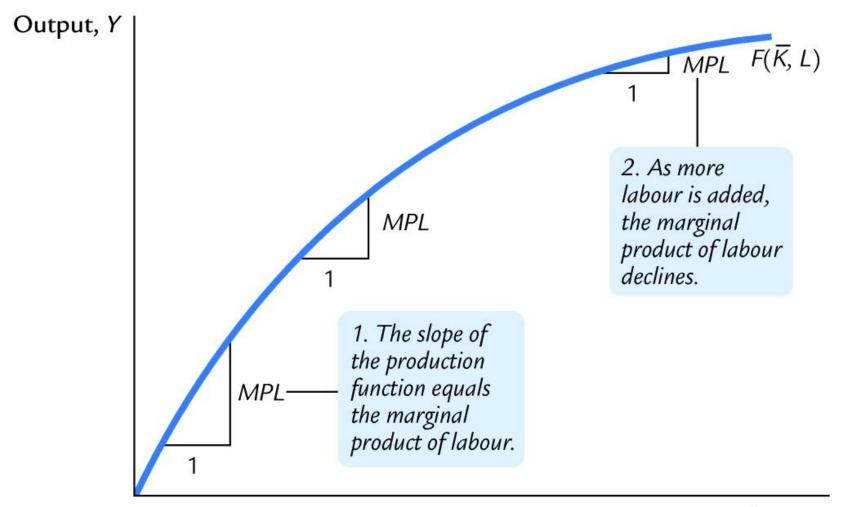
$$Y = F(K, L)$$

$$MPL = F(K, L + 1) - F(K, L)$$

$$MPL = \frac{dY}{dL} = \frac{dF(K, L)}{dL} = F_L$$

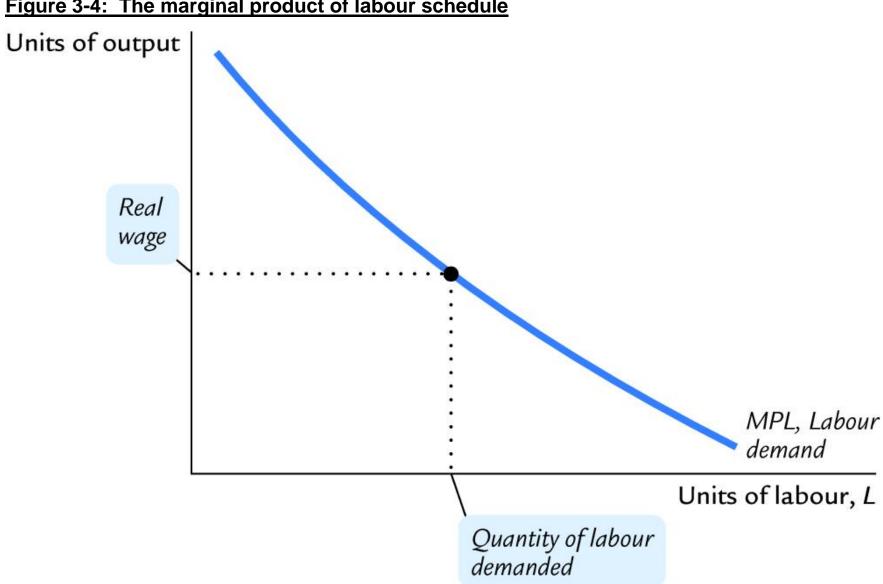
$$MPK = F(K + 1, L) - F(K, L)$$

$$MPK = \frac{dY}{dK} = \frac{dF(K, L)}{dK} = F_K$$


If
$$y = f(x, z)$$

$$\frac{dy}{dx} = f_x = 0$$

$$\frac{dy}{dz} = f_z = 0$$


Profit maximisation

$$\pi = PY - RK - WL = PF(K, L) - RK - WL$$
$$\frac{d\pi}{dL} = PF_L - W = 0 \quad \Leftrightarrow \quad F_L = \frac{W}{P}$$
$$\frac{d\pi}{dK} = PF_K - R = 0 \quad \Leftrightarrow \quad F_K = \frac{R}{P}$$

Figure 3-3: The production function

Labour, L

Figure 3-4: The marginal product of labour schedule

Production function

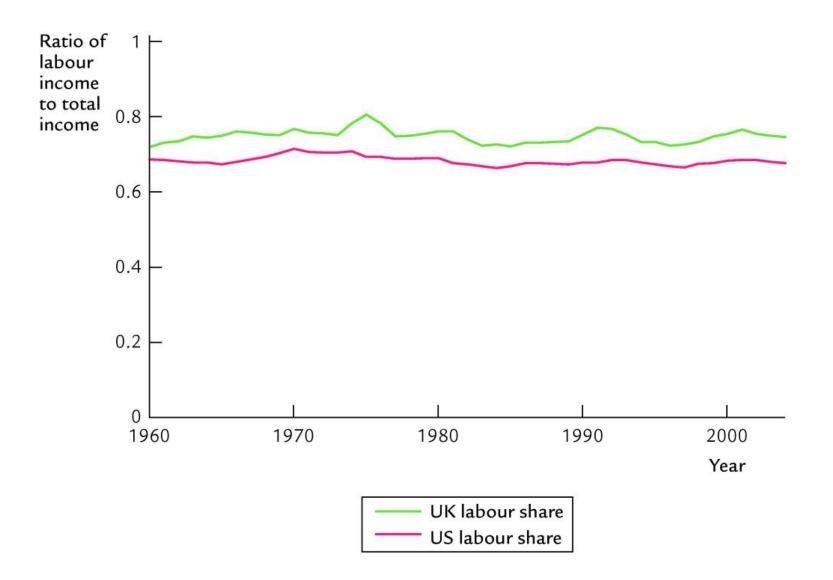
$$Y = F(K, L)$$

 $Y = AF(K, L)$ $A = \text{total factor productivity}$

It holds that:

$$\frac{\Delta Y}{Y} \approx \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$$

 α = capital income share 1- α = labour income share


GDP growth = total factor productivity growth + contribution from growth of the capital stock + contribution from growth of the labour force

Growth accounting

The Solow-residual:

$$\frac{\Delta A}{A} \approx \frac{\Delta Y}{Y} - \alpha \frac{\Delta K}{K} - (1 - \alpha) \frac{\Delta L}{L}$$

Mathematics to derive growth equation in the case of Cobb-Douglas production function

Logarithms

$$ln x$$
 is the natural logarithm of x . If
 $x = e^{a}$, then $a = ln x$.
 $ln xy = ln x + ln y$
 $ln x/y = ln x - ln y$
 $ln x^{\beta} = \beta ln x$

Rules of differentiation

If
$$y = f(g)$$
 and $g = g(x)$, i.e. if $y = f(g(x))$, then

$$\frac{dy}{dx} = f_g g_x$$

$$\frac{d(\ln x)}{dx} = \frac{1}{x}$$

Maximisation

If y = f(x, z), then the first-order conditions for a maximum are:

$$\frac{dy}{dx} = f_x = 0$$
$$\frac{dy}{dz} = f_z = 0$$

Another rule of differentiation

If $y = x^z$, then $\frac{dy}{dx} = zx^{z-1}$

Cobb-Douglas production function

 $Y = AF(K, L) = AK^{\alpha}L^{1-\alpha}$

K, L and A and thus also Y are functions of time.

$$Y(t) = A(t)K(t)^{\alpha}L(t)^{1-\alpha}$$

Taking logarithms:

...

$$\ell n Y(t) = \ell n A(t) + \ell n K(t)^{\alpha} + \ell n L(t)^{1-\alpha} \ell n Y(t) = \ell n A(t) + \alpha \ell n K(t) + (1-\alpha) \ell n L(t)$$

Differentiation w.r.t. time gives:

$$\frac{d\ell n Y(t)}{dt} = \frac{d\ell n A(t)}{dt} + \alpha \frac{d\ell n K(t)}{dt} + (1-\alpha) \frac{d\ell n L(t)}{dt}$$
$$\frac{dY}{dt} \cdot \frac{1}{Y} = \frac{dA}{dt} \cdot \frac{1}{A} + \alpha \frac{dK}{dt} \cdot \frac{1}{K} + (1-\alpha) \frac{dL}{dt} \cdot \frac{1}{L}$$
Call $\frac{dY}{dt} = \dot{Y}, \frac{dA}{dt} = \dot{A}, \frac{dK}{dt} = \dot{K} \operatorname{och} \frac{dL}{dt} = \dot{L}$
$$\vdots$$
$$\vdots$$
$$\dot{Y}_{T} = \frac{\dot{A}}{A} + \alpha \frac{\dot{K}}{K} + (1-\alpha) \frac{\dot{L}}{L}$$

 α = profit share 1- α = wage share

We thus have:

$$\frac{\Delta Y}{Y} \approx \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$$

Profit maximisation

$$\pi = PY - RK - WL = PAK^{\alpha}L^{1-\alpha} - RK - WL$$
$$\frac{d\pi}{dK} = \alpha PAK^{\alpha-1}L^{1-\alpha} - R = 0$$
$$\frac{d\pi}{dL} = (1-\alpha)PAK^{\alpha}L^{-\alpha} - W = 0$$
$$\therefore$$

$$\alpha = \frac{R}{PAK^{\alpha-1}L^{1-\alpha}} = \frac{RK}{PAK^{\alpha}L^{1-\alpha}} = \frac{RK}{PY}$$
$$1-\alpha = \frac{W}{PAK^{\alpha}L^{-\alpha}} = \frac{WL}{PAK^{\alpha}L^{1-\alpha}} = \frac{WL}{PY}$$

Accounting for growth in labour productivity

$$\frac{\Delta Y}{Y} = \alpha \ \frac{\Delta K}{K} + (1 - \alpha) \ \frac{\Delta L}{L} + \frac{\Delta A}{A}$$

GDP growth = contribution from growth of capital stock + contribution from growth of labour + total factor productivity growth

Labour productivity: Y/L

$$\frac{\Delta\left(\frac{Y}{L}\right)}{\left(\frac{Y}{L}\right)} \approx \frac{\Delta Y}{Y} - \frac{\Delta L}{L}$$

$$\frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L} + \frac{\Delta A}{A} - \frac{\Delta L}{L}$$

$$\frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \left(\frac{\Delta K}{K} - \frac{\Delta L}{L}\right) + \frac{\Delta A}{A}$$

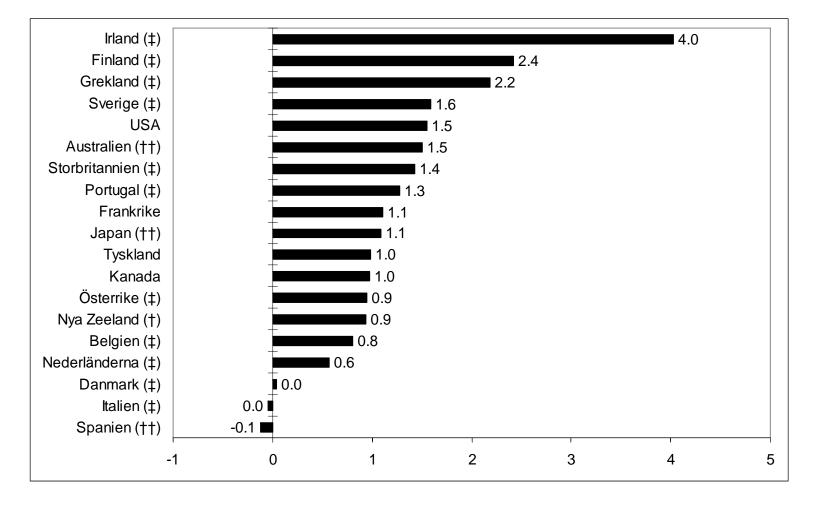
Growth in labour productivity = contribution from capital deepening + total factor productivity growth

Capital deepening: Increase in capital intensity (capital relative to labour)

Capital deepening can be decomposed into ICT capital deepening and non-ICT capital deepening

TRAFILE

The Contribution of Total Factor Productivity Growth to Growth in Real GDP per Worker


	UNITED KINGDOM		FRA	FRANCE ITAL		LY UNITED STATES		JAPAN		
	Output growth per worker	Growth in total factor produc- tivity	Output growth per worker	Growth in total factor produc tivity						
1966-										
1970	2.2	0.2	4.9	2.3	6.4	4.4	1.7	-0.3	9.5	5.4
971-										
1975	1.4	-0.1	2.0	-0.1	2.1	0.2	-0.2	-0.9	3.1	-0.8
976-										
980	1.4	0.6	2.4	1.2	4.7	3.6	1.0	0.7	4.0	2.0
981-										
985	1.6	1.2	0.2	-0.4	0.3	-0.4	1.3	0.8	2.9	1.3
986-										
1990	3.1	1.9	2.3	1.6	2.5	1.7	1.7	0.7	3.8	2.0

nparisons of Production, Income and Prices, University of Pennsylvania).

Table 4.5

Contributions to average annual growth in GDP per hour, percentage points, 1990–2004

	Growth in GDP per hour	Contribution from ICT capital deepening	Contribution from non-ICT capital deepening	Total factor productivity growth	
Denmark					
1990-94	2.4	0.6	0.5	1.3	
1995-99	1.8	1.0	0.5	0.3	
2000-04	1.4	0.5	1.0	- 0.1	
Finland	2003620	0,0755			
1990-94	2.1	0.5	1.1	0.5	
1995-99	2.7	0.5	-0.7	2.8	
2000-04	2.8	0.6	0.2	2.0	
Sweden	0.0000	0.000		5156-04	
1990–94	2.0	0.5	0.7	0.7	
1995-99	2.4	1.0	0.2	1.2	
2000–04	2.6	0.4	0.3	1.9	
Average Scandinavian					
countries					
1990–94	2.2	0.5	0.8	0.9	
1995-99	2.3	0.9	0.0	1.4	
2000-04	2.3	0.5	0.5	1.3	
Austria					
1990–94	0.9	0.3	0.6	0.0	
1995-99	3.2	0.6	0.8	1.8	
2000-04	1.4	0.4	0.8	0.2	
Belgium					
1990-94	2.9	0.5	0.9	1.6	
1995-99	2.7	0.9	0.2	1.5	
2000-04	0.6	0.4	- 0.1	0.3	
France					
1990-94	1.5	0.2	1.3	0.0	
1995-99	2.1	0.4	0.6	1.1	
2000-04	1.5	0.2	0.9	0.5	
Germany					
1990–94	3.0	0.4	0.9	1.8	
1995-99	1.9	0.5	0.4	1.0	
2000-04	1.2	0.3	0.3	0.6	

Annual growth of total factor productivity in OECD countries, 1995-2005

Explanations of high productivity growth in Sweden

- Large contributions from both ICT-producing and ICT-using sectors
- Encompassing deregulations of product and service markets
 - low level of regulation
 - early deregulations
- High educational level (complementarity between ICT technology and high-skilled labour)
- High R&D expenditures (Research and development)
- Creative destruction in the 1990s

$$Y = F(K, L)$$
$$zY = zF(K, L) = F(zK, zL)$$

10 % larger input of capital and labour raises output also by 10 %.

$$z = \frac{1}{L} \Rightarrow$$

$$\frac{Y}{L} = F(\frac{K}{L}, 1)$$

$$\frac{Y}{L} = y = \text{output per capita}$$

$$\frac{K}{L} = k = \text{ capital intensity (capital stock per capita)}$$

$$y = F(k, 1) = f(k)$$

Output per capita is a function of capital intensity

$$y = Y/L = K^{\alpha}L^{1-\alpha}/L = K^{\alpha}L^{-\alpha} = (K/L)^{\alpha} = k^{\alpha}$$
$$y = Y/L = AK^{\alpha}L^{1-\alpha}/L = AK^{\alpha}L^{-\alpha} = A(K/L)^{\alpha} = Ak^{\alpha}$$

The Solow model

(1)	y = c + i	Goods market equilibrium
(2)	c = (1-s) y	Consumption function, <i>s</i> is the savings rate
(3)	y = f(k)	Production function
(4)	$d = \delta k$	Capital depreciation, δ is the rate of depreciation
(5)	$\Delta k = i - \delta k$	Change in the capital stock

Change in the capital stock = Gross investment – Depreciation

$$y = (1-s)y + i$$
$$i = sy$$

Investment = Saving

i = sf(k)

 $\Delta \mathbf{k} = i - \delta k = sf(k) - \delta k$

In a steady state, the capital stock is unchanged from period to period, i.e. $\Delta k = 0$ and thus:

$$sf(k) = \delta k$$

Convergence of GDP per capita

- Countries with different initial GDP per capita will converge (if they have the same production function, the same savings rate and the same depreciation rate).
- The catch-up factor
- Strong empirical support for the hypothesis that GDP growth is higher the lower is initial GDP per capita

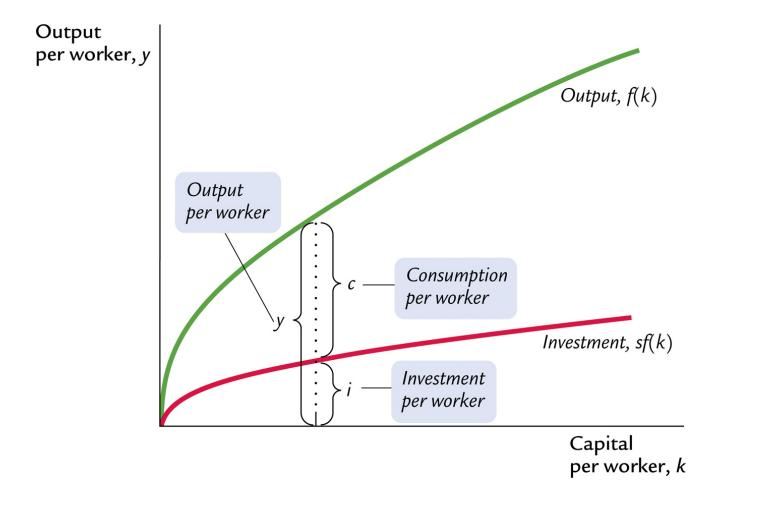
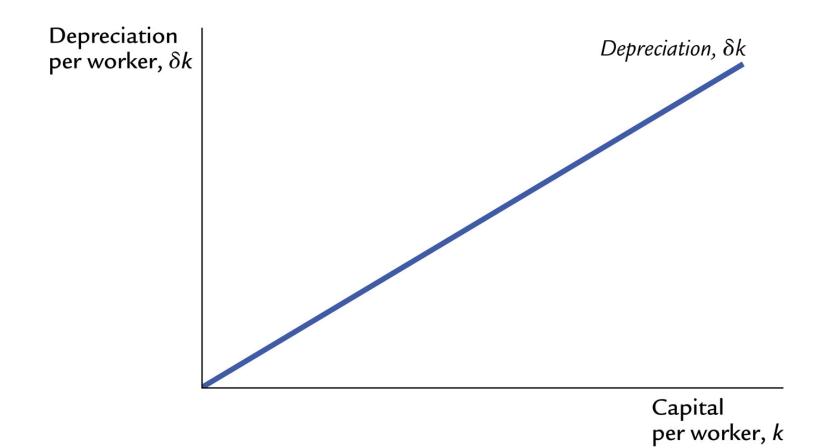
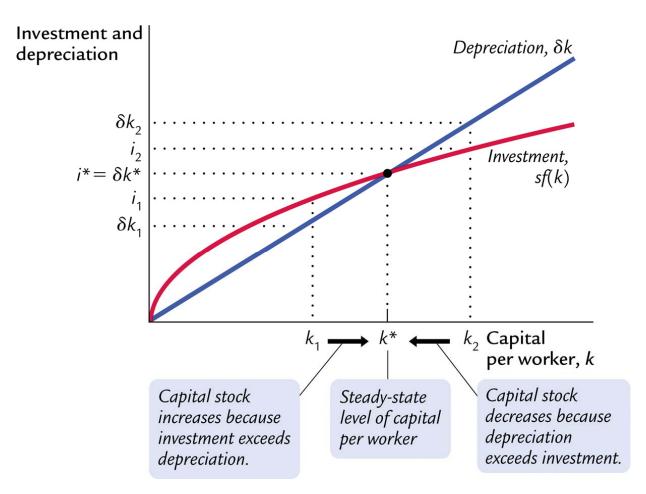
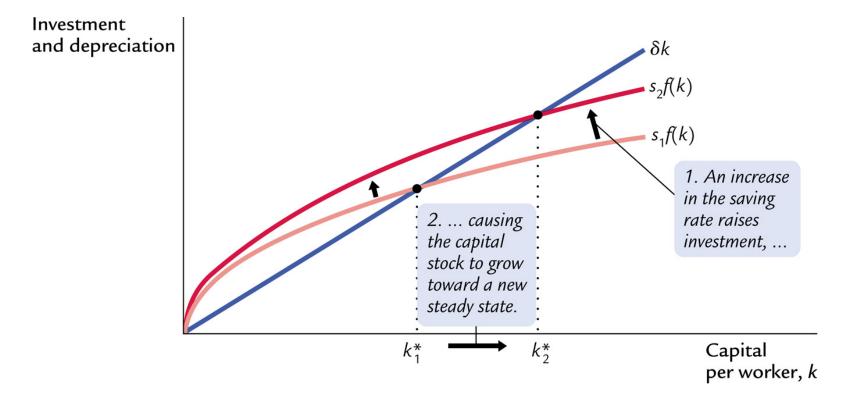


Figure 7-2: Output, consumption and investment

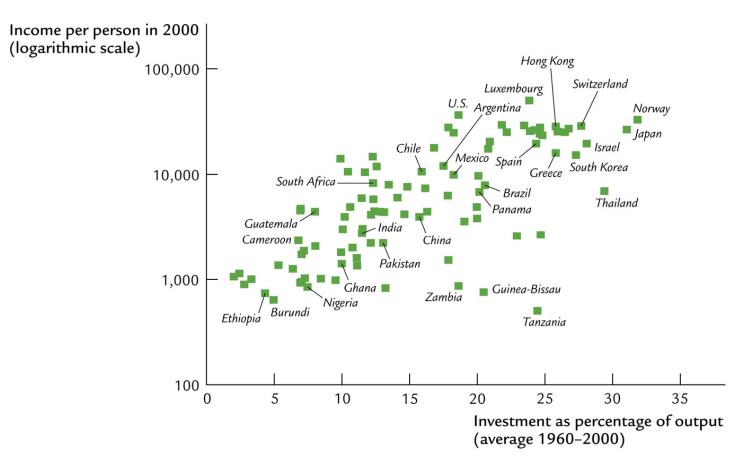

Figure 7-3: Depreciation

Figure 7-4: Investment, depreciation and the steady state

Figure 7-5: An increase in the saving rate

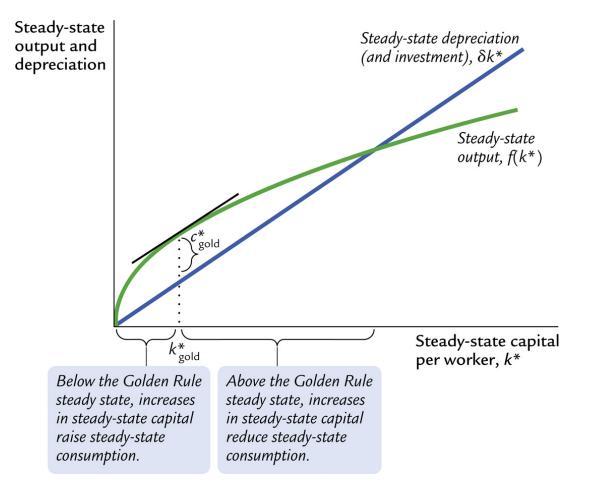
Golden rule of capital accumulation

Which savings rate gives the highest per capita consumption in the steady state?

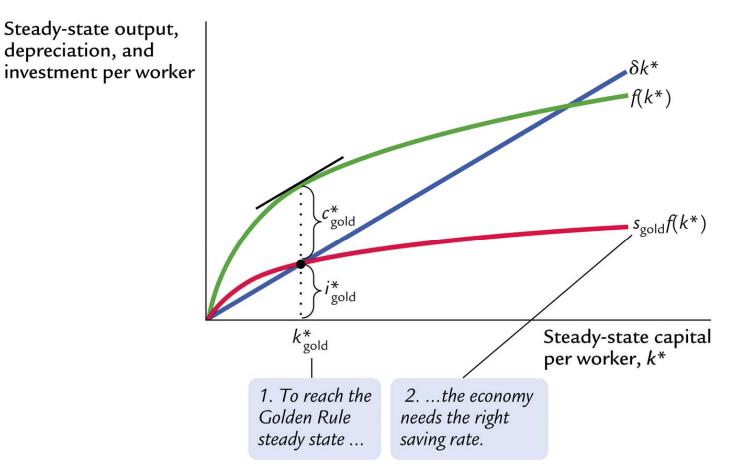
$$y = c + i$$
$$c = y - i$$

In a steady state, gross investment equals depreciation: $i = \delta k$

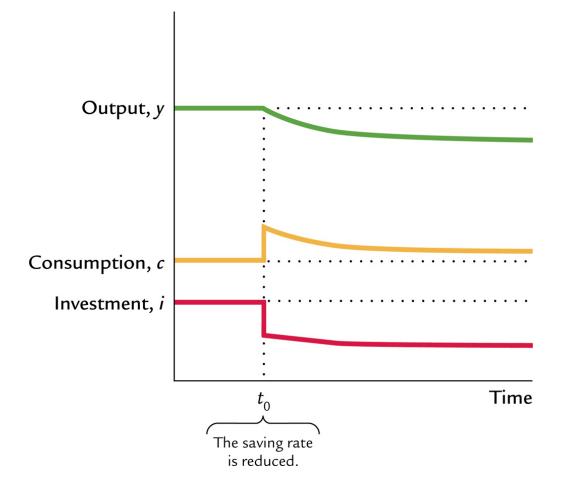
Hence:


 $c = f(k) - \delta k$

Consumption is maximised if the marginal product of capital equals the rate of depreciation, i.e. $MPC = \delta$


Mathematical derivation

Differentiate c function w.r.t. k:


$$\partial c / \partial k = f_k - \delta = 0$$

 $f_k = \delta$

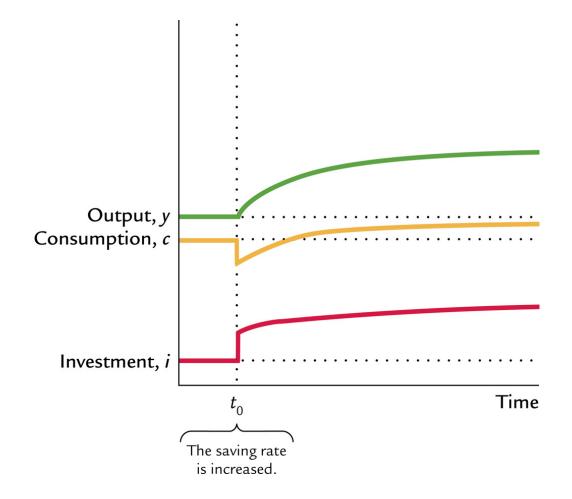

Figure 7-7: Steady-state consumption

Figure 7-8: The saving rate and the golden rule

Figure 7-9: Reducing saving when starting with more capital than in the golden rule steady state

Figure 7-10: Increasing saving when starting with less capital than in the golden rule steady state

A steady state with population growth

 $n = \frac{\Delta L}{L} =$ population growth

$$\Delta k = i - \delta k - nk$$

Change in capital intensity (k = K/L) = Gross investment – Depreciation – Reduction in capital intensity due to population growth

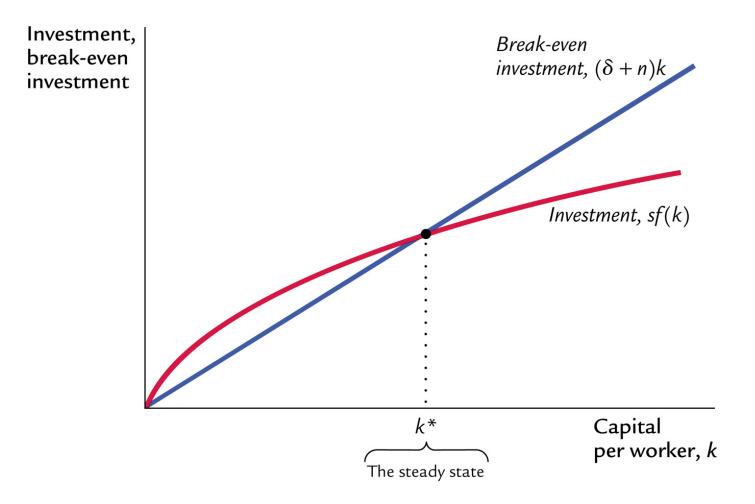
In a steady state:

$$\Delta k = i - \delta k - nk = 0, \text{ i.e. } i = (\delta + n)k = 0$$

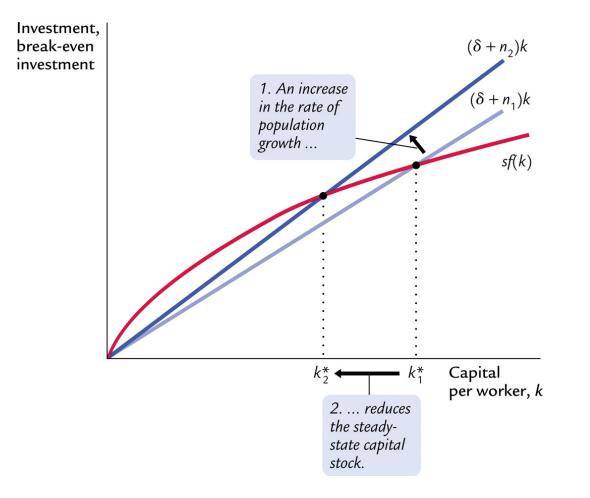
Derivation

K = capital stock, I = gross investment, L = population k = K/L = capital stock per worker (capital intensity) i = I/L = gross investment per worker

 $\Delta K = I - \delta K$


$$\frac{\Delta K}{K} = \frac{I}{K} - \delta$$

Use that:


$$\frac{\Delta k}{k} \approx \frac{\Delta K}{K} - \frac{\Delta L}{L} \text{ and } \frac{\Delta L}{L} = n$$
$$\frac{\Delta k}{k} \approx \frac{I}{K} - \delta - n$$

Hence:

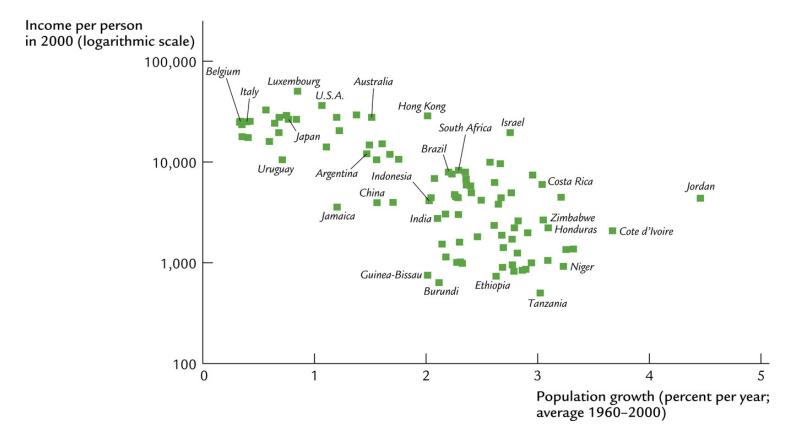

$$\frac{\Delta k}{k} \approx \frac{I}{L} \cdot \frac{L}{K} - \delta - n$$
$$\frac{\Delta k}{k} \approx \frac{i}{k} - \delta - n$$
$$\Delta k \approx i - \delta k - nk = i - (\delta + n)k$$

Figure 7-11: Population growth in the Solow model

Figure 7-12: The impact of population growth

Figure 7-13: International evidence on population growth and income per person

A steady state with population growth

$$Y = F(K, L)$$

$$\frac{\Delta Y}{Y} \approx \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L}$$

In a steady state, k = K/L is constant. Because

$$\frac{\Delta k}{k} \approx \frac{\Delta K}{K} - \frac{\Delta L}{L} = 0,$$

We have

$$\frac{\Delta K}{K} = \frac{\Delta L}{L} = n$$

$$\therefore \text{ är } \frac{\Delta Y}{Y} \approx \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L} = \alpha n + (1 - \alpha)n = n$$

GDP growth = Population growth

Golden rule with population growth

 $c = y - i = f(k) - (\delta + n)k$

Consumption per capita is maximised if $MPC = \delta + n$, i.e. if the marginal product of capital equals the sume of the depreciation rate and population growth

<u>Alternative formulation</u>: The net marginal product of capital after depreciation ($MPK - \delta$) should equal population growth (*n*)

Mathematical derivation

Differentiation of c-function w.r.t *k* gives:

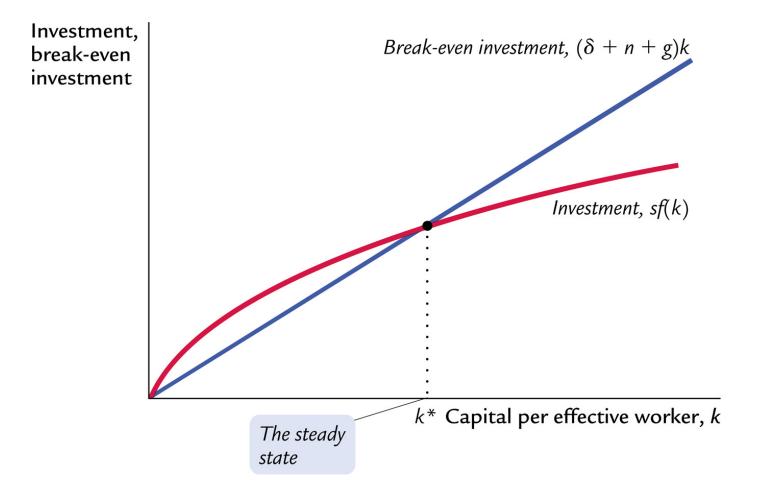
$$\partial c / \partial k = f_k - (\delta + n) = 0$$

 $f_k = \delta + n$

Labour-augmenting technical progress

- $Y = F(K, L \bullet E)$
- E =labour efficiency
- $L \bullet E =$ efficiency units of labour

$$y = \frac{Y}{LE} = F(\frac{K}{LE}, 1) = F(k, 1) = f(k)$$
$$k = \frac{K}{LE}$$


Steady state

L grows by n % per year

E grows by g % per year

 $\Delta k = sf(k) - (\delta + n + g)k = 0$

Gross investment = Depreciation + Reduction in capital intensity because of population growth + Reduction in capital intensity because of technological progress

Figure 8-1: Technological progress and the Solow growth model

<u>Growth</u>

$$Y = K^{\alpha} (LE)^{1-\alpha}$$
$$\frac{\Delta Y}{Y} \approx \alpha \frac{\Delta K}{K} + (1-\alpha)(\frac{\Delta L}{L} + \frac{\Delta E}{E})$$

In a steady state *K*/*LE* is constant

$$(\Delta L/L + \Delta E/E) = n + g \Longrightarrow \Delta K/K = n + g.$$

$$\frac{\Delta Y}{Y} \approx \alpha(n + g) + (1 - \alpha)(n + g) = n + g$$

GDP growth = population growth+ technological progress

$$\frac{\Delta y}{y} \approx \frac{\Delta Y}{Y} - \frac{\Delta L}{L} = n + g - n = g$$

Growth in GDP per capita = rate of technological progress

<u>Table 8-1</u>: Steady-State growth rates in the Solow model with technological progress

Variable	Symbol	Steady-state growth rate
Capital per effective worker	$\boldsymbol{k} = \boldsymbol{K} / (\boldsymbol{L} \times \boldsymbol{E})$	0
Output per effective worker	$y = Y/(L \times E)$	0
Output per worker	$(Y/L) = y \times E$	g
Total output	$Y = y \times E \times L$	<i>n</i> + <i>g</i>

Golden rule with technological progress

 $c = f(k) - (\delta + n + g)k$

Consumption per efficiency unit is maximised if $MPK = \delta + n + g$

The marginal product of capital should equal the sum of depreciation, population growth and technological progress

<u>Alternative formulation</u>: The net marginal product (*MPK* - δ) should equal GDP growth (*n* + *g*).

Mathematical derivation Differentiation w.r.t. *k*: $\partial c / \partial k = f_k - (\delta + n + g) = 0$

$$f_k = \delta + n + g$$

Real world capital stocks are smaller than according to the golden rule. The current generation attaches a larger weight to its own welfare than according to the golden rule.

Comparison of UK capital stock with golden rule level

 $MPK - \delta = n + g$ n + g = 0.025

1. Capital stock is 2.5 times GDP

K = 2.5Y

2. Depreciation of capital is 10 percent of GDP

 $\delta K = 0.1Y$

3. Capital income is 30 percent of GDP

 $MPK \times K = 0.3Y$

Divide (2) by (1):

$$\frac{\delta K}{K} = \frac{0.1Y}{2.5Y}$$
$$\delta = 0.04$$

Divide (3) by (1)

$$\frac{MPK \times K}{K} = \frac{0.3Y}{2.5Y}$$
$$MPK = 0.12$$

 $MPK - \delta = 0.12 - 0.04 = 0.08 > n + g = 0.025$

The capital stock is far below the golden-rule level!

Endogenous or exogenous growth

- In the Solow model growth is exogenously determined by population growth and technological progress
- Recent research has focused on the role of human capital
- A higher savings rate or investment in human capital do not change the rate of growth in the steady state
- The explanation is decreasing marginal return of capital (*MPK* is decreasing in *K*)

 $\frac{\text{The AK-model}}{Y = AK}$ $\Delta K = sY - \delta K$

Assume A to be fixed! $\Delta Y/Y = \Delta K/K$ $\Delta K/K = sAK/K - \delta K/K = sA - \delta$ $\Delta Y/Y = sA - \delta$

- A higher savings rate *s* implies permanently higher growth
- Explanation: constant returns to scale for capital
- Complementarity between human and real capital

A two-sector growth model

- Business sector
- Education sector

Y = F[K, (1-u)EL]Production function in business sector $\Delta E = g(u)E$ Production function in education sector $\Delta K = sY - \delta K$ Capital accumulation

u = share of population in education

 $\Delta E/E = g(u)$

- A higher share of population, *u*, in education raises the growth rate permanently (cf *AK*-model here human capital)
- A higher savings rate, *s*, raises growth only temporarily as in the Solow model

Human capital in growth models

- 1. Broad-based accumulation of knowledge in the system of education
- 2. Generation of ideas and innovations in research-intensive R&D sector
- 3. Learning by doing at the work place

Policy conclusions

- 1. Basic education incentives for efficiency in the education system incentives to choose and complete education
- 2. Put resources in top-quality R&D
- 3. Life-long learning in working life

Technological externalities / knowledge spillovers

Role of institutions

- Quality of institutions determine the allocation of scarce resources
- Legal systems secure property rights
 - "helping hand" from government (Europe)
 - "grabbing hand" from government
- Acemoglu / Johnson /Robinson
 - European settlers in colonies preferred moderate climates (US, Canada, NZ)
 - European-style institutions
 - Earlier institutions strongly correlated with today's institutions