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What is lacking among development practitionerayod not ideas, but an idea of whether
or not the ideas worfDuflo, 2003].

1. Introduction

With limited resources and almost unlimited neéaipact evaluations ought to be an
integral part of the policy formation process. Hemefits of knowing which programs
work and which do not extend far beyond any progoammgency. A credible impact
evaluation is also a global public good in the sehst it can offer reliable guidance to
international organizations, governments, donord,raongovernmental organizations in
their ongoing search for effective ideas (DufloD2D By credibly establishing impact, one
can also counteract potential skepticisms aboutfoods are used and thereby build long-
term support for international aid and developmkns. also much easier to leverage
resources when a project has been proven to waitk. tése facts in mind, it is surprising
that impact evaluations are more an exception ghaorm.

This paper is an introduction and, to some exeeptactical guide for researchers
and practitioners interested in impact evaluatioaducation, health, water and sanitation.
However, since the methods and concepts dealtiwithis paper do not only apply to
these sectors, the paper should be of more geneedst. The paper is not a review of
research using randomized or non-randomized evatuatethods, although we use past
studies with a focus on sub-Saharan Africa totithte concepts and methods. Nor is it a
paper that will in detail explore the propertiediué various existing evaluation methods,
although we provide references to in-depth studies.

The outline of the paper is as follows. In sec®omve discuss the question: What
type of intervention/projects should one evalud&®make a simple point, namely that the
choice of which projects/interventions to evalustieuld not be based on the ease at which
the study can be implemented, but needs to berdieted based on an overall assessment
of how the sector works. Because some interventoa®asier to evaluate than others,
there is a risk that the researchers will pick getg to evaluate that are not necessarily of

first-order importance. Section 3 discusses theeisd structural and reduced form



relationships. The main section, section 4, disesi$ise evaluation problem, or the
selection bias problem, and reviews both random@retinon-randomized methods that
have been developed to deal with this bias. We lsyadiscussing the most credible design
- the methodology of randomized evaluations. Théeeafve discuss non-randomized
methods, including the regression-control framewor&tching methods, difference-in-
differences and fixed effects methods, the instntalesariable approach and regression-
discontinuity methods. Section 5 discusses infexésgues, including problems associated
with measurement errors and grouped data. Sectilisc@sses data issues and power

calculations and section 7, finally, concludesphper.

2. Inputs or incentives: What should be the focus?

The deplorable state of publicly provided servicelealth, education, water and
sanitations sectors in developing countries in ggnand sub-Saharan Africa in particular,
is evident from the data. For example, approxinyaté&l million children under-five die
each year and almost half of these deaths ocautirSaharan Africa. More than half of
these childrer nearly 6 million— will die of diseases that could easily have been
prevented or treated if the children had had adoeasmall set of proven, inexpensive
services (Black et al, 2003; Jones et al, 2003).

Despite the tremendous progress in expanding emeall and increasing years of
schooling since 1960, 113 million children of prispnachool age are still not enrolled in
school (Glewwe and Kremer, 2005). The problem anoee appears to be most acute in
sub-Saharan Africa. In 2000, the net enrollmerd matsub-Saharan Africa was 56 percent,
compared to the average for the group of low-incam# middle-income countries of 85%
and 88%, respectively. Looking at the secondarpaichross enrollment rate, sub-Saharan
Africa comes out even worse. In 2000, the seconslengol gross enrollment rate was 27
percent, almost half of that of South Asighe region with the second lowest average.
Maybe even more alarming, the quality of schoolmghany developing countries is
abysmal. As an example, a study on Ghanaian gratiedénts found the mean score on a
very simple multiple-choice reading test to be &mio what one would expect from

random guessing (Glewwe, 1999).



Evidence from water and sanitation sectors pomthe same disturbing direction.
For example, meeting the UN Millennium Developm@uwials of reducing the proportion
of people without sustainable access to safe drghwiater by half, will require providing
over 900 million people in rural areas of less diegwyed countries with either household
water connection or access to a constructed pulalier point within one kilometer
(Kremer, et al 2006). In 2004, it was estimated #hamost every other household (44% of
the population) in sub-Saharan Africa lacked actesssustainable water soure@ small
improvement from the 1990 figure of 51%.

What explains the dismal quality of the social gms offered to the poor in
developing countries? Clearly, inadequate funding plausible explanation. However,
evidence presented in the 2004 World DevelopmepbRgeand elsewhere, suggests that
this is not the only reason. The provision of ptiskrvices to poor people in developing
countries is also constrained by weak incentiveseofice providers schools and health
clinics are not open when supposed to; teacherhi@alth workers are frequently absent
from schools and clinics and, when present, spesigréficant amount of time not serving
the intended beneficiaries; equipment, even whiy flunctioning, is not used; drugs and
vaccines are misused; and public funds are ex@imuori(Bjorkman and Svensson, 2007).

Recent findings from rigorous, randomized evaluegim the education sector in
Kenya and India also find little evidence that mmggources on their own, with no changes
in the way education is delivered, can improvedhality of education (Glewwe and
Kremer, 2008). Thus, while there is still a greaaldof value in identifying and evaluating
the effects of increased supply or inputs, or thlktmix of inputs, this alone will not get at
the core of problem. As a consequence, attentishifing towards understanding
incentives and constraints facing both service igerg and users. This involves studying
both formal incentive schemes, like providing fineh incentives to teachers or small in-
kind incentives to mothers to get them to immuniesr children, and demand driven
approaches with an emphasis on popular participatwere the incentives are created
through public pressure.

Overall, the focus on provider incentives seemsnsimg, although the evidence to
date is somewhat mixed. In education, where thk dfuthe impact evaluation studies has

been done, a number of studies document fairlyelargprovements in outcomes when



modest incentives have been given to teachers. Ewihese examples involve financial
incentives implemented by non-government orgaronati When public officials have been
involved in the implementation of the incentivebame, things seem to work less well
(Banerjee at al, 2008).

The demand driven approach has been subject tadassny. Bjorkman and
Svensson (2007) is an exception and documents édigets on both utilization and health
outcomes from a community-based monitoring prajegrimary health in Uganda. Other
studies, however, document much smaller effects ¢se instance, Olken, 2007, Banerjee
at al, 2008). Taken together, these findings stiesseed to better understand if and under
what conditions demand driven approaches to stnengproviders’ incentives to serve the
poor may work. More generally, the findings sugdkstneed of focusing impact
evaluation not only on the last link in the serviegivery chain; i.e., using variation across
service providers and users to estimate the imgfaarious programs and interventions.
After all, a country’s ability to improve serviceld/ery outcomes is not only (and
sometimes not even primarily) determined by whaipleas at the school or health clinic
level, but by the behavior of different actors aggncies involved in the design and
implementation of education policy. And since thmplementation of social service
delivery in developing countries is often plagugdrefficiencies and corruption,
interventions that focus on improving governancgeneral and governance of social
services in particular may be a cost-effective whiynproving service delivery outcomes
(Reinikka and Svensson, 2007).

3. Methodological issues

This section lays out a simple framework to helphiisk about structural forms, reduced
forms, and causal relationships in social sectkesdducation, health, water and sanitation.
Without much loss of generality, we structure tieedssion around primary education and
education policies.

Consider a household, or specifically the parehtschild, with a utility function
(3.1) U=U(C,SA),

! See Glewwe and Kremer for a more thorough disonssi these issues and Glewwe (2005) for a similar
exposition focusing on child health.



whereC is a vector consumption of goods and servicedydiveg leisure, at different time
periods;Sis a vector of each child’s years of schooling] Ans a measure of learning for
each child.

A natural starting point for economists is to cdesia household that maximizes
(3.1), subject to a budget constraint, a produdtimetion for learning, and the function
linking learning to future labor income. To simplifve assume that each household only
has one child, so we can trédaandS as scalars, and only one school to choose from.

The production function for learning is
(3.2) A=A(S,qg,cc hcl),
whereq is a vector of school and teacher characteristis, a vector of child
characteristics (like innate ability)c is a vector of household characteristics (likeep&s’
education), antlis a vector of school inputs under the contrghafents. We use capital
letters to denote endogenous variables, or ch@dahles, and small letters to denote
exogenous variables. If we assume, somewhat ustieally, that parents cannot influence
school or teacher characteristics, we can tyeat exogenous. Inwe include factors such
as purchases of textbooks by parents, privateitigt@nd child health.

The (inter-temporal) budget constraint tells ug tha household’s income (parental
income, the income generated from home productyatié child, and transfers from the
child when working as an adult) cannot exceed thesbhold’s expenditure (which
depends on the quantity of goods consumed, thetiguahschooling, and the prices of
these goods, inputs and schooling).

We can close the model by specifying an equatiahrilates the child’s cognitive
skills to her incomé& when working as an adult
(3.3) Y =Y(Acchg).

This is the simplest set-up, to which we could @aida constraint) an agricultural
production function, and possibly a credit consiralhe set-up could also be extended by
considering the household’s choice conditionallengender of the child, and/or
introducing bargaining between household members.

Maximizing (3.1), subject to the budget constra(Bt2) and (3.3), yields solutions
for the quantity of schoolin§ and the parents’ financial involvement in eduaatio
(3.4) S=T1(g,cc he, p),



and
(3.5) I =Q(q,cc,he, p),
wherep is a vector of prices (for schooling, inputs atigeo goods and services).

Inserting (3.4) and (3.5) into (3.2), we have
(3.6) A=®(q,cc hc, p).

Equations (3.4)-(3.6) constitute causal relatiopshi hat is, they inform us about
the causal effects of changes in the exogenouablas in vectorg, cc, hc, andp on the
guantity of education (3.4), parents’ financialahxement in schooling (3.5) and learning
outcomes (3.6). The equations also constitute etitarm relationships. That is, they
inform us how, through its effect on the endogenagables, a change in some element in
g orpin the end affects the endogenous variable ofester

To illustrate this, compare equation (3.2) with &pn (3.6). The former depicts
the structural relationship betwearand the various determinants. Consider a change in
one element of — call it g; (the provision of textbooks for example). Equat{8r2) then
gives us the partial derivative, i.e. the chang@ due tog; holding all other variables
constant. A change in the same element in (3.6)hemther hand, gives us the total
derivative, i.e. it allows for changes$andl in response to the changegn

For a policymaker, the reduced form estimatesheitatal derivative, is typically of
most interest since it informs the policymaker oichanges igy actually influence.
Note, though, that this information alone may neshbfficient to evaluate the welfare
effects of the policy change. For example, if pelglprovided textbooks and textbooks
supplied by parents (which will show up as changéyare substitutes, the total effect on
learning may be small. Only observing estimatemf(8.6), it would then be concluded
that the provision of textbooks has little impaadtifough it would be correct to conclude
that publicly provided textbooks have no effect@arning in this context). However, one
would not be able to tell why this is the caseolild be because the provision of textbooks
has a minor effect on learning, i.e. that bothghsial derivativedA/dq, from (3.2) and
the total derivategA/dq, from (3.6) are small. It could also be the cémsedA/dq in (3.2)
is large and positive, but that parents reduce then supply of textbooks in response to

the intervention, i.e. thatl/dg, < 0 in 3.5, leaving the total number of textbooks gtudent



roughly unchanged. So while the intervention mayehtzad little impact on learning, it
presumably had a positive effect on parents’ welfar

Lack of knowledge about the structural relationsbipat least lack of knowledge
about other key endogenous variables likethis model, also makes it more difficult to
extrapolate from a policy experiment because tlawieral response may vary across
space and time. This is important to keep in mgigkn that impact evaluations almost

exclusively focus on policy parameters, i.e. treuced form estimates.

4. Impact Evaluation: Empirical Methods

4.1 The Evaluation Problem

An impact evaluation attempts to address a caussdtmpn about the relationship between
the variable (or policy] and outcomé&. With no loss of generality, think dfas a binary
variable indicating whether the individual partigipd T = 1) or not T = 0) in a program
we want to evaluate, andas the outcome of interest. For example, if wetw@evaluate
a program that freely distributes insecticide eddted nets to different communitiéss 1
for a community (or individuals in a community) theenefits from the free distribution of
bed nets and@ = 0 for communities which have not received bed riEte. outcome
variableY could then be a measure of the under-five moytedite in the community.

Assume now that we hawunits (this could be individuals, households,
communities, or service delivery units like schamiglinics) and let be an index for the
unit in the population. In the above examphepuld then indicate a specific community.
Assume further that some units have participataerprogram in question, or been
exposed to treatment, and some have notYLle¢ the observed outcome and¥gtbe the
potential outcome of unitin case of treatmenTj(= 1) andY, be the potential outcome of
uniti in case of no treatment;E 0). We can now write the observed outcovhéor each
unit in terms of potential outcomes’as
(4.1) Yi =TY + =T Yo = Yo + (Y1 = Yio)T;.

This expression requires thinking in terms of ceufaictuals. We must be able to

imagine what might have happened to someone whizipated in the program if he/she

2 Holland (1986).



had not participated and vice versa. In other wasgsimagine two worlds for each unit,
one world where the unit received treatment andvamere it did not.

In reality, we do not observe what would happenuoder bothl andC
simultaneously. Is it possible to get around tlabpem by comparing outcomes for those
units that received and did not receive treatmé&ht is, is it possible to make a causal
statement about impact by comparing average effietk® two groups? In general, the
answer is no. To see this, note that the differemtaverages (or, formally, expectations),
using the expression for potential outcomes, is
(42) EY, [T, =1-E[Y, |T, =0]= E[Y, =Y, I T, =1+ E[Y,, |T, =1~ E[Y,, |T, =0].

The difference in expectations consists of two terie first termg[ Yi;-Yio |
Ti=1], is theaverage treatment effect on the treatédis term captures the average
difference in outcome between those who have lreatetE[Y;; | Ti=1], and what would
have happened to them had they not been trelgt¥d,| Ti=1]. The second term is the
selection effect. The selection effect is the défeces in (counterfactual) outcomes in the
no treatment case between those that did and dictoeive treatment.

To see what this implies, consider once more tlaenge of insecticide treated bed
nets withY; being morbidity from malaria in the communitythie program focused on
providing bed nets in communities where the thoéabalaria is particularly severe, or in
communities where few households owned bed netsdlection effect would result in a
bias. That is, absent treatment, there would Heréiices in outcomes between those
treated and those not treated. In the followingdises, we will discuss several empirical

methods that have been developed to overcomedlgistion bias.

4.2 Randomized evaluations

One method for solving the selection problem,wkeere the selection bias has been
entirely removed, is when tiéunits are randomly assigned to receive treatthémthis
case, thé\ units are randomly divided into two groups: theatment group withly units

and the comparison group witkxNr units. Since treatment has been randomly assigned,

% The method, design, and various other methodadbgicd practical issues with respect to randomized
evaluations are discussed in detail in Duflo, Gester and Kremer (2007).



units assigned to the treatment and comparisorpgrdiffer in expectations only through
their exposure to treatment; thati$Yi | Ti=1] - H Yo | Ti=0] = 0.

As the sample size increases, the difference inrerapmeans

43) = S™EN T =1]-—L S YEN [T =0]= £l [T, =1]- €], |T, = 0]
N, < N - N, <

will converge to

(4.4) E[v, T =1]-E[v, T, =0].

Further, if the potential outcomes of a unit areelated to the treatment status of
any other unft it follows thatE[Y;o | Ti=0] = E[Y, | Ti=1], and the difference in empirical
means further simplifies to
(4.5) E[Y, = Yo 1T, =1 = E[Y, - Y],
the causal parameter of interest for treatment.

The role of random assignment can be restatednmstef a regression model with
a single explanatory variable
(4.6) Yi=a+ [l +g,
whereT; is a dummy for assignment to the treatment growgx@s an error term. Equation

(4.6) can be estimated with OLS. The OLS estimatgt /?OLS, is
(4.7) Bous = EIY 1T, =1 - El¥ | T, =0],
that is, the difference in empirical means.

When a randomized evaluation is correctly desigaretiimplemented, it provides
an unbiased estimate of the impact of the prograquestion. For this reason, a
randomized experiment is usually considered tdbegbld standard for studying causal
effects. When implementing a randomized experinrettie field in a developing country,
however, it may not be possible to fully replicdte simple example above. In the
following sub-sections, we will discuss the mostooon problems and design issues that
may arise. Before that, we will briefly discuss tegue of how randomized evaluations can

be introduced in the field.

4.2.1 When are randomized evaluations appropriagsiple?

* This is the so-called Stable-Unit-Treatment Vakssumption (SUTVA) from Rubin (1978).



To date, most randomized evaluations have beeremmaited during the pilot phase of a
program, often involving an NGO partner, althougle of the most well-known
randomized evaluations, PROGRESSA (now called @Qpatades) was conducted by the
Mexican government. From the financier’'s perspegtsuch a pilot phase evaluation will
not only tell if and to what extent the project wW®rbut can also counteract potential
skepticisms about how funds are being used. Bed@briefly discuss several settings for
when randomization is potentially possible.

Randomization can also be introduced when theréraited resources or
implementation capacity. In this case, the prognaay in need of being phased in over a
number of years anyway. With high demand acrossyrpatential recipients, a fair method
for determining the order in which the recipiergseaive the project is to randomize who
receives the project in the first phase. The lageipients can then, in the initial phase,
constitute the comparison group (as in Miguel anenier, 2004). Similarly, if demand
exceeds supply, a fair way of rationing resoursds iselect those who will receive the
program through a lottery, as was done in KarlathZinman’s (2008) evaluation of the
impact of expanded consumer credit in South Africa.

In some cases, for ethical reasons, for exampfeayt not be possible to get
cooperation from participants in the comparisorugteven if they will benefit from the
project later on. In this case, it is still possibd introduce an element of randomization by
providing the program to some subgroup in each. &aaerjee et al’'s (2007) evaluation of
a remedial education program in India is an exaraptais. In that case, all schools
participated in the project. However, the evaluatandomly assigned the remedial
education to different grades in different schothlas ensuring a treatment and comparison
group for each grade.

Even programs that are available to all units stualy area could, in some cases, be
evaluated using a randomized design. For exanfflee take-up of a program is not
universal, i.e. if everyone does not participated@es not participate fully), one could
randomly choose who to encourage to participateinfportant difference from the above
example is that the so-called encouragement delsiga not involve randomizing over
treatment itself; instead the evaluators randoragign subjects an encouragement to

receive treatment. An example of this approachud) Kremer, and Robinson’s (2006)



evaluation of different interventions to understame adoption of fertilizers in Western

Kenya.

4.2.2. Design and implementation issues

While still representing a small fraction of allpact evaluations, randomized experiments
have become a popular method in development ecasokdnlike social experiments in
the US, many of these experiments have been implaevith a fairly small budget by
working with local partners. In this and the folliong sub-sections, we will discuss the
most common design issues and problems that msg @hen implementing randomized
experiments in the field.

Level of randomizatiarin the evaluation of new drugs and vaccinestrireat is in
general randomly allocated to individual subjeElswever, many social experiments and
field trials in medicine are not randomized to induals but to intact groups or clusters
(could be a village, or a service delivery unithwilhe corresponding catchment population)
— a so-called cluster-randomized experiment. In scases, randomization is introduced at
the cluster level by necessity. For example, dubeo nature, some interventions must be
implemented at the community level (like water aaditation schemes or an intervention
that focuses on processes such as community mmgf@nd therefore, there is no room
for randomization within the cluster. Cluster-ramdped evaluations may also be preferred
for logistical convenience or to avoid resentmenbag treatment and control subjects or
towards the implementation organization. Howewvegnther cases, there might be a choice
between randomizing at the individual and the grewpl. In these cases, a couple of
factors need to be taken into account:

(a) The level of randomization potentially has largglications for the power of the

experiment (as discussed in section 6). Individexa! randomization requires a

smaller sample size to detect an effect with argiegel of power and a statistical

significance level.



(b) Spillovers from treatment to comparison groupsl@as the estimation of treatment
effects. In such cases, the randomization shoudraat a level capturing these
effects?

(c) Randomizing at the group level can be one way dfessing concerns with partial
compliance.

Control variables When using data from a randomized experimengrdtctors
need not be controlled for. By construction, thesetrols, call thenX;, are uncorrelated
with the treatment indicatdr and thus, will not affect the estimatefbNevertheless, the
inclusion of control variables may generate moexize estimates of the treatment effect
B, since the inclusion of controls reduces the veeof the error terfiThis effect will be
larger the more explanatory power the control \deis have. One implication of this is
that for outcome variables that are persisteng {fést scores), controlling for baseline
outcomesy.;, may greatly improve the precision of the treathedfect. Importantly, one
must only control for pretreatment variables. Colfitrg for variables that are affected by
the experiment will bias the estimate of the tresttreffect.

Stratification Stratification, that is, the use of pretreatnmardracteristics to stratify
the sample, can be used to improve the precisidineoéstimates. This involves
decomposing the full sample into smaller subgrdabpsshare similar characteristics (for
instance, being located in the same geographieal) afs discussed in Duflo et al (2006)
and Cox and Reid (2000), stratification will impeogrecision to the extent that the
variable used for decomposing the sample explamsariation in the treatment of
interest. In many social experiments, the samgke isi relatively small. In this scenario,
while randomization ensures that treatment androabgtoups will be similar in
expectations, stratification will ensure this teabe true in practice. The regression
equation X can be adjusted by adding the varialdes to stratify the sample as additional

controls’

® Miguel and Kremer's (2004) evaluation of dewormiirggs in Western Kenya is an example where these
concerns led the researchers to randomize at booklevel rather than at the individual level.

® The variance OfoLsis oZ(X’X)'l, whereX is a matrix of all covariates including the treatrhindicator. As
noted in Duflo et al (2006), the inclusion of carivariables may increag¥’xX)™* and thereby increase the
variance offos

" See Duflo et al. (2006) and Imbens et al. (2006afmore thorough discussion of the issue ofitation
and control variables.



Factorial designsMany programs involve more than one componentiristance,
Miguel and Kremer’s (2004) deworming interventionolved both the distribution of
deworming pills and health education. Likewise,Bjpan and Svensson’s (2007) study of
a community-monitoring project in the primary héatare sector in Uganda involved both
the provision of baseline information and encounaget of participation. When there is
uncertainty about the fact that either componenitself, may make a large difference, it
makes sense to first evaluate the combined packadjéater follow up with studies trying
to disentangle the effects. The combined effeatds typically what interests
policymakers, at least as long as the combinedgugck possible to scale up. If the budget
so allows, it is also possible to test both thewviddial components and the combined
package at the same time. This would involve tgdfifferent treatments simultaneously.

Baseline surve¥ In principle, since randomization ensures thattéatment and
control groups are similar in expectations, thered need for a baseline survey.
Nevertheless, there are several reasons why armgpebvides a potentially high value.

(a) The inclusion of baseline controls will typicallgmgerate more precise estimates of
the treatment effect, thereby reducing the requsaedple size. Baseline controls
may also be needed in order to stratify the san@utethe other hand, a baseline
survey has budgetary implications and in some catbes data, including
administrative data, may substitute for a baseingey.

(b) A baseline survey expands the possibilities toysheterogeneous effects by
looking at the interaction between initial conditsoand the impact of the program.

(c) A baseline survey allows the evaluator to tedtéf tandomization was properly
conducted by looking at differences between thattnent and control groups in
baseline characteristics. If the randomizatioruscessful, there should be no
difference between treatment and control grougsaseline characteristics (or at
least no systematic differences).

(d) A baseline survey also allows the evaluator toeethe data collection process.

4.2.3. Potential Problems

8 Data issues and power calculations are discussgekiion 6.



In practice, there is a number of potential proldemth experiments. These can be divided
into problems with internal or external validity.sfatistical study is said to be internally
valid if the statistical inference about causagef$ is valid for the population studied, i.e.,
there is no correlation between treatment and ritoe term, while a statistical study is said
to be externally valid if its inference and conatuns can be generalized from the

population and setting studied to other populatems settings.

4.2.3.1. Threats to internal validity

Failure to randomizeRandom assignment to treatment and control greuthe
fundamental feature of a randomized experimentritedes it possible to estimate the
causal effect. If treatment is not assigned rangipnlt is instead partly based on the
characteristics or the preferences of the subjdwtsexperimental outcomes will reflect
both the effect of the treatment and the effect@mfrandom assignment. In general,
nonrandom assignment leads to biased inference.

Failure to follow treatment protocoln actual experiments, subjects not always do
what they are told. Therefore, even if the treatnassigned is random, the treatment
actually received might not be random. The failofrsubjects to completely follow the
randomized treatment protocol is called partial pbamce with the treatment protocol.
With partial compliance, the treatment and congrolups are no longer random samples
from the larger population from which the subjestse originally drawn: instead the
treatment and control groups have an element bEskdction. Failure to follow the
treatment protocol leads to biased inference. Broblwith partial compliance could be
handled by using the variables that are being nahglmanipulated (initial assignment)
when analyzing outcomes. One can then either lotkeareduced form (when non-
compliance is part of the issue studied) or ugelrassignment as an instrument. The
latter estimator is often labeled Intention-To-Trestimator (ITT).

Attrition. People may move during the experiment. If peagle leave have
particular characteristics systematically relatethe outcome, then there is attrition bias
(non response bias). Attrition also reduces stagilspower. The way of minimizing
problems of attrition is to ensure that all (mgsjticipants in the two groups are tracked

during data collection.



Experimental effect$n experiments with human subjects, the meretfadtthe
subjects are in an experiment can change theinvoha phenomenon sometimes called
the Hawthorne effect.

4.2.3.2. Threats to external validity

A statistical study is said to be externally vafids inference and conclusions can be
generalized from the population and setting stutheather populations and settings.

Non-representative sampl€he population studied and the population ofrege
must be sufficiently similar to justify generaliginthe experimental results. An example of
when a non-representative sample might arise is\whe experimental participants are
volunteers. Even if the volunteers are randomlygagsl to treatment and control groups,
these volunteers might be more motivated than teeatl population and, for them, the
treatment could have a greater effect. More gelyeradn-randomly selecting the sample
from the greater population of interest can compserthe ability to generalize the results
from the population studied to the population aérest.

Non-representative program or policyhe policy program of interest must also be
sufficiently similar to the program studied to p@rgeneralizing the results. One important
feature is that the program in a small-scale, tygmonitored experiment could be quite
different from the program actually implemented offrer difference between an
experimental program and an actual program isutaten: the experimental program only
lasts for the length of the experiment, while tbual program under consideration might
be available for longer periods of time.

General equilibrium effect#\n issue related to scale and duration concetreg w
economists call “general equilibrium” effects. Tumgpa small, temporary experimental
program into a widespread, permanent program neighimge the economic environment
sufficiently so that the results from the experitneannot be generalized. Phrased in
econometric terms, an internally valid small expemt might correctly measure a causal
effect, holding constant the market or policy eamment. General equilibrium effects
mean that these other factors are not, in fact, behstant when the program is broadly

implemented.



Treatment vs. eligibility effect&nother potential threat to external validitysas
because, in economics and social programs moreaBn@articipation in the actual (non-
experimental) program is voluntary. Thus, an expental study that measures the effect
of the program on randomly selected members opdpailation will not, in general,
provide an unbiased estimator of the program efféen the recipients of the actual

implemented program are permitted to decide whethapt to participate

4.2.3.3. Threats to power

Small samplesBecause experiments are difficult to adminissamples are often small,
which makes it difficult to obtain significant rd&u It is important to compute power
calculations before starting an experiment (whalbéssample size required to be able to
discriminate an effect of a given size from 0?) adjglst the sample size accordingly (or
possibly abandon the evaluatioh).

Experiment design and power of the experim@fiten the unit of randomization is
a group (e.g. a school), we may need to collec data very large number of individuals
to get significant results, if the outcomes arerggty correlated within groups (see section
6).

4.3. Review of non-experimental methods used imecocs

This section will review the issues in causal modgprimarily using the framework
adapted in economics, i.e., modeling by the usegression equations with explicitly
represented error terms. When boiled down to essdgrnhe economic framework is
observationally equivalent to the potential outcem®del used in the previous section to
describe randomized trials. The reason why we das® the potential outcomes notation
is that most empirical work only uses non-experitakor observational data. Moreover,
many studies have multi-valued or continuous treatsfor which regression methods are
well suited since regression coefficients havearefage derivative” interpretation. The

remainder of section 4.3. is structured as follows.

% See section 6.



Section 4.3.1. describes the most common methed insempirical work, the
regression-control framework, while the closelyatet! matching method is discussed in
section 4.3.2. These two methods share the samefyileg assumption since they both
use selection on observables, i.e., all relevantoemding factors are known and precisely
measured.

In sections 4.3.3. and 4.3.4., difference-in-ddfezes and fixed effects methods are
described. These methods share the same basityoenassumption since both
approaches assume there to be omitted confoundiigoles that cannot be observed.
Nevertheless, since these omitted confoundersup@osed to be time invariant, data with
a time dimension can be used to control for thebgaoved but time invariant confounders.

Section 4.3.5. discusses the instrumental varigybeoach that uses the assumption
of the existence of a variable, i.e., an instrumeshich is assumed to be unrelated to any
unmeasured confounding factors to estimate theatagisitionship of interest.

In section 4.3.6., we discuss regression-discoityimiethods which can be seen
either as a selection-on-observable approach e ioase of the sharp RD design or an IV

approach as in the fuzzy RD case.

4.3.1 Regression-control method

Most impact evaluation studies are based on noerérpntal data and, at least
historically, a regression-control framework hagrmehe most common method used to
deal with selection biases (omitted variable bipsdth observational data. Typically, a
multiple regression of the following form is estired

(4.8) Yi = yo + Wi+ paWoi +... 4 pWi + Vi,

whereY; is some outcome of interest of unitW;, Ws ,..., W are independent variables
andyv is the regression error. In impact assessment vgpkcally, only one regressor in
equation (4.8) is usually of direct interest whte others regressors are best considered as
controling for confounding factors, i.e., they han@causal interpretations. Thus, it makes
sense to restate equation (4.8) as

(4.9) Yi=vyo+ BXi+ poWo; +psWa; +...+ yeWk; + Vi,

whereX is the regressor of direct interest (correspontirigabove) and parametgrs the

causal effect.



To fix the ideas, we assume that the causal efféexthe same for everybody in the
population,5 = S for all i, and that X only takes two values (below we willadiss how
the analysis is affected by these assumptiong)tHer words, either one is “treated” (X=1)
or one is not treated (X=0). Causal inference camiade if the following assumption is
valid
(4.10) E(v | X, WWs ..., W)= E(V | WL, W5 ..., W) .

This assumption is called conditional independerf€d) or “selection on
observables® If this assumptions is valid, then the OLS estinaf the causal effect will
be unbiased and consistent, i.e., pzfin:F L. Itis useful to consider three cases when the ClI
assumption holds.

0] When the classical least square assumption holds, E(u | X, W,

Wa,..,Wk)=0.

(i) If Xis randomly assigned.

@ii)  If Xis randomly assigned conditional on the W’s.

It is noteworthy that the CI is weaker than theozeonditional mean assumption
since theW's are allowed to be correlated with the error.efyression-control framework
might therefore provide an unbiased and consigstinhate of5 if the CI holds.

There is an alternative method for estimating thesal effecis in regression (2)
that is useful in understanding in what way a regjgn-control framework can potentially
solve any selection or omitted variable bias. Taiternative method is based on a
partitioned regression originally derived by Frisoid Waugh (1933), where the estimate
of B can be computed in two steps. The first step isetpessX on all other control
variableswW;, Ws,.., Wk and obtain the residué@l The second step involves regressthon

the residuall, which yields the estimate gfsince

~_ CouY,.G)
(4.11) O

This regression formula gives a demonstration marmte[[? as having a partial

effect interpretation since all observable confangdrariables have been netted out from
the variation inX. In other words, it is what is “left over” in theariation in X that

9 The assumption is sometimes called ignorabilittreftment (given the observed covariatgsor
unconfoundedness.



constitutes the identifying variation gd. This is also the reason why the identifying
assumption is called selection-on-observables.

The concepts of internal and external validity dgsed in section 4.2.3 provide a
useful framework for evaluating whether a regressiontrol study is useful for answering
a specific causal question of interest. An emplinieault is said to be internally valid if the
estimated regression coefficient is unbiased angistent, while it is externally valid if the
results can be generalized to other populations tiiat being studied.

A key question in any regression-control study ether the results are internally
valid, i.e., whether the Cl assumption is plausifilee Cl assumption clearly makes sense
when there is an actual random assignment condltion W. Even without a random
assignment, however, Cl might make sense if we kaogreat deal about the process
generating the treatment. However, in many apptinaf the regressor of interest is not
randomly assigned and we do not have any detaiedviedge about the process that
actually determines the treatment. Thus, the choiceontrol variables is crucial, but
which are the potential confounding factors thadbusth be included in the population
model? Economic theory does usually not specifytwither variables should be held
constant in order to isolate the primary effecintérest. For example, when we look at the
impact of education on individual earnings, whateethould be held constant? 1Q, work
effort, occupational choice, and family backgrowetd. If we do not correctly include all
relevant factors in the OLS regression, the CI agdion is in general not satisfied and
therefore, the OLS estimator will be biased andomsistent. In short, there will be
selection or an omitted variable bias.

We can use the omitted variable bias (OVB) forntolalescribe the direction of
the bias. The OVB formula describes the relatigndldtween the regression estimates in
models with sets of control variables. Supposetti@true regression can be written as
(4.12) Yi=fot+ BXi+ Wit vi,
but (4.12) is estimated without the variable Since the OLS estimator for the regression
equation withoutW is Cov(Y;, X)/Var(X), we can derive the OVB formula by plugging
4.12 into the OLS formula, yielding
Cou(Y,, X;)

(4.13) V(X)

:ﬁ+y7TWX’



where y,, is the vector of coefficients from the regressibthe elements o onX;. In

words, this OVB formula states that the OLS esteniedm the short regression equals the
long regression (the true regression) plus thece@feomitted variables times the
regression of omitted variables on included vagabl

The OVB can now be used to get a sense of theylg@mhsequences of omitting a
variable for the direction of the bias of the OL&fficient. To give a concrete example, let
us once more consider the evaluation of a proghanfteely distributes insecticide treated
bed nets to different communities. Assume that nets were distributed in such a way
that children with more educated parents receivedenbed nets. If one were to find a
correlation between, say, the under-five mortatite and bed nets, this does not mean that
bed nets are causally related to child mortalibcsimore educated families may be better
at protecting their children from getting malarralépendent of whether they received a
bed net. In this case, one must control for thecational level of parents to estimate the
causal effect of bed nets on child mortality.

The OVB formula also suggests that a simple appraacdetect potential with a
regression-control strategy is to check whetherdigeession results are highly sensitive to
changes in the set of control variables. If thaesgion results are sensitive to changes in
the set of control variables, there is reason toadeo whether there might be unobserved
covariates that would change the estimates evetmefdr Thus, controlling for an
insufficient number of factors may cause bias.

Less known is the fact that controlling for too mdactors may also give rise to a
bias if these variables are outcome variables tekms. For example, if wage and ability
(as measured by 1Q, for example) are both causestibgation, then controlling for 1Q in
an OLS regression of wage on education will leadatadownward bias in the OLS
coefficient of education. Intuitively, the abilitsariable picks up some of the causal effect
of education, namely the increase in wages whicHuis to the effect of education on
ability, which in itself affects wages. To avoidntwlling for outcome variables, variables
measured before the treatment was determined aezally valid control variables.

See Angrist and Krueger (1999) and Angrist and Hkisq2008) for discussions
about the regression control framework.

1 See Altonii et al (2005) for a formal frameworkingsthis idea.



4.3.2 Matching

A related approach to the regression-control fraor&ws the matching approach. The key
identifying assumption in both methods is selecbarobservables. An attractive feature of
matching methods is that they are typically accamgzhby an explicit statement of the CI
assumption required to give matching estimatesiaatanterpretation. In contrast, work
based on the regression-control framework typicddigs not explicitly state and discuss
the Cl assumption. Nevertheless, we have just tegtithe causal interpretation of a
regression coefficient is based on exactly the s@hressumption. Thus, since both
methods depend on the knowledge that all confog@dictors are known and quantified,
one may therefore ask whether or to what extentmag differs from regression-control
analysis.

In the matching approach, treatment effects arstoocted by matching subjects
with the same covariates, while a regression aigalyses a linear model for the effects of
covariates. In practice, however, regression estisnean be understood as a type of
weighted matching estimator as discussed by An(ir#88). Thus, the difference between
a regression-control analysis and a matching appradll typically not be of any major
empirical importance. For this reason, the matchiogroach will only be discussed very
briefly.

When the covariates take on many values, it becdaliffesult to find good matches
for each possible value of the covariates. A péssblution in this case is to match
subjects in the control and treatment groups omptbpensity score, i.e., the conditional
probability of treatment given control variablemgenbaum and Rubin (1983) show that
conditioning on the propensity score eliminatesahetted variable bias. The
dimensionality of the matching problem is therefemduced since the propensity score is
scalar. However, there are many details to bedfitewhen implementing propensity score
matching methods, such as how to model the profyesore and how to do inference.
Since these procedures have not yet been stanedydnere is a nontrivial chance that the
results are sensitive to the precise implementatittough the same data and covariates

are being used. Therefore, matching is most seitaben the covariates are few and



discrete, since matches will be prefect. Moreopespensity score methods are also
exclusively used when the treatment is bindry.

For a further discussion of matching and the reteihip to regressions, see Angrist
and Kreuger (1999), Angrist and Piscke (2008) anbeins (2004). A recent example of
when this approach is used is Levinson et al’'s §2@@aluation of the impact of HIV on

labor market participation in South Africa.

4.3.3 Differences-in-differences

The difference-in-differences (DD) approach is dhuod for estimating the effect of policy
interventions or other sharp changes in the econemiironment. DD methods are used in
problems with multiple subpopulations, where sontgpspulations are subject to a policy
intervention or treatment and others not. Outcoaresneasured in each group before and
after the policy intervention. To account for chasgver time unrelated to the
intervention, the change experienced by the groilyest to the intervention (referred to as
the treatment group) is adjusted by the changerexped by the group not subject to
treatment (the control group). The underlying agsiion is that the time trend in the
control group is an adequate proxy for the timadrehat would have occurred in the
treatment group, in the absence of the policy wetion (i.e., the parallel trend
assumption).

The DD method is useful for evaluating policy chesgh environments where
important underlying time trends may be presené DB approach has been popular for
evaluating government policy changes that takeeplasome administrative units, such as
states, but not in neighboring units. An illustvatexample is Duflo’s (2001) study on the
impact on schooling and labor market outcomessaf®ol construction program in
Indonesia. She basically compares educationahattit for cohorts born before and after
the school-construction program. The treatment gisuhe cohorts born in regions with a
large number of newly built schools, while the cohgroup is cohorts born in regions with
a small number of newly built schools. Not surprigy, she finds that the educational
attainment has increased more in the treatmenpgmative to the control group.

Moreover, she also finds that wages have increamsed in the treatment group relative to

12 Although it can be adapted to multi-valued treattade.g., Imbens 2000).



the control group, which she solely attributeshi® increased educational attainment in the
treatment group due to the school constructionnarog

The DD design requires two years of data in thenfof pooled cross sections, i.e.
a new random sample is taken from the populatich gaar. Lety e denote the
sample average of for those in the treatment group before they lraceived treatment
and letyeamenater ha the sample averageYeffor those in the treatment group after they
have received treatment. Similarly, fet""**" be the sample average¥ffor those in
the control group before they have received treatmile Y™ js the sample average
of Y; for those in the control group after they havesheed treatment. The differences-in-
differences estimator is the average changéfor those in the treatment group, minus the

average change ivifor those in the control group

(414) ,BDD = (Y treatment,after __ Ytreatment,before) _ (Y control.,after __ Ycontrol,before) =AY tretment __ AY control ,

where AY "™ is the average change in y in the treatment gameny 0Nl js the

average change inifor the control group. The idea behind the differein-differences
estimator is to correct the simple before and afiéerence for the treatment group by
subtracting the simple before and after differefocehe control group. Since the control
group should reflect the counterfactual outcomdHertreatment group, the DD-estimate is
an unbiased estimate of the causal effect if, alibertreatment, the average chang¥ in
(i.e., AY) would have been the same for treatment and dagrmaps. This is known as the

“parallel trend” assumption.

To test whethei3™ is statistically different from zero, we can usegression
analysis. The DD estimator can be written in regjegsnotation as
(4.15) Yigi= 01t 02Dt O3 Xg+ 04 XgXDy + Uigt,
whereD is a dummy variable equal to one in the post-gahtervention period and zero
in the pre-policy intervention period, x is a bipéreatment indicator equal to one if the
subject is in the treatment group and zero if shia the control group. The DD estimator is
g,, since {EY | X=1,D=1) - E(Y | X=1, D=0)}-{E( Y | X=0, D=1) - E(Y | X=0, D=0)}
={( 0110+ O3t0,) - (011603)}- {( 6110 2)- O1}= 64. The advantage of formulating the DD
estimator in this way is that it makes clear thatkey identifying assumption is that there

is no interaction between the time effect and teatment group except for the treatment



under study, i.e., B( X xD)=0. In other words, the time effebtcaptures the way in
which both the control and treatments groups dteanced by time and the fixed group
effectX captures any fixed unmeasured differences betiveatment and control groups.
Thus, by comparing the time changes in the mearthéotreatment and control groups,
both group-specific and time-specific effects dleveed for in the DD method. The
incorporation of the influences of other variablés W, ..., Wk is straightforward in the
DD approach

(4.16) Yigt= 01+ 02D+ 03 Xg+ 04 XgXDy + m1iWhigrt moWhigit . ... + m3Wkigr+Uigr.

This regression provides a simple way of adjustimgbservable differences
between the observations in the different groupsit TS, theV variables account for the
possibility that the groups have systematicalljedé@nt characteristics before and after the
policy change i.e., they take into account compwst bias due to changes in the sample
before and after the treatment.

One of the main pitfalls of the DD approach is plessibility of an interaction
(besides the treatment) between treatment groupirmedi.e., omitted interactions),
implying that E(Q | XxD) # 0. The DD approach is most plausible when therobgtoup is

very similar to the treatment group, so that intéoms are less likely. It is useful to
examine the size and significance of the estimaeel effecté2 and group effecﬁ3 for

an indication of the comparability of the groupbese coefficients should be close to zero.
For example, if the time effect is large in abselualue, it suggests that the period-to-
period changes iN are not unusual, since the time effect picks epetiect of omitted
variables and trends M A sizeable time effect suggests that the effeota these sources
vary substantially across treatment and contralgsd.e., there are likely to be omitted
interactions. As previously mentioned, a situafeworable to the DD design is one where,
both before and after, the control group has aidigion of outcomes close to that for the
treatment group in the before period.

When the average levels of outcomare very different for control and treatment
groups before the treatment, the magnitude or éwesign of the DD effect is very
sensitive to the functional form posited. Suppdse you look at the effect on child
mortality rates of providing bed nets. In one plabe mortality rate (under five) falls from

say 140 to 100 while in another place it falls fr@60 to 70. Because of the dramatic



difference in pre-mortality levels (140 vs. 10@)sidifficult to assess whether the
treatment was effective. The DD estimate in lewadsild be (140 - 100) - (100 - 70) = 10,
which suggests a positive effect of providing betsnwhile the DD in logs would be
[log(140) - log(100)] - [log(100) - log(70)] = loty(4) - log(1.43) < 0, which suggests that
bed nets have a negative effect on child mortality.

DD estimates are more reliable when you compareoouwss just before and after
the policy change, because the identifying assuongparallel trends) is more likely to
hold over a short time period. With a long timeipér many other things are likely to
happen and confound the treatment effect. Howdeepolicy purposes, it is often more
interesting to know the medium or long-term effeca policy change. In any case, one
must be cautious in extrapolating short-term respsrtto long-term responses.

Another important concern for the validity usin@B approach is whether the
program is implemented based on pre-existing diffees in outcomes. For example, it is
common to compare wage gains among participant®iangarticipants in training
programs to evaluate the effect of training on i@ However, Ashenfelter and Card
(1985) note that training participants often exgece a dip in earnings just before they
enter the program (which is presumably why theyattiter the program in the first place).
Since wages have a natural tendency to mean rewethis leads to an upward bias of the
DD estimate of the treatment effect.

Endogenous change in policy due to a governmeesalonse to variables
associated with past or expected future outcoraeagher threat to internal validity in the
DD design For example, a few years of very high infant magahtes due to unusual
circumstances, say draught, may stimulate some§pdlicy intervention. A subsequent
reduction in child mortality rates after unusuahggeshould not be taken to indicate that
policy intervention was effective, if a drop wouldve been expected anyway. The way to
avoid the problems of endogenous change in pai¢g know the circumstances
surrounding the change.

A test for whether the results are likely to beeinally valid; i.e. a check of
whether the parallel trend assumption is likelyrédd, is to use data in periods before the
policy intervention and compute a DD estimate biyparing, say periot1 with periodt.

If this DD estimate is nonzero, given that thereswa policy intervention between period



and period-1, it suggests that the original estimate will capture the causal effect of the
treatment since the treatment group and the cogtoalp did not have parallel trends in the
outcome before the policy intervention. More getigravhen data are available for many
years, it is very useful to plot the series of ageroutcomes for treatment and control
groups and see whether trends are parallel ancheshitere is a sudden change for the
treatment group just after the reform.

The DD approach can be strengthened by the usgddfanal control groups
since they reduce the importance of biases or rangwiation in a single control group. If
the DD estimate with the alternative control grasidifferent from the DD estimate with
the original control group, the original DD estimad likely to be biased. For example,
Duflo (2001) uses more than one control group insedy of the school construction
program in Indonesia.

The use of additional outcome measures is anati@oritant robustness check.
The idea is to replacéby another outcome that is not supposed to betefieby the
treatment. If the DD estimate using the other oueds non-zero, it is likely that the DD
for the original outcome is also biased. The DDrapph is also strengthened by the
presence of several distinct groups that are sutgebe treatment. Especially useful are
treatment groups in different settings such abfit time periods or treatment groups
receiving treatments of differential intensities.

See Meyer (1995), Angrist and Kreuger (1999) andrsh and Pischke (2008)

for more discussions about the DD approach.

4.3.4 Fixed effects methods

A related approach to DD is the fixed effect apploahere the data is in the form of a
panel instead of repeated cross sections. Parsetdasists of observations on the same
units in two time periods or more. If the datas®ttains observations on variab¥and

Y, the data is denote&(, Yi) where i=1,2..., N and t=1, 2, ..., T. Suppose thatwaee the
following population model

(4.17) Yit =fo+ fXit + Ci + Uit ,

wherec; is an unobservable random variable that is tinrestamt. The variable captures

all unobserved, time-constant factors that afi@cwWithout loss of generality, we set the



coefficient onc; equal to one sinog is unobserved and virtually never has a naturélain
measurement (i.e., it would be meaningless toatsstimate its partial effect). An
unobserved time constant variable is called an sexved effect in panel data analysis. In
the case of panel data on individuals, the unoleskeifect can be interpreted as capturing
features of the individual, such as cognitive &pilmotivation or early family upbringing
that are given and do not change over time. Ircése of panel data on service providers
(e.g. health clinics or school€),contains unobserved provider characteristics, asch
managerial quality or structure, which can be adergd as being (roughly) constant at
least over the period of study. The unobservectetfas also referred to as a fixed effect
or unobserved heterogeneity (or individual hetenegg, firm heterogeneity, city
heterogeneity, and so on). If the unobserved eftecbrrelated with the regressor of
interest, i.e., Cow;, ¢;)#£0, this will lead to an omitted variable bias ie tOLS estimate
(also called heterogeneity bias). One possibletisoitio the omitted variable problem is to
find a suitable proxy variable far, but this will not be a convincing solution sirités
typically difficult to get a good measure of theobserved effect.

In such a case, panel data offers a much more dbngpgolution since we can
eliminate any influence aj onY;; even without being able to observe and measusethe
time constant factors. Hence, panel data allows gsntrol for any time-constant omitted
variables that may otherwise lead to an omittedhbée bias in a pure cross-section
analysis. Nevertheless, using panel data comepratea namely that only variables
causing time variance can be used in the empiicalysis.

The simplest kind of panel data is to have two yedidata for some cross section
of units. Call the two periods1 andt=2. These years need not be adjacentilt
corresponds to the pre-treatment year. Supposathaf, no units have received
treatment while at=2, some units are in the control group and othethertreatment
group. Let1Y;; be the change of the valueXgffromt=1 tot=2, that isAY;; = Yi2-Yi1. We
can now obtain a panel data version of the DD edtinby estimating
(4.18) AYiy =po+ PAXit + U= fo+ pXix + Uit ,
where we have used the fact thi; = Xj; since treatment only takes place in period 2. The
OLS estimator off will therefore be similar to the DD estimator retprevious section,

since it is the difference in group means!¥f However, there is an important difference



between the DD estimators with panel data as cozdparthe DD estimators with repeated
cross-section data. The important difference isweacan difference the outcome across
the same cross-sectional units, which allows wotdrol for unobserved heterogeneity
across units, whereas in the pooled cross-sectitmahse we can only control for
unobserved heterogeneity across groups.

It is also possible to generalize this simple DDedalata estimator to the case of
more than two periods, say T periods, where subget treatments in any period
(4.19) Yi=c + pXi+ A+ vy, i=1,2...,Nand t=1, 2, ...,T,
wherec; is an unobserved fixed effect aads a fixed-time effect. Any transformation of
the data that eliminates the unobsergezhn be used to estimate the above regression
model. Nevertheless, the two most popular waystfnating panel data models are a
first-differencing estimation (FD) or a fixed-efteestimation (FE). In the case of T=2, the
estimates from the FD and FE are identical but thidydiffer for T>3. Although the FE
and FD should asymptotically be the same when terenore than two time periods, the
most popular approach in applied work is the FEdf@mation. This is partly due to the
fact that the FE estimator is more efficient if #reors are homoscedastic and serially
uncorrelated but also due to the fact that thesHESS sensitive to violation of the strict
exogeneity assumption, especially with large Tntaa FD estimator®

To see how the FE transformation works in pracso@pose that we have the
following population model
(4.20) Yie = BXit + Ci + Vit
where, for expositional ease, we have excludedinme effects. The FE transformation is
obtained by first averaging the above equation,awdr, 2,...,T, in order to get the cross-

section equation
(4.21) Y, = BX; +C +V,
_ T
whereY, :T‘leit and so on. Subtracting equation (4.20) from (4f@Rgach t gives the

t=1

FE transformed equation

13 Both the FE and the FD estimators assume thainzpuariableX; is strictly exogenous conditional on the
unobserved effect, namely for each t, the expecadek of the idiosyncratic errargivenXin all time
periods and the unobserved effect is zero.



(4.22) Y. =Y =B(X, - X,)+Vv, -V.

The time demeaning of the original equation hasoresd the unit fixed effeat; The FE is
also called the within estimator, because it usegite variation ir¥ and within each
cross-sectional observatianyWe can estimate equation (4.22) by pooled OLSHmut t
standard errors and test statistics would have tocobrect since pooled OLS do not use the
correct degrees of freedom. However, we can usthanprocedure called the dummy
variable regression that leads to the same estimatalso produces the correct standard
errors and test statistics if the errggsaare homoscedastic and serially uncorrelaked.
dummy variable regression amounts to include aragpdummy variable for each of the

N units in (4.20).

An illustration of this method is Reinikka and Sssan (2007), which exploits a
four-year panel of school data to assess the ingfaeducing corruption (due to a
transparency campaign) on schooling.

There are some potential problems with a fixedetfé@proach. The first is that it
can only be used when there is time series vanatithe regressor. Another problem is
that the bias due to any measurement error ineiipessor is usually aggravated. For
example, many economic variables tend to be pergighealth status) while measurement
errors often change from year-to-year (health statay be misreported or miscoded this
year but not the next year). Thus, the observedtgegear changes in the economic
variables may mostly be noise and therefore, tisdikely to be more measurement error
in fixed effect regressions than in cross-sectioegiessions. Thagged dependent
variable also creates a bias unless the time pégiladge and the FE estimator is used.
Finally, there is typically little theoretical sup that suggests unobserved characteristics
to be constant over time. See Wooldridge (2008afdiscussion of the fixed-effect

approach.

4.3.5 Instrumental variables

The instrumental variable (V) approach is a gelmethod for obtaining a consistent
estimator of the unknown parameter of the poputatimdel when the regressor is

correlated with the error term. Thus, IV works whikare are omitted variables,



measurement errors, simultaneity and selectionvidnile the regression-control
framework, DD or fixed effect approaches will noh& any measurement errors or
simultaneity issues. The IV approach can be desdritb a number of ways. We will start
by describing it in terms of the traditional regriesis language and the potential outcomes
framework.

Before we formally describe the 1V, it is usefulgive an intuitive understanding of
the workings of the IV method. One can think of Wagiation of a regressor as having two
parts: one part that is correlated with the ereomtand another part that is not correlated
with the error term. The IV method only uses thearrelated part to identify the
parameter of interest. To exemplify this idea, figgpthat we are interested in the
following population model
(4.25) Y=L +0X+u,
but the regressor is correlated with the error temn E( | X) # 0, thereby implying that
the OLS estimator is not consistent. Assume thathawe another variablg which is
called an instrumental variable. The instrumenttrbesuncorrelated with the error tetm
Cov(Z, u)=0 but must be correlated with the endogenousibeK, Cov{Z, X) #0. The IV
is considered as a two-step procedure (which isinsyoften labeled two-stage least
squares, 2SLS). The first stage decomp&seso two components: a problematic
component that may be correlated with the errontand a problem-free component that is
uncorrelated with the error. The second stage tingegroblem-free component to estimate

parametes. The first step begins with a population regrassioking X to Z, i.e.,

(4.26) X=ao+ a1Z + V.

This regression provides the required decomposdfofi The first stage decomposés
into two components, one problematic componehit is related to the error temand
another componeniy+a;Z, that is unrelated to sinceZ is exogenous. The idea of the IV
method is to only use the problem free componettofestimate parametgr The only
complication is that the values @f anda; are unknown so that + ;X cannot be

calculated. Nevertheless, we can use OLS to edigwptation (4.26) and calculate the

predicted valu& =q,+a,Z whered, anda, are the OLS estimates. The second stage is



to regress (using OLS)on X . The resulting estimator from the second stagiesigV/
estimator3" . This two-step procedure illustrates the basia ioehind the IV approach.

We are now ready to more formally describe the i&thnod. The population model
isY = +[£X + u, whereX is endogenous. We have a valid instrumental vigrigh.e.,
the instrument is exogenous and relevant. Thedostition states that the instrument must
be uncorrelated with the regression error whilestagond condition states that the
instrument must correlated with the endogenousiéj i.e., Co, X) # 0. With these
two conditions, paramet¢tcan be identified, that is, we can wiftén terms of population
moments that can be estimated using a sample @f Ta¢ population model together with
the exogeneity of the instrument imply that we waite parametefs as
(4.27) B= CovZ, Y)/Cov(Z, X *°

This equation shows thatis the population covariance betweeandy, divided
by the population covariance betwegandX.

Given a random sample, we can estimate the popaolativariance by the sample
analog
(4.28) B" = Sy/Su,
whereS,y is the sample covariance betweeandY andSis the sample covariance
betweerZ andX. Since the sample covariance is a consistent astiof the population
covariance, the IV estimator will be consister,,iplim(3") =4. In large samples, the IV
estimator will also be normally distributed. Intuély, this is because the IV estimator is
an average of random variables and when the sasizaeés large, the central limit theorem
tells us that averages of random samples are nlyristributed. This means that we can
perform a hypothesis test ab@uby computing t-statistics and a 95-percent laayee
confidence interval by vV + 1.96SE(3 " ).

So far, we have only used one regressor but trepproach can, of course, be used

with more than one explanatory variable and moaa thne instrument. In this case, the

general 1V population model (the structural equatis the following

14 Although the two-step procedure produces the Kirege, it should not be used since the standaoiser
will not be correct as they do not take into acd¢dha sampling uncertainty of estimates of tha-ftage
parameters.

'® This is derived using Co#( Y)=Cov(Z, & + X + U) = BCov(Z, X) + Cov{Z, U).



(4.29) Y =S+ X1+ Xo +...+ BX + Wit po WL+ + pWk + U,
whereXi, Xz, + X; arer endogenous regressors (those that need to benresited) W,
W,,...W arek additional exogenous regressors (i.e., uncorehatth u), andZ,, Z,, ... Zn
arem instrumental variables. The regression coeffidame said to be exactly identified if
the number of instrumentm) equals the number of endogenous variables bie
coefficients are overidentified if the number aftiuments exceeds the number of
endogenous regressors, thanis; r. The coefficients are underidentified if the numbke
instruments is less than the number of endogeregregsors, that i;y<r. The
parameters must either be exactly identified orideatified if they are to be estimated by
IV regressions. The IV assumptions in the genasécexogeneity of the instrumeis
Zy, ... 2Zm 1€, E0U| Z4, Zo, ... Zy) = 0, and the relevance of the instrument; itee, t
instrument must be partially correlated with the@yenous regressors once all other
exogenous variabléd, W,,...\W have been netted out. In the case of one endogenou
variable, sayK;, and multiple instruments, this condition can terfally expressed as
(4.30) X1=0p+ 01 24+ 0 Zo+ .. .+ O Zxr Wi+ Wt ..+ Wit Vv,
wheref; =0, =...=0x # 0.2°

An important cost of performing IV estimates whha tegressor is not endogenous
is that the asymptotic variance of the IV estimasalways larger, and sometimes much
larger, than the asymptotic variance of the OL8restbr. In other words, the estimates
from IV will always have larger standard errorsrti@alS, i.e., the estimates will be less
precisely measured.

Another potential concern with the IV method is fneblem of weak instruments
i.e., when the instrument is only weakly correlateth the endogenous regressor. One way
of thinking of instrument relevance is that it dag/role akin to sample size. The more
relevant the instrument, that is, the more vamaiiothe endogenous variable that is
explained by the instrument, the more informat®available for use in the IV regression.
Thus, a more relevant instrument produces a mangraie estimator, just as a larger

sample size produces a more accurate estimataisti8ed inference using the IV estimator

1% In order to assess whether the instruments ark wrestrong when there is more than one endogenous
variable, it is necessary to look at a matrix vansf the F-statistic, which assesses all firsgistaguations at
once. This is called the Cragg-Donald or minimugeavalue statistic. References can be found inkStoc
Wright, and Yogo (2002),



is predicated on the IV estimator having a normaahgle distribution, but according to the
central limit theorem, the normal distribution ig@od approximation for largebut not
necessarily smalt samples. If having a more relevant instrumenkisthaving a larger
sample size, this suggests that for the normaliloligton to provide a good approximation
of the sampling distribution of the IV estimatdrgtinstruments should not just be relevant,
but highly relevant. Instruments that explaindittif the variation in the endogenous
variable are called weak instrumentbe 2SLS estimator is most biased when the
instruments are weak and there are many instrumientisat case, the 2SLS estimator will
be biased towards the probability limit of the esponding OLS estimatéThe intuition
for this is that in a small sample, even a valgtnmment will pick up some small amounts
of endogenous variation i, and if one starts adding more and more irrelevant
instruments, then the amount of random and hemcmgenous, variation X will become

increasingly important.

More generally, if the instruments are weak, theebtimator can be badly biased
and the normal distribution provides a poor appr@tion of the sampling distribution of
the 1V, even if the sample is large. The questtonaw how relevant must the instruments
be for the IV estimator to be reliable? There snaple rule of thumb in the case of a single
endogenous regressor: compute the F-statistiogeste hypothesis that the coefficients on
the instruments are zero in the first-stage regress V. This first-stage F-statistic
provides a measure of the information content d¢oathin the instrument: the more
information content, the larger is the expectedigalf the F-statistic. If the F-statistic is
larger than 10, there is no need to worry aboutkvirestruments.

Turning to instrument exogeneitythe instruments are not exogenous, then IV is
inconsistentCan we test whether the instruments are exogenidusanswer is basically
no, since the assumption about instrument exogemeiblves the covariance between the
instruments and the unobservable error termAssessing whether the instrument is
exogenous necessarily requires making an expegejudnt based on personal knowledge
of the empirical problem at hand. However, if thare more instruments than endogenous

variables, it is possible to statistically test wies the other instruments are exogenous.

7 If the instrument is totally irrelevant, i.e., G@yX)=0, then the population paramefgis not even defined

sincef= Cov(Z, Y)/Cov({Z, X).



This test is known as a test of overidentifyingnieBons. Suppose that you have one
endogenous variable but two instruments. Then tifferdnt IV estimates are computed.
The two estimates will not be the same becausaropkng variation, but if both
instruments are exogenous, the estimates will ie=dio each other. However, if the two
instruments produce very different estimates, tiesamething wrong with one of the
instruments- or both The test of overidentifying restrictions implicithgakes this
comparisonThe idea of the test is that the instruments shbaldncorrelated with the
error term, which suggests that the instrumentsilshize approximately uncorrelated with

the residual from the IV regression
(4.31) G =Y (B +BY Xy + B X+ W)
One way of testing for overidentifying restrictioisso run the OLS regressian”

onzy, Z;...Zm, Wi, W,,..., andWk and compute the F-statistic from testing that all
instruments are jointly zer8.The overidentifying restriction test statisticJismF. Under
the null hypothesis that all instruments are exogsnJ is distributed ag., where m-r is
the “degree of overidentification” i.e., the numioéinstruments minus the number of
endogenous variables.

A recent example of an impact evaluation using\astrategy in a Sub-Saharan
Africa context is Dinkelman (2008). She evaluatesémployment effects of a mass roll-
out of household electrification in rural South i&&, using a land gradient that directly
affects the cost of grid expansion as an instrurfarroject placement.

Sometimes it can be better to use OLS than IVdfitistruments are very weak and
there is some correlation between the instrumeatiaa error term. (Here it is important
to point out that 1V is a consistebtit notunbiased estimator). 1V is consistent only if
Cov(Z,u) =0, that is

N Cov(Z,u) — a4 Corr(Z,u)og,

(4.32) plim 5, = Var(X,z) Corr(Z,X)o,

while OLS is consistent only if Co¥(u)=0

Cov(X,u) -+ Corr(X,u)a,
var(X) o '

X

(4.33) plim fos = B+

18 This test is known as a J-test, which was firsettsped by Hansen (1980).



OLS can be preferred to IV on asymptotic bias gdsufhthe following inequality
is valid
(4.34) CorrX, u) > Corrg, u)/Corr(Z, X).

In practice, the most difficult aspect of an IViesdtion is finding instruments that
are both exogenous and relevant. There are two apgroaches, which reflect two
different perspectives on econometrics and stedilsthodeling. One way of generating
instruments is to write down theoretical modelsis®trategy, which is known as structural
model estimation, produces a framework that is detaftheoretical model and data
application) and estimates that are fully meanihgfehe context of the model. The other
approach is the “experimentalist” approalkchthe experimentalist approach, there was a
search for some exogenous source of variationgretfdogenous regressor of interest. The
variation may come from a true randomized expertrbehusually comes from some sort
of quasi or natural experiment, that is, situatish&re human institutions or the forces of

nature provide something close to a random assighme

4.3.6 Regression-discontinuity designs

Regression-discontinuity (RD) methods exploit dethknowledge of the rules

determining the regressor of interest. The RD coméso flavors: sharp and fuzzy
designs. The sharp RD design is based on the isglext observable assumption (i.e. a
regression-control framework) while the fuzzy design be considered as an instrumental

variable set up.

In the sharp design, the treatment rule is pesféectbwn since the treatment-
determining rule is deterministic, i.e.,
(4.35) T=T(X) = LifX>Xo,
whereT is a treatment indicatoX is the treatment-determining or assignment vagigdohd
Xo Is a known treatment threshold. This assignmdetmeans that treatment is a
deterministic function of the treatment-determinuagiable, that isT = 1 if X > Xy, or T=
0 if X <Xo. The basic idea in an RD design is to compareoougs for subjects whose
values ofX are “just below” and “just above” the discontinuX, since, on average, they

will have similar characteristics except for theattment. In other words, those subjects



slightly below the threshold will provide the coarfactual outcome for those subjects
slightly above, since the treatment status wilabegood as random in a neighborhood of
Xo. Thus, the causal inference from a regressiorodiswiity analysis can be as internally
valid as those drawn from a randomized experiment.

There are a number of different ways of estimatirggtreatment effect in a sharp
RD design. One approach would be to restrict thienation close to the discontinuiX,
which is basically the idea behind the non-paraimestimation approaches as discussed
by Hahn el al (2001) and Porter (2003). A drawbeaicthis method is that it requires large
sample sizes close to the treatment threshold whilee typical application of the RD
design, there are rather few observations aroundidtontinuity. As a result, the most
common approach in applied work is to use a lasgarple and try to model the
relationship between the treatment determiningabédei and the outcome of intere§ince
the assignment variab}is the only systematic determinant of treatmeatiustT, this
means that the conditional mean assumption Clhaild, i.e.,E[u|T, X] = E[u|X]. We can
then estimate the following regression using theéesample of data
(4.36) Y=a +4T +f(X) + u.

The OLS estimate ¢f will be unbiased and consistent sifiG€) will capture any
dependence betwed@randu, that is, EQ | T)=0. The problem is that we do not know the
functional form off(.). In practice, f(.) therefore needs to be approx@mhand one popular
approach is to approximate it with a low-order paignial.

There is a number of specification checks thab#en used in the RD approach.
Many papers make a visual plot of the data to sti@wpresence of a discontinuity in the
outcome at the treatment threshold (see, for exanhele 2008 for an illustration). They
also typically check whether the treatment estinmgensitive to the specification of f(.),
and examine the robustness of the results by cesgithe sample to a subsample of
observations more closely clustered around theffutAnother important check is to test
whether individuals on either side of the cut-o# abservably similar since if individuals
can exercise control over their values of the assant variable, then individuals just
below and above the threshold will not be similad avill thus invalidate the RD design.

In the “fuzzy” RD design, the probability of treatnt is no longer zero or one, as in

a sharp RD design. However, there is still a jumghe probability of treatment at the



treatment threshold. One approach in the fuzzy KI0 use the method of instrumental
variables (e.g., Angrist and Lavy 1999, and Hahal 2001) where the instrumental
variable Z is defined as Z=1X> X,, and as zero otherwise. In other words, in theyuz
RD design, the discontinuity becomes an instruniesatdable for the treatment status
instead of deterministically switching treatmentavroff.

An illustration of the regression-discontinuity et is (Barrera-Osorio, Linden
and Urquiola, 2007). They evaluate the impact f&feareduction program launched by the
city of Bogota in 2004. The program was targetadgia proxy-mean index, implying that
the probability that households benefit from the feduction was a discontinuous function
of their proxy-mean score, allowing the authorgriplement a regression discontinuity
design.

See Hahn et al (2001), Imbens and Lemiux (200&8) fargrist and Pischke (2008)
for more discussions of the RD approach.

5. Other issues in causal modeling

In this section, we discuss the implications ofydapon heterogeneity, i.e., the causal

effect varies across the population and acrosgssgarding statistical inference.

5.1 Heterogeneous effects

Previously, we assumed a constant causal effeattighy; =5 +4 X + u;, with 5 =2 for
all i. In reality, the causal effect can vary from on#jscti to another, based on the
subject’s circumstances, background and other ctearstics.

In the case of population heterogeneity, we carsiden/ as a random variable
which, just like u;, reflects unobserved variation across units. Hrehis population
heterogeneity, the OLS estimator®is still a consistent estimator of an average meat
effect. Specifically, if X is uncorrelated with tlegror term u, then the treatment effect is
the causal effect among those who receive thentiexat (TOT), while if X is randomly

assigned the treatment effect is the average catfsat in the population (ATE).



For the IV estimator, the situation is more comgtid when the population is
heterogeneous. To illustrate IV with heterogeneraussal effects, suppoZeto be a valid
instrument and related ¥ by the linear model
(5.1) Xi=mo + mZ + Vi,
where the coefficient; varies from one subject to the next. This equaisatie first stage
in a 2SLS with the modification that the effect ¥nof a change iz is allowed to vary

from one unit to the next. The 2SLS estimatoBVsS,/Sx where S, is the sample

covariance betweed andY and Sy is the sample covariance betwegrand X. Suppose
that (i) z andg; are distributed independently of v andz, (ii) E(ui| Z) = E(i |Z) = 0

and Ef;) # 0. Under these assumptions,

(5.2) plim (8" )=E(Bm)! E(x) .

The ratio in (5.2) can be interpreted as a weiglatestage of the individual causal
effects,fi. The weights are; which measure the degree to which the instruméhteances
whether thei™ subject receives treatment. Thus, the 2SLS esiimiat a consistent
estimator of a weighted average of the subjectssabeffects, where the individuals who
receive most weight are those for whom the instntm& most influential. To see this,
consider two cases where the 2SLS estimator imsistent estimator of the average causal
effect and one case where it is not 45 £ for all i (constant causal effect) (it)= = for all
i (the instrument affects each unit equally) anfl giippose thaZ; has no influence on the
treatment decision for half the population, iz=0, and tha¥ has a constant influence for
the other part. In the last case, 2SLS is a camdiststimator of the average treatment
effect in the half of the population for which thestrument influences the treatment
decision. To sum up, the 2SLS estimates a weighvedage of the causal effects, where
the causal effects of the units that are most @mfbed by the instrument receive the greatest
weight. This causal effect is also known as LATEOChl Average Treatment Effect),

originally derived by Imbens and Angrist (1994).

5.2 Inference issues

The statistical analysis of cross-sectional dathaised on the assumption that the data is

independent, i.e., each observation is treatedrasdom draw from the same population,



unrelated to the observation before or after. Baisipling model is often unrealistic and
analysts must also worry about the correlation betwobservations in cross-sectional and
panel data. The most important form of dependensiemta with a group structure. This
may give rise to a clustering problem (or the Monlproblem after Moulton 1986) if there
is a correlation within groups, or it may give rigea problem of serial correlation if the
data is repeated cross-section or panel data.

However, before we start discussing the infergaoblems caused by clustering or
serial correlation, we briefly discuss the implioas of when the error terms are
heteroskedastic rather than homoskedastic in imtkgre samples. The error term is said to
be homoskedastic if the variance in the conditiahstribution of the error term given the
regressor of interest is constant for all obseovestj otherwise the error term is said to be
heteroskedastic. The OLS estimator remains unbiasddonsistent, even if the errors are
heteroskedastic. However, if the errors are hekedsstic then the homoskedaticity-only
standard errors are inappropriate. For example, tHséatic computed using the
homoskedaticity-only standard errors does not leastandard normal distribution, even in
large samples. In such a case, one can computesiatdasticity-robust standard errors
that would lead to valid statistical inference nitinstanding if the errors are
heteroskedastic or homoskedastic.

The main issue of practical relevance is whether sihrould use heteroskedasticity-
robust standard errors or homoskedaticity-only ddath errors. Most econometric
textbooks suggest that one should use heteroskatiastbust standard errors since they
are more reliable. However, the robust standardre&rmay be more biased in small
samples than homoskedaticity-only standard errdnenwheteroskedasticity is modest.
Thus, a simple rule of thumb is to compute botmddéad errors and use whichever is
largest so as to avoid any gross misjudgementtab$tcal precision due to small sample
problems.

Turning to the inference problem with grouped d#ta clustering problem can be
illustrated using a bivariate regression estimatedata with a group structure. Suppose
that we are interested in the following relatiompshi
(5.3) Yig =Po+ Xy + Uig

19 These are known as Eicker-Huber-White standaaterr



whereYjq is the outcome variable for individuaih cluster or groug, with G groups.
Importantly, the explanatory variabl&, only varies at the group level. We model the
correlation within groups as an additive randonedffi.e. ug= Vg + &g, Whereyy is the
random component specific to grogpandeg is the usual error term. When the
explanatory variable only varies at the group leared there is a group random component,
standard errors can increase dramatically.

In the case where the regressor is fixed at theplevel, and the groups are of

equal size n, it can be shown that the relationbbtpreen the OLS variance formula

V(B °-°and the corrected sampling variance formulggVvis V(3 °-°= V( 3)/[1+ (n-1)A]

wherep= dA/(d% + d%) andd’, is the variance ofy andd% is the variance dd.
Parametepis called the intra-class correlation coefficiérttis equation tells us how
much we overestimate precision by ignoring intesslcorrelation. To make a stark
example, suppose that one makes n identical copi@slata set in order to increase its

OoLS

sample size. This is the same as assumind. and the OLS variance ¥(°“° should

therefore be scaled up by a factor of n, since icmpg data set does not generate any new
information. There is a number of solutions to ¢hestering problem. Perhaps the most
common solution is to compute cluster standardreif@g., using Stata cluster), but this
method is only appropriate when there is a readgiatye number of clusters or groups.
For example, Angrist and Piscke (2008) suggest3@atiusters are typically sufficiently
large for the statistical inference based on thstels’ standard errors to be reliable.
Another popular solution is to use group averagstead of micro data. The standard
errors that are based on group averages are nia@edhan clustered standard errors in
samples with few groups.

The inference problem caused by serial correlatanbe illustrated in a panel data
setting. Suppose that we have the following paat degression
(5.4) Yi= Ci + A+ BXit + U,
whereYj, is the outcome for individualin yeart, ¢; is an individual fixed-effect andl; is a
time-fixed effect. Typically, observations for ardividual tend to be correlated over time.
This means that the error tetmpwill be serially correlated and therefore, thendtard

errors would need to be corrected. If the numbendi¥iduals (groups) is large and the



number of time periods is small (observations withioups), one can once more compute
cluster standard errors (e.g., using Stata cluster)

Sometimes there are both clustering and seriaglagion problems. This often
occurs in difference-in-difference (DD) settingsipfose that we have the following DD
set up
(5.5) Yig= Wt At BXgt + Uigt,
whereYig, is the outcome for individualin groupg in yeart, yy is a group fixed-effect and
At is a time-fixed effect. We can consider the eteomuig: as the sum of a group-year
shock,vy, and an idiosyncratic individual componegy:.. Since there is a group-year
shock in the error term and the regressor of istefg also only varies at the groxyear
level, there will be a clustering problem. With pytlo groups and two time periods, as in
many DD applications, there is no solution to thuestering problem. Even worse, if there
are only two groups and two time periods, the Dibretor will not even be inconsistent if
there are random group-year shocks. Intuitivelgiragl more individual observations to the
four different groups (treatment group before, tireent group after, control group before,
and control group after) does not help distingtiehcausal effect from the random shock.
The solution to the clustering problem is to havétiple time periods or many groups (or
both). However, when there are more than two-tiergogs there will typically also be a
serial correlation problem in addition to the Maultproblem, since observation within
groups tends to be correlated across time. Incdss, the most important inference issue is
the behavior of the common showl, If the group-year shocks are serially uncorrelate
the standard errors on the by gratime can be clustered (e.g., using Stata clustegke
into account any correlation within clusters (gretime). This takes into account the
Moulton problem if there is a reasonably large amai clusters. However, if the group-
year shocks are serially correlated, the standaodsefor the serial correlation in thig
themselves must be adjusted. There is a numbeayd of doing this, not all equally
effective in all situations. The simplest and masthmon approach is to cluster the
standard at a higher level, i.e., the group levsidad of by grougime. This means that
we need to have a large number of groups in tiie sance few clusters mean biased

standard errors and misleading inference. The murest how to solve the serial



correlation problem when the number of clustefsugis currently under study and a
consensus has not yet emerged.

For papers discussing the Moulton and serial caticel problems see, for example,
Donald and Lang (2007) and Bertrand et al (200d).2Rextbook treatment, see Angrist
and Pischke (2008).

6. Data and Power Issues

6.1. Data

There has been a spectacular increase in the laligfland quality of data from
developing countries in recent years. Many of tldegasets are either in the public domain
or can be obtained at a modest cost from the adiection agency’ While randomized
evaluations rely on collecting original data thrbdgpldwork, a lion’s share of the
evaluations based on quasi-experimental methodsatjypexploit already existing data
sources. This second option has become more firugifren that over the last 10-15 years,
high-quality, large scale, multipurpose data satselbecome readily available. The World
Bank’s Living Standard Measurement Surveys (LSM#&) the Rand Corporation Family
Life Surveys are two prime examples of this. Demapgic and Health Surveys (DHS) are
another source of fertility, mortality and healttal To date, DHS have been implemented
in 40 countries in sub-Saharan Africa and, in sgiveaises, with more than one round per
country. Many developing countries also collecirtbgn data, including large household
survey data and the quality of these data has &teeily improving.

Census data from developing countries is availabla the IPUMS-International
web site (https://international.ipums.org/interoatl/), although only a handful of

countries from sub-Saharan Africa are includedairtsamplée?

6.2. Power issues

% The Bureau for Research and Economic Analysisedelbpment (BREAD) provides a useful link to data
from developing countries at http://chd.ucla.edu/dkata/index.htmllink.

2 Survey design issues (as well as methodologisakis regarding the analysis of household surve) dag
discussed in great detail in Deaton (1997).



In case the impact evaluation requires the cobeatif new data, as is the case when
conducting randomized experiments, power calculatere of great importance. In
principle, power calculations should be conduceadmte to determine the necessary
sample to obtain a given power. In practice, howesample size is often largely
determined by budget or implementation constraifitss raises the risks that the
evaluators will make “type Il errors”; i.e. not det a significant difference of an
intervention that would have been found to havigaificant impact had the sample size
been large enough.

The basic principle of power calculations can hesitated in a simple regression
framework?? Consider the regression model in (6.1)
(6.1) Y, =a+ [T +¢,

whereY is a continuous outcome variable. The variandeeénOLS estimatorﬁ, is

0.2

ST -T)?

wheres? = Var(Y)and T is the mean of;. If a fractionf of the sample belongs to the

(6.2) Var(f) =

treatment group, (6.2) simplifies to

0.2

nf - f)’

Consider the decision rule to be used to determimether an experiment has an

(6.3) Var(p) =

effect of sizes. First, note that we would reject the null hypaiseof zero impacti= 0) if

A

B
LSSt

SE[;,

(6.4)

for a one-sided test (for a two-sided tgss replaced by,») where SE[;, is the standard

error of the OLS estimator. That is, if the impastimate is greater (in absolute terms)

that the critical value,, DSE[}, the null hypothesis of zero impact would be regdcNow,

consider what will happen if the true impact eqyalShen, with«% power k% of the

2 For an introduction to power calculations, seel®af al (2006). A more in-depth treatment is pded in
Bloom (2004) and Donner and Klar (2000). The exgarsinere partly follows from Blom (2004).



sampling distribution of the OLS estimator/imust lie above the threshold valug?t
that is

(65) |ﬂ|>(ta +tl—K)SE,Z;'

Using (6.3), we can rewrite (6.5) to get the mimmrequired sample sizeas,

_ (Y 1
©o n= Tt (/32]( fi- f)j'

When the treatment and control groups are of theessze, (6.6) is reduced to

6.7 =4, +t,_ Za—zj.
( ) n (a+ /() (ﬁz

In many cases, the outcome variable is not contiaexamples include child
mortality, whether or not a student drops out ¢fosdt or whether the person is infected by
a STD). In this case, the formula for the requsathple size must be slightly modified.
Specifically, with a binary outcome measure, tregutbance term can only take two
values. With probability?;: Y = 1and with probabilityl-P: Y = O, where subscrigt
denotes treatment or control group. Using thetfsatE (¢;) = O, it follows from (6.1) that
(6.8) pd-a-pAT)+@A-p)(-a-pT) =0,
implying thatP = o + ST,;. Therefore, an estimate &, for simplicity assuming thdt=
0.5 is

(6.9) 6t =[P a-P)+RA-R)],

implying a required sample size of

(6.10) n=2(, +tl_K)2(PT -R)+PR@a- PC)J ’

(P —F)’
wheref = (Pt - Pg).

As discussed in section 4, many randomized impaadtiations are not randomized
to individuals but to groups or clusters. Howetbe evaluator may still have access to
individual data. As discussed in section 5, whealyaing individual data from programs

randomized at the group level, it is importantaketinto account that the error term will

% A standard protocol in both social and medicatsces requires 80% power of detecting a significant
difference at the 0.05 significance level for aggi\effect sizes.



most likely be correlated within clusters. This imaglications for the sample size
requirements. Specifically, Bloom (2004) showsrgguired sample size to be

o’ 1
(6.11) n=(t, +tH)2(Fj(mj(l+(nj —1),0) ,
wheren; is the number of individuals per cluster and the intracluster correlation, i.e. the
proportion of the overall variance explained by within-group variancé?

For sample size determination, comparing expresgi@%) and (6.11) implies that
the usual estimate of the required number of inldigls should be multiplied by the
“inflation factor" (1 + (n; - 1)p) when randomizing across groups instead of across
individuals. The difference in the required numbkmndividuals can be substantiapifis
large. We can also note from (6.11) that the reguimumber of individuals is minimized
whenf = 0.5, i.e., when the treatment and the control groepohthe same size. Finally,

dividing byn;, and rearranging, we have

B _ 1-p 1 1
(612) o (ta +t1—/()\/10+ nj \/f(l— f)\/: 1

whereflo is the minimum detectable effect size, i.e. thalgst effect that, if true, has a

k% chance (or power) of producing an impact estirtfaeis statistically significant at the
a level, and] = n/n; is the number of clusters. Equation (6.12) shdwsttade-off between
power and size. Ignoring the effects through tligcat values of the distributions, an
increase in the number of clusteds ¢r the number of individuals per clustey) feduces

the minimum detectable effect size. Note, thoulgat while the minimum detectable effect
size declines in roughly inverse proportions togfgeare root of the number of randomized
groups {), the size of the randomized groups often makete$s difference to the

precision of the estimate. As noted in Bloom (20@4) = 0.05, the values of
Jp+ @-p)/n, for randomized groups of 50, 100, 200, and 50@iddals would,
correspondingly, be approximately 0.26, 0.24, 0a2®] 0.23. Thus, even a tenfold increase

in the size of the randomized groups makes litflerence to the precision of the impact

estimator.

24 See section 5.



6.3. Measurement

There is a fairly large literature on measurememducation and health, but a much more
limited literature on measurement in water andta#ipn®>> However, apart from direct
measures of water quality (see, for instance, Kreehal (2007)), and sanitation
infrastructure and quality, or measures of conoestio public (or private) water
connection systems, such as the fraction of honitslatrines or access to communal
standpipes or protected springs, evaluations iematd sanitation sectors typically have
health, and sometimes education, outcomes aspheie target- thus, the focus here is on
education and health. When studying the impactatewand sanitation projects on health
outcomes, water-related diseases, such as diardggaatory, eyes and skin infections, are
prime target for measuremefit.

There is somewhat of a consensus in the literahatethe number of years of
schooling is a reasonably good indicator of edocagittainments, or the quantity of
schooling. However, as an individual’'s completedrgeof schooling are only known
several years after he or she first enrolled iosbhmeasures of current schooling are often
used in practice when researchers evaluate thectropan intervention in education. This
raises a couple of measurement issues.

The first is primarily conceptual. While increasitige probability of current
schooling, for instance the probability of compigta given grade, may increase the
number of years of schooling eventually completiechuld primarily "just” create
intertemporal substitution in the timing of eduoati The second concern refers to how to
measure current schooling. In developing countries,not uncommon for students to
attend school erratically and the difference betwleequently absent students and
dropouts may be unclear. Thus, by looking at messsuch as the completion of a given
grade, or the decision to drop out, a large vanmin the quantity of schooling would be
overlooked. A way of partly dealing with the lattemcern is to focus on participation,
measured as the proportion of days that the stadeatpresent at school for a given

number of days that the school is open. As classraitendance registers are often

% 0On education, see Glewwe and Kremer (2008) faildeand references. On health, see Strauss and
Thomas (1998).
% Kremer et al (2007) measure water contaminatiothbyfecal indicator of bacterta coli.



inaccurate in developing countries, participatiatedypically requires independent data
collection. Miguel and Kremer (2004), for instanased unannounced visits by
enumerators during a handful days over the scheml to record which children were
actually in class.

Education quality is sometimes measured by inpoitips (such as student-teacher
ratios, or the share of qualified teachers) buseéhmeasures are obviously imperfect
measures of learning outcomes. Thus, too a larggxeducation quality is directly
measured by looking at student performance on aciadests. In many cases, these tests
are organized by the evaluators. This has the obwadlvantage that the tests could be
designed in such a way as to get sufficient vanmain and accurate measures of learning
outcomes. Many countries also record results framdardized tests that could be
exploited. Reinikka and Svensson (2007), for instamse test scores from Primary
Leaving Exam records in Uganda. One advantagethighitype of data is that students
have incentives to do their very best on the ®até passing the test is a requirement for
acceptance into secondary school).

There is less consensus on the measurement ofi heaitly because health is
fundamentally multidimension&l.Moreover, while it is typically assumed that
measurement error in schooling is random (Grilich€37), many health indicators are
measured with errors that are systematically rélaaelemand for health and other
behavior (Strauss and Thomas, 1998).

The simplest form of health measurement is selfuaten, most often self-
reported general health status. As discussed au&trand Thomas (1998), while popular,
these measures are fraught with problems.

Self-reported health problems, i.e. illnesses athief family members, are also
common in household surveys. This raises two prob)e.e. recall biases (see Deaton,
1997) and biases due to difficulties in interprgtwhat is deemed as illness or symptom
that may systematically vary across individualscdtlebiases may be less problematic
when probing information about major events in pesdives (like the birth or death of a
child).

%" See Strauss and Thomas (1998) for a more detdidedssion and further references.



Anthropometric data, such data on height, weigh§ combination of the two, is
increasingly becoming a standard module in margelacale surveys. For instance, the
latest round of DHS data includes data on heigttveeight for women and children. Child
height has proven to be an informative longer-nehdator of nutritional status, as well as
a cumulative measure of health investment for aduiteight, on the other hand, varies
more in the short run and thus provides a moresatitndicator of nutritional status. Since
a light person may also be small, it is commonnalyze weight given height. There are
many potential ways of expressing this ratio, tlesthtommon being the body mass index

- the ratio of weight (in kilograms) to height (ireters) squared.

7. Concluding remarks

Impact evaluations ought to be an integral pathefpolicy formation process. The
benefits of knowing which programs work and whichribt extend far beyond any
program or agency. A credible impact evaluatioal$® a global public good in the sense
that it can offer reliable guidance to internatiomaanizations, governments, donors, and
nongovernmental organizations in their ongoingdeéor effective ideas.

In this paper, we provide an introduction, anddme extent a practical guide, for
researchers and practitioners interested in andataluation in education, health, water,
and sanitation. We refer the reader to the refe®igosen herein for a more in-depth

treatment of the methods, concepts, and data isseiésve discussed.
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