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Abstract

This paper shows that employment of U.S. firm cohorts is strongly

influenced by aggregate conditions at the time of their entry. Em-

ployment variations across cohorts are found to be persistent and

largely driven by differences in average firm size, rather than the

number of firms. To disentangle startup composition from post-

entry choices, we estimate a general equilibrium firm dynamics model.

We find that aggregate conditions at birth drive the vast majority

of employment variation across cohorts through their effect on the

proportion of startups with high growth potential. In the aggre-

gate, startup conditions result in large slow-moving fluctuations in

employment.
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1 Introduction

The number of firm startups in the U.S. fell sharply during the Great

Recession.1 Given the importance of startups for aggregate job creation,

this raises concerns about a long-lasting drag on aggregate employment

and output. While such worries are valid, this paper shows that in addition

we should be concerned with the roughly 2 million startups that did enter

during the latest downturn. We document that recession-born firms tend to

remain persistently smaller on average, even when the aggregate economy

recovers. Underlying this pattern are changes in the types of startups with

respect to their potential to grow large. Moreover, rather than fading out

over time, decisions taken at the entry phase leave an increasingly large

footprint on the macro-economy as startups age.

Using newly developed Business Dynamics Statistics (BDS) we follow

cohorts of firms, starting from their year of entry. The data span all sectors

in the U.S. private economy and cover the years from 1979 until 2011. We

document three new stylized facts: (i) variations in entrant employment are

large and pro-cyclical, (ii) to a great extent these variations persist as firm

cohorts age (sharply contrasting the strong mean-reversion in aggregate

employment) and (iii) the majority of variation in cohort-level employment

is driven by changes in average firm size, rather than by the number of firms

within a cohort.

The empirical patterns suggest that cohorts born at different stages of

the business cycle are composed of different types of firms, giving rise to

long-lasting effects. However, the composition of startups is unobserved

and firm size fluctuations across cohorts are also driven by variations in

post-entry decisions made by a given mix of firms. To disentangle the two

and to quantify the impact of compositions changes, we estimate a general

equilibrium firm dynamics model using both aggregate and cohort-level

data. The model features heterogeneous firms, endogenous entry, post-

entry growth subject to adjustment costs and aggregate uncertainty. Im-

portantly, depending on aggregate conditions at the time of entry, startups

choose a production technology affecting their ability to grow large.

1According to the Business Dynamic Statistics, the number of startups in 2009 was
30% below its pre-crisis level in 2006.
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The estimated model implies that conditions in the year of birth drive

at least 90 percent of the variation in employment across cohorts of a given

age, even for older firms. The importance of the birth stage for long-term

outcomes stems from the composition of cohorts with respect to firms’

chosen production types. Initially, changes in the composition of startups

have only a moderate effect since all firms enter relatively small. But as the

cohort ages, a fraction of firms grows large and the composition effect on

cohort-level employment becomes increasingly pronounced. Comparing for

example the cohorts born in 2006 and 2008 our model predicts that, due to

differences in composition alone, firms born in 2008 grow to be on average

13 percent smaller at age 5 (amounting to a reduction of 300 thousand

jobs). By the age of 20, the predicted gap grows to almost 20 percent.

Using the model we also show that macroeconomic conditions at the

startup phase are important for fluctuations in aggregate employment. In

particular, the contribution of startup conditions to aggregate employment

fluctuations evolves in a strikingly similar way to the trend component of

the employment rate, often discarded in business cycle analysis. Our frame-

work thus opens up an avenue for future research aiming to understand the

drivers of macroeconomic fluctuations at a more complete range of frequen-

cies. Furthermore, we show that general equilibrium effects associated with

fluctuations in entry decisions are strong, particularly in the long run.

An important pre-requisite of our analysis is the estimation of the model

using Maximum Likelihood. It is well known that solving heterogeneous

firm models with aggregate uncertainty is a complex problem because the

aggregate state includes entire distributions of firm-specific variables. A

key methodological contribution of this paper is designing a novel compu-

tational strategy, based on first-order perturbation around firms’ steady

state growth paths, allowing the model to be solved quickly.2 We identify

changes in startup composition by exploiting the model’s implication that

a cohort’s composition reveals itself through its increasing influence on av-

erage firm size as the cohort ages. The use of cohort-level data, observed

at different points in time, is therefore paramount to our estimation.

2Campbell (1998) pioneered the use of perturbation methods to solve heterogeneous-
agents models, replacing functional equations with quadrature approximations. Our
setup avoids the need for such approximations because the economic state is large but
finite-dimensional, preserving exact aggregation.
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The model incorporates two novel features in order to suit our empir-

ical focus. First, the model allows for heterogeneity in returns-to-scale in

production. This contrasts standard firm dynamics models in which hetero-

geneity is introduced purely through variations in total factor productivity

(TFP) across firms. A motivating factor behind our choice is that we apply

the model to the entire cross-section of private employers in the economy

rather than to confined industries, in which returns to scale are arguably

more homogeneous.3 Moreover, only a small degree of heterogeneity in re-

turns to scale is sufficient for our model to fit the size distribution of firms

in the data, conditional on age. That said, we show that a version of the

model in which firms differ only in TFP delivers very similar results.

The second novel feature of our framework is the modeling of the firm

entry phase. Aspiring entrants are free to choose any of the given number

of business opportunities, each associated with a certain technology type.

However, highly scalable businesses are relatively valuable, provoking in-

tense competition for these opportunities among aspiring startups. Strong

competition reduces the probability of successfully starting up and encour-

ages entry of firms that have little potential to grow large, of which we see

many in the data.4 What arises is a natural equilibrium relation between

the value of a firm and the number of startups of a particular technology

type. This modeling framework is akin to the directed search literature (see

e.g. Moen, 1997) and similar in spirit to models of innovation and research

and development (see e.g. Klette and Kortum, 2004).

The composition of startups, therefore, responds endogenously to ag-

gregate shocks through their differential impact on the values of firms of

different types. In addition, startup composition is affected directly by

a shock to the distribution of business opportunities across firm types, re-

sembling shocks in models of vintage technologies (see e.g. Campbell, 1998;

Gilchrist and Williams, 2000). The set of microfoundations one can give to

this shock is, however, more general. In the Appendix we show how various

3Even so, Holmes and Stevens (2012) provide evidence of substantial heterogeneity
in returns to scale even within narrowly defined industries. Basu and Fernald (1997)
provide evidence in favor of heterogeneity in returns to scale across sectors.

4In 2007, the fraction of firms with 10 or fewer employees among firms between 21
and 25 years of age was about two thirds. This is also consistent with empirical evidence
that many starting entrepreneurs have low growth expectations, see Campbell and De
Nardi (2009) and Hurst and Pugsley (2011).
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frictions – related to uncertainty and financial and product markets – map

into outcomes which are observationally equivalent to our setup. The ad-

vantage of our approach is that we are able to quantify the overall impact

of composition changes. Nonetheless, we explore to what extent proxies of

these frictions comove with our estimated measure of startup composition

and find that product market frictions may be an additional driver.

The empirical results complement the analysis in Haltiwanger, Jarmin,

and Miranda (2013), who emphasize the importance of young firms for ag-

gregate job creation on average. Cyclical patterns in firm entry are studied

in Campbell (1998) and Lee and Mukoyama (2013) who analyze the be-

havior of entering and exiting firms in the manufacturing sector. Unlike

these studies, we exploit the newly developed BDS data to follow cohorts

of firms as they age, enabling us to investigate how their later job creation

is affected by aggregate conditions at the time of their birth.5

We are not the first to study firm dynamics and variations in entrant

size. However, in contrast to existing studies we use our general equilibrium

firm dynamics model as an empirical tool to uncover an unobservable state

of the aggregate economy: the distribution of entrant types with respect

to their growth potential. Moreover, our analysis focuses on the aggregate

economy rather than industry-level outcomes. Our framework builds on a

rich literature of structural firm dynamics models. A workhorse model of

firm dynamics (without aggregate uncertainty) is presented in Hopenhayn

and Rogerson (1993). Abbring and Campbell (2004) estimate a partial

equilibrium firm dynamics model without aggregate uncertainty and find

that pre-entry scale decisions are important for the variation in sales across

firms. Campbell (1998) and more recently Lee and Mukoyama (2013) and

Clementi and Palazzo (2014) use the Hopenhayn-Rogerson framework to

study the role of entry and exit decisions in the propagation of aggregate

shocks in the manufacturing industry.

5Earlier studies using BDS data include Moscarini and Postel-Vinay (2012) and Fort,
Haltiwanger, Jarmin, and Miranda (2013) who study the cyclical sensitivities of large
versus small and younger versus older firms, but do not focus on entrants or cohorts.
Decker, Haltiwanger, Jarmin, and Miranda (2013) use BDS data to document a down-
ward trend in the pace of business dynamism, and find that a secular decline in the
number of startups accounts for much of this trend decline. Also related is Bartelsman,
Haltiwanger, and Scarpetta (2009) who use a cross-country data set to study average
post-entry behavior of young firms.
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The organization of the remainder of this paper is as follows. Section

2 describes the data and presents empirical stylized facts. The model and

its parametrization are described in Sections 3 and 4, respectively. Section

5 presents the model results and elaborates on potential additional drivers

of the compositional fluctuations uncovered by the estimated model. Con-

cluding remarks are made in Section 6.

2 Empirical evidence

Startups are widely recognized to be important drivers of aggregate job cre-

ation on average, at least since Haltiwanger, Jarmin, and Miranda (2013).

This section documents cyclical patterns in employment by young U.S.

firms over time, without imposing any model structure. Our units of anal-

ysis are cohorts, that is, aggregates over firms born in the same year. We ex-

ploit newly developed Business Dynamics Statistics (BDS) data, described

in the next subsection, which covers all sectors in the private economy. The

findings can be summarized by three stylized facts:

Fact 1. Entrant job creation is volatile and pro-cyclical.

Fact 2. Cohort-level employment is largely determined in the year of birth.

Fact 3. Average size is the main driver of variations in cohort-level em-

ployment with an increasing importance as cohorts age.

We aim to contribute to a rich empirical literature that tries to un-

derstand the dynamics of firms and differences across firms, as surveyed

in Bartelsman and Doms (2000) and Syverson (2011). In particular, our

first stylized fact complements empirical evidence presented in Campbell

(1998), and Lee and Mukoyama (2013), who find that the number and job

creation of new plants is pro-cyclical in the manufacturing sector. Our

analysis, by contrast, is not confined to a single industry and applies to

firms rather than establishments.6,7 To the best of our knowledge, our sec-

6Appendix D presents within-industry findings and makes a more detailed compari-
son of the cyclical patterns we find in the BDS relative to those of Lee and Mukoyama
(2013) who use data from the Longitudinal Research Database provided by the Census
Bureau.

7Appendix B shows that our results remain to hold also for establishments. An
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ond and third stylized facts have no precedent in the empirical literature

on firm job creation.

2.1 Data and definitions

The BDS database is based on administrative records and covers 98 percent

of US private employment. This is an important advantage over alternative

data sources, especially given our objective to study implications for aggre-

gate outcomes. We use the available annual information on the number of

firms and their job creation broken down into age categories, for the period

1979 until 2011.8

The available age breakdown in the BDS allows us to follow cohorts of

new firms for up to five years after they enter the economy.9 The BDS

groups older firms into age categories spanning five years. However, we

find that our stylized facts continue to hold for averages for firms 6-10 and

11-15 years of age. Additionally, Appendix C presents a robustness check

using establishment-level micro-data underlying the BDS, which we use to

construct data for (1-year) cohorts up to the age of 15. The documented

aggregate patterns hold far beyond the age of five, reinforcing our results.

We introduce the following notation. LetMa,t be the number of firms in

a cohort of age a in year t. Following the BDS notation, startups enter with

age a = 0. Similarly, let Na,t be the employment level of a cohort of firms

of age a in year t. The employment level of a given cohort is measured as

cumulative net job creation since birth, i.e. Na,t =
∑a

i=0NJCi,t−a+i, where

NJCa,t is the net number of jobs created in firms of age a in year t.10

establishment is defined as a single physical location where business is conducted or
where services or industrial operations are performed. A firm is a business organization
consisting of one or more establishments that were specified under common ownership
or control.

8The data represents a snapshot taken in March of each year. The data starts in
1977 but we drop the initial two years following Moscarini and Postel-Vinay (2012), who
cast doubt on the quality of the initial two years.

9Appendix A.3 shows that our patterns are not driven by a particular cohort by
analyzing a two year moving average of the data.

10Alternatively, one could use the employment stock data presented in the BDS. These
employment numbers do not equal the sum of net job creation because the net job
creation data is cleaned from observed entrants that are not believed to be true star-
tups, while the employment data is not. BDS documentation states that: “...it may
be determined that an establishment’s entry/exit as shown by the data is not credi-
ble. These establishments are excluded from the change calculations in a given year”
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Table 1: Correlations of entrant job creation with business cycle indicators

linear trend HP filter levels
e-rate GDP e-rate GDP e-rate ΔGDP

NJC entrants 0.59 0.68 0.31 0.39 0.59 0.47

Notes: The table reports correlation coefficients between the variables in the columns
and job creation of entrants for various de-trending methods. “e-rate” stands for em-
ployment rate, defined as 1 minus the unemployment rate (the correlation with the
employment-to-population ratio is between 0.92 and 0.98, depending on the detrending
method). “ΔGDP” is the growth rate of real GDP. All variables are logged prior to
detrending and entrant job creation is treated in the same way as the given business
cycle indicator.

2.2 The cyclicality of startup job creation

To visualize the cyclicality of cohort-level employment, Figure 1 displays

HP-filtered employment levels between 1979 and 2011 of (i) cohorts of

startups, (ii) cohorts of five year old firms, where the time series is shifted

back to the year of their birth and (iii) the aggregate economy.11 Several

patterns stand out. First, fluctuations in cohort-level employment are large

(more than 3 times larger than that of aggregate employment). Also, the

cohort-level volatility does not appear to diminish with age. Second, job

creation by entrants and aggregate employment move together and drop

during recession years, indicated by shaded areas.

Table 1 presents more formal measures of cyclicality by correlating em-

ployment in startups with several business cycle indicators and using several

detrending methods. In all cases the correlations are positive and statis-

tically significant, confirming the strong pro-cyclical nature of entrant job

creation.

(http://www.census.gov/ces/dataproducts/bds/faqs.html). Thus, the net job creation
data are superior, at least for our purpose. Nevertheless, Appendix A.2 shows that our
results are robust to other ways of constructing employment levels.

11All variables are logged prior to de-trending. Because our analysis deals with time
series of different lengths (e.g. information on five year old firms starts only in 1984),
we always de-trend the given data over the longest possible sample with the earliest
starting point in 1979. Throughout the paper, the smoothing parameter in the HP filter
is set to 100 to leave no obvious cyclical pattern. Appendix A.1 confirms robustness of
our results to alternative detrending methods. Where possible, aggregate variables are
averages over March-to-March periods, consistent with the BDS timing.
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Figure 1: Cohort-level employment at age 0 and 5 by year of birth and
aggregate employment by year
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Notes: Cohort-level and aggregate employment are plotted in percentage deviations
from an HP-trend. Shaded areas are the NBER recessions. Source: BDS, BLS.

2.3 The year of birth and cohort-level employment

To quantify the persistence of cohort-level employment, we correlate en-

trant employment in year t with the employment level in t + a in the

same cohort. Figure 2 plots the correlation coefficients for ages a = 1 to

a = 5 both for the individual cohorts, as well as for aggregate employ-

ment.12 While cohort-level employment at birth and 5 years into existence

are highly correlated, with a correlation coefficient of 0.68, its aggregate

counterpart displays no persistence after two years. Thus, there is no evi-

dence of convergence across cohorts. Turning our attention to older firms

(grouped in 5-year bins), we find that the persistence is at least as strong.

In particular, for cohorts in the age category 11-15 we find that the corre-

lation of their current employment level with the level 10 years earlier is

0.89 (not plotted).13

A formal alternative to the reported autocorrelations is presented in

12While cohort-level employment does not display a trend, aggregate employment
does and therefore we choose to HP-filter both time series. For the aggregate series we
simply correlate period t employment with employment in years t+ a.

13To be able to compute this number we use the employment level reported in the
BDS, rather than net job creation. We use the same de-trending methods as before.
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Figure 2: Autocorrelations
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Notes: Correlation coefficients of employment in year t = 0 and in year t + age, with
age = 1, 2, 3, 4, 5, at both the level of a cohort born in period t = 0 and at the aggregate
level. Source: BDS, BLS.

Appendix A.4, which estimates panel regression of cohort-level employment

at different ages on entrant job creation and explicitly controls for age and

also current entrant employment (a measure of current aggregate startup

conditions). The implied elasticities of employment at different ages with

respect to employment in the year of entry correspond closely with the

autocorrelation coefficients reported in Figure 2.

2.4 Decomposing cohort-level employment variation

The previous paragraphs established that the number of jobs created by

cohorts of startups upon entry largely persists into later years of their

existence and that the fluctuations in these numbers are large. We now

investigate whether the observed variation of cohort-level employment is

driven primarily by variation in the number of firms within the cohort

(extensive margin), or by persistent differences in the growth potential of

startups (intensive margin).

To this end, we decompose the natural logarithm of cohort-level em-
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ployment as:

lnNa,t = lnS0,t−a +
a∑

j=1

ln γj,t−a+j + lnM0,t−a +
a∑

j=1

ln δj,t−a+j,

where Sa,t is average firm size within the cohort,Ma,t is again the number of

firms, γj,t ≡ Sj,t

Sj−1,t−1
denotes average size growth and δj,t ≡ Mj,t

Mj−1,t−1
denotes

the average firm survival rate. Based on the above expression, the variance

of employment can be decomposed as:

var(N̂a,t) = cov(N̂a,t, Ŝ0,t−a) +

a∑
j=1

cov(N̂a,t, γ̂j,t−a+j)︸ ︷︷ ︸
intensive margin

+ cov(N̂a,t, M̂0,t−a) +

a∑
j=1

cov(N̂a,t, δ̂j,t−a+j)︸ ︷︷ ︸
extensive margin

+ηt,

where a hat indicates deviations from an HP-filter trend of a logged vari-

able and ηt is a residual term coming from the detrending method.14 The

first two terms on the right-hand side jointly capture the contribution of

the intensive margin (average size) to the total variance. The first term

individually captures the contribution of average size in the year of en-

try alone. The third and fourth terms capture the contributions of the

extensive margin.

The importance of the intensive margin is made clear by Figure 3,

which displays the variance decomposition by age. The total shaded area

represents the contributions of average size variations to cohort-level em-

ployment fluctuations, at different ages. The white area accounts for the

contribution of variation in the number of firms.15 It is clear that the

contribution of average firm size variation is increasing as the cohort ages

(accounting for about 50% at birth and 64% at age 5).16 Extending the

14In our case, the residual η is negligible, not exceeding 0.01%.
15The vast majority of the contribution of the number of firms is due to the number

of startups. The contribution of changes in the number of firms after startup, i.e.
fluctuations in firm survival rates, account for only 3% on average for firms aged 1 to 5.

16The intensive margin also becomes increasingly important for the average level of

cohort employment as the cohort ages (i.e. lnS0,t−a +
a∑

j=1

ln γj,t−a+j increases relative

to lnM0,t−a+
a∑

j=1

ln δj,t−a+j). Especially in the initial years following birth, many firms

exit whereas those that continue grow rapidly on average. These patterns have been la-
beled “up-or-out” dynamics by Haltiwanger, Jarmin, and Miranda (2013) and will play
an important role in the structural model we estimate in the next section. In partic-
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Figure 3: Contribution of average size to employment variation
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BDS.

analysis to older firms reveals that average size remains very important in

determining fluctuations in cohort-level employment, accounting for 70%

among 11 to 15 year old firms (not plotted).

Within the total shaded area in Figure 3, different shades break down

the contribution of the intensive margin by age, with the lightest shade

denoting startup size. Clearly, the contribution of startup size variation is

large and does not die out as the cohort ages, but plateaus at around 35%.

Although startup size emerges as a persistently important contributor

to employment variations across cohorts, we need to be careful in interpret-

ing it as a measure of compositional effects. Changes in entrant size may

represent fluctuations in post-entry decisions by a given mix of firm types,

rather than composition. Conversely, post-entry employment growth of a

cohort is affected by its composition. We revisit the variance decomposi-

tion in Section 5.1.1 using our estimated model and precisely quantify the

contribution of composition effects.

The established stylized facts paint a picture in which firm character-

istics at the entry stage are crucial in determining a cohort’s potency to

ular, they will imply that compositional variations across cohorts become increasingly
pronounced with age.
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create jobs, both initially and later in its life. One can think of several

plausible explanations for why the composition of entrants may fluctuate

over the business cycle. One possibility is that during recessions job cre-

ation within newborn cohorts declines because of a reallocation of activity

between sectors. Appendix D documents, however, that our stylized facts

continue to hold, with a few exceptions, also within sectors.17

Another possibility is that our findings are driven by fluctuations in

the entry of very small firms. Several studies emphasize the role of en-

trepreneurship as a way to escape unemployment (“necessity entrepreneurs”).

Such businesses are likely to remain very small.18 However, Appendix E

shows that the vast majority of employment variation of five year old firms

is driven by large firms, rather than small ones.

3 The Model

The empirical evidence presented in the previous section suggests that fluc-

tuations in the composition of startups are important for cohort-level em-

ployment in later years. However, the data alone does not allow us to

quantify the importance of composition fluctuations, since we do not di-

rectly observe the distribution of cohorts with respect to firm types. For

the same reason, the empirical facts can provide only limited information

on the aggregate implications of decisions made at the entry stage.

To address these issues, this section proposes a general equilibrium

model of firm dynamics in which startups can choose the technology type

affecting the scalability of their aspired businesses. The model further fea-

tures endogenous firm entry, labor adjustment costs and several sources

of aggregate uncertainty. To quantify the contribution of composition ef-

fects and post-entry employment choices for the evolution of cohort-level

employment in later years, we estimate the aggregate shocks using infor-

mation about average size from the BDS. While post-entry shocks have a

transitory impact on average firm size, the impact of changes in the com-

17The exceptions are the mining sector and transportation, communication, and public
utilities in which entrant job creation is counter- and a-cyclical, respectively. Also, the
extensive margin dominates employment variations in retail trade and construction.

18See e.g. Hurst and Pugsley (2011) and Poschke (2012). However, note that the BDS
data do not include self-employed individuals.
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position of startups increases as the cohort ages. Therefore, using data on

both average firm size at birth and at a later age enables us to sharply

identify fluctuations in the composition of cohorts of entrants.

The estimation procedure also delivers predicted values of the distribu-

tion of firms with respect to age and type in each period. The knowledge of

this distribution enables us to investigate the aggregate implications of firm

decisions made at the entry stage. We thus actively use the large aggregate

state of our model in the quantitative analysis.

The model is designed for an application to cohort-level and aggregate

data, rather than for analyzing individual firms. We therefore abstract

from firm-specific technology shocks and associated endogenous exit after

entry. Instead, we model an age-dependent exit rate calibrated using BDS

data. Clearly, such an assumption is a simplification as exit rates are

known to vary over time and to be related to firm productivity (see e.g.

Bartelsman and Doms, 2000). Therefore, in Appendix G we show that

allowing for stochastic variation in exit rates consistent with the data does

not substantially affect our results.19

The model economy is populated by an infinitely-lived representative

household and a continuum of heterogeneous firms. All agents have rational

expectations. Firms and households trade on a goods market and a labor

market, both of which are perfectly competitive.20

3.1 Existing firms

There is an endogenous mass of heterogeneous firms which produce a ho-

mogeneous good. Before describing the entry decision, which is key to our

analysis, we lay out how incumbent firms behave. While all firms in the

economy use labor as the only factor of production, the production tech-

nology itself differs across firms. In particular, there is a finite number of

technology types, indexed by i = 1, 2, ..., I. Existing firms grow only grad-

ually towards their optimal sizes due to costs related to adjusting their

19This is supported by the variance decomposition in Subsection 2.4 which implied
that variation in exit rates explains on average only 3% of fluctuations in cohort-level
employment for firms aged 1-5 years.

20Firm dynamics models with more detailed descriptions of the labor market include
e.g. Elsby and Michaels (2013), Kaas and Kircher (2011), and Sedláček (2014).
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employment levels. Finally, firms face an exogenous, but age-dependent

probability of shutting down, denoted ρa. By symmetry, all firms of the

same type and age make the same decisions and we therefore index them

only by technology type and age.

Technology types differ in the degrees of returns to scale and/or total

factor productivity. In particular, a firm of age a and with technology type

i is characterized by the following production function

yi,a,t = Atzin
αi
i,a,t,

where At is an exogenous and stochastic aggregate TFP variable with mean

one, ni,a,t is the firm’s level of employment, zi is a technology-specific TFP

parameter, and αi is a technology-specific returns to scale parameter. In

our quantitative simulations we parameterize αi ∈ (0, 1) for each technology

type i, i.e. returns to scale are decreasing. As a result, there exists a type-

specific “optimal size” beyond which further growth is undesirable.

Firms are subject to costs of adjusting labor, Qtζ(Δni,a,t), where ζ(.)

is strictly increasing and strictly convex and Δ is the first difference oper-

ator.21 Qt is an aggregate shock variable with mean one. Since firms in

the model are typically on an upward growth path, we label Qt an “ex-

pansion cost shock”. Given that firm expansion is a form of investment,

Qt resembles an investment-specific technology shock that features promi-

nently in the DSGE literature and is sometimes interpreted as a stand-in

for time-varying financial frictions.

The functional form we specify for ζ(.) implies a negative relationship

between firm age and employment growth, which is widely documented in

the BDS data.22 Such a cost specification, which is independent of current

size, has been used in many models, see e.g. Cooper, Haltiwanger, and

Willis (2007) and Kaas and Kircher (2011) for an extensive discussion.

21It is assumed that firms that shut down do not pay adjustment costs and that
new-born firms have an initial employment level of zero.

22See e.g. Haltiwanger, Jarmin, and Miranda (2013). In the quantitative application
we choose a cost that is quadratic in the absolute change in employment. Alternatively,
one could specify cost to be convex in employment growth, but such a specification
implies a roughly constant growth rate as firms age.
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Firms maximize the expected present value of profits:

Vi,a(ni,a−1,t−1,Ft) = max
ni,a,t

[
yi,a,t −Wtni,a,t −Qtζ(Δni,a,t)

+ (1− ρa)EtΛt,t+1Vi,a+1 (ni,a,t,Ft+1)

]
, (1)

where Vi,a(ni,a−1,t−1,Ft) is the asset value of a firm of type i and age a,

Et is the conditional expectations operator and Ft is the aggregate state

to be described later. Wt is the economy-wide wage rate, Λt,t+1 is the

firm’s stochastic discount factor between period t and t+1. The first-order

necessary condition for the firm’s optimal choice of labor can be written as

Wt +Qtζni,a,t
(Δni,a,t) = αi

yi,a,t
ni,a,t

+ βΛt,t+1(1− ρa)EtQt+1ζni,a,t
(Δni,a+1,t+1),

(2)

where ζni,a,t
(.) denotes the derivative with respect to current employment.

The condition simply equates the marginal costs of firm expansion to the

marginal benefits. Marginal costs consist of the wage and the marginal

expansion cost. Marginal benefits equal the sum of the marginal product

of labor and the expected discounted marginal reduction in expansion costs

to be paid next period.

3.2 Entry decisions

At the heart of the model are variations in the types of business opportu-

nities seized by startups. We therefore model the selection of firm types

at the entry phase as the outcome of endogenous choices made by poten-

tial startups. Given the striking prominence of small firms in the BDS

data, it is important to design a setup in which many startups endoge-

nously choose a business type that has little potential to grow large.23 Our

approach therefore differs from standard firm dynamics models along the

lines of Hopenhayn and Rogerson (1993), in which a firm’s technology type

is randomly drawn from an exogenous distribution. Before we describe

the specifics of our setup, let us first provide the intuition of the resulting

equilibrium outcomes.

23In the data there is a large fraction of firms that remain small even after many years
of continuous operation. For example, in 2011 about 60 percent of firms in the BDS
older than 25 years had fewer than 10 employees.
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We consider an equilibrium with positive entry in which the number of

startups of type i, denoted mi,0,t, is determined by the following relation:

mi,0,t = γ0Vi,0(0,Ft)
γ1ψi,t, (3)

where γ0, γ1 > 0 are functions of structural parameters unrelated to firm

type. This relation states that the number of startups in type i is de-

termined by two factors. The first is the value of a startup of this type,

Vi,0(0,Ft). If a business cycle shock triggers an increase in Vi,0(0,Ft) rela-

tive to the values of other firm types, a larger fraction of startups is drawn

into type i. Thus, composition shifts among startups arise endogenously

via differential fluctuations in firm values across types. Note also that an

overall increase in firm values increases the total number of entrants. The

second factor determining the number of startups is a variable ψi,t, which

fluctuates exogenously and stochastically.

The microeconomic foundations that lead up to the above equilibrium

relationship are as follows. Starting up a firm requires the sacrifice of a

cost χ > 0, capturing initial costs of doing market research, formulating a

business plan etc. Upon paying this cost, a potential entrant chooses one

business opportunity from a finite measure of possibilities given by ψi,t.

Each business opportunity allows for at most one successful startup.24 It

is assumed that potential entrants cannot coordinate on which business

opportunities to select. That is, not all individual opportunities are seized

whereas others are pursued by several aspiring startups. This results in

mi,0,t being strictly smaller than both the number of business opportunities,

ψi,t, and the number of startup attempts, denoted ei,t. It follows that an

attempted startup of a business type i is successful only with probability
mi,0,t

ei,t
. Unsuccessful startups exit before production takes place. This way of

modeling firm entry is similar in spirit to models of innovation and research

and development (see e.g. Klette and Kortum, 2004; Saint-Paul, 2002).

Free entry implies that in equilibrium the cost of a startup attempt

24At a deeper level, the exclusivity of business opportunities could arise from patents
claimed by individual firms. Alternatively, exclusivity could be generated by market size
limitations coupled with fixed costs in production. For tractability, we do not model
these factors explicitly.

17



equals the expected benefits:

χ =
mi,0,t

ei,t
Vi,0,t (0,Ft) , for i = 1, 2, .., I, (4)

From the above it follows that firm types associated with high values

on average attract more entry attempts, lowering the success probability
mi,0,t

ei,t
. This in turn encourages entry of firm types with less potential to grow

large, of which we see many in the data. In equilibrium aspiring entrants

are indifferent between selecting any of the business opportunities, akin to

models of directed search.

The coordination friction among aspiring startups is concisely sum-

marized by an entry “matching” function, borrowed from the search and

matching literature. This function relates the number of startups within

each type to the respective number of startup attempts and business oppor-

tunities. It is assumed to be increasing in both arguments and to display

constant returns to scale. In particular, mi,0,t = eφi,tψ
1−φ
i,t where φ ∈ (0, 1)

is the elasticity with respect to the number of startup attempts.25

Returning to the reduced form relationship in (3), it is straightforward

to verify that it holds with γ0 = χφ/(φ−1) and γ1 = φ
1−φ

. Given that the

matching function elasticity φ is the same across firm types, it controls not

only the strength of composition effects but also the volatility of overall

firm entry, which is helpful when we calibrate the model.

While the total measure of business opportunities, denoted by Ψ =∑
i ψi,t > 0, is assumed to be constant, its composition with respect to

technology types is allowed to vary stochastically over time. This hap-

pens according to an exogenous “composition” shock Xt. This shock is a

technological fundamental and will be specified in detailed in Section 3.4.

However, the reduced-form Equation (3) is sufficiently general to nest a

variety of alternative microfoundations for the composition shock. In par-

ticular, type-specific shocks to the entry cost are observationally equivalent

in this equation. Appendix I explicitly describes three models with alter-

native frictions leading to such changes in the (effective) entry cost and

Section 5.3 explores empirically their link to our estimated composition

25See Saint-Paul (2002) for a similar specification in the context of firms’ research and
development.
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changes.

3.3 Households

There is a representative household which consists of a continuum of mem-

bers, some of which supply labor on a perfectly competitive market. The

household maximizes the expected present value of life-time utility, subject

to its budget constraint:

max
{Ct,Nt}∞t=0

E0

∞∑
t=0

βt

(
C1−σ

t − 1

1− σ
− νZtNt

)
s.t.

Ct = WtNt +Πt, (5)

where Ct is the total amount of goods purchased by the household, Nt

denotes total employment within the household, σ > 0 is the coefficient

of risk aversion, ν > 0 is a parameter capturing the disutility of labor, Zt

is a stochastic preference shock, Πt denotes firm profits and β ∈ (0, 1) is

the household’s subjective discount factor. Following the indivisible labor

models as in Rogerson (1985), we assume that utility is linear with respect

to labor supply. Profits and the wage are taken as given by the household.

The optimal employment choice takes on the familiar form:

Wt = Zt
ν

Cσ
t

. (6)

The first-order condition makes clear that Zt drives a wedge between the

marginal product of labor and the households intratemporal marginal rate

of substitution. Hence it has been labeled a “labor wedge” in the literature

and is typically thought of as a shock that may capture time-varying labor

market frictions.

3.4 Shock processes

Before implementing the model quantitatively, we fill in the final details

of the shock processes. First, we specify precisely how the composition

shock affects the distribution of business opportunities. Assume, without

loss of generality, that technology types reflect the degree of returns to
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scale in increasing order, such that i = 1 is associated with the lowest and

i = I with the highest degree of returns to scale. Finally, let ι be the

median technology type.26 The measure of business opportunities of type

i in period t is given by

ψi,t = Xtψi if i < ι, (7)

ψi,t = ψi

Ψ− ψι −Xt

∑ι−1
j=1 ψj∑I

j=ι+1 ψj

if i > ι, (8)

where a bar indicates steady state values and Ψ =
∑

i ψi,t. The composition

shock thus shifts mass from the upper half of returns to scale technologies

to the lower half, in proportion to the respective steady state levels.

We assume that all four aggregate shocks follow an AR(1) process:

Jt = 1− ρJ + ρJJt−1 + εJt , (9)

where ρJ is a persistence parameter and εJt are i.i.d. innovations distributed

normally with mean zero and standard deviation σJ , for J = A,Q,X,Z.

3.5 Equilibrium

Let N be the set of natural numbers, including zero. Using that all firms of

the same age and technology type take the same decisions, the aggregate

resource constraint, the labor market clearing condition and the law of

motion for the measure of firms by age and technology type can be written,

respectively, as:

I∑
i=1

∑
a∈N

mi,a,t (yi,a,t −Qtζ(Δni,a,t))−
I∑

i=1

ei,tχ = Ct, (10)

I∑
i=1

∑
a∈N

mi,a,tni,a,t = Nt (11)

mi,a,t = (1− ρa−1)mi,a−1,t−1 for a ∈ N>0 and i = 1, 2, .., I. (12)

26In the quantitative simulations, the number of technology types is odd. However,
allowing for an even number of technology types is straightforward.
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The aggregate state consists of the measure of firms of each age-technology

combination, the employment levels of these firms in the previous pe-

riod, as well as the values of the stochastic aggregate shocks, i.e. Ft =[
At, Qt, Xt, Zt, {mi,a−1,t−1, ni,a−1,t−1}i=1,..I, a∈N>0

]
. The system of model equa-

tions we use to solve for the equilibrium consists of equations (1)-(12). A

formal definition of the recursive equilibrium is given in Appendix F.

4 Quantitative Implementation

We parameterize the model using a combination of Maximum Likelihood

(ML) estimation and matching moments in the (BDS) data. The dynamic

model is solved using a first-order perturbation method around the station-

ary equilibrium (i.e. around the steady state growth paths of firms). The

following subsections first describes the calibration of parameters used to

match moments and then the parameters estimated using ML.

The aggregate state of the model includes the entire firm distribution

making the solution of the model challenging. Nevertheless, our proposed

solution strategy enables us to solve the model relatively quickly. This is

accomplished by imposing a maximum firm age of K = 50 years, which

makes the aggregate state finite.27 The solution method enables us to

track the aggregate state entirely, given the approximated policy functions,

instead of being forced to revert to iterative methods in the spirit of Krusell

and Smith (1998) which rely on an approximation of the aggregate state.

The solution method is explained in detail in Appendix F.

Even though the aggregate state consists of over 900 state variables

and all variables and shocks have continuous support, the speed of our

computational strategy allows us to estimate parameters. As a result, we

also obtain implied time series of all the variables, including the entire firm

distribution which we use in our analysis.

27As a robustness check, we investigate a version of the model with K = 75. The
results are extremely similar to our benchmark parametrization.
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4.1 Parameters calibrated to match moments

Following the frequency of the BDS data we set the model period to one

year. While the values of individual parameters typically influence the

behavior of the entire model, it is instructive to discuss them separately

in relation to the specific moments we target. For clarity, we divide the

calibrated parameters into three groups. First, parameters pertaining to

the household, second parameters specific to the technology types, and

third firm-level parameters that are common to all firm types. All model

parameters are summarized in Table 2. More details on the estimation

procedure and the parameter estimates are provided in Appendix F.3.

4.1.1 Household parameters

Household preferences are chosen in line with conventional values in the

macro literature. The household’s discount factor, β, is set to 0.96, corre-

sponding to an annual real interest rate of four percent. The household’s

coefficient of relative risk aversion, σ, is set to one implying log utility with

respect to consumption. The preference parameter ν is backed out from

the household’s first order condition for a given wage and total consump-

tion. We target a steady-state wage such that, given all other parameters,

the model matches a profit rate of 3% taken from Hornstein, Krusell, and

Violante (2005).

4.1.2 Firm-type parameters

Model parameters that describe firm technology types are the total factor

productivity parameters, zi, the returns-to-scale parameters, αi, and the

steady-state measure of business opportunities in each technology type, ψi.

In our benchmark model we normalize all the firm-specific TFP parameters

to one, preserving only heterogeneity in returns to scale. The main moti-

vating factor behind our choice is that we apply the model to the entire

cross-section of private employers in the economy, rather than to confined

industries. Evidence in favor of heterogeneity in returns to scale across

sectors can be found in Basu and Fernald (1997).

That said, there is compelling evidence of large productivity differences

even within narrowly defined sectors (see e.g. Syverson, 2011, for a survey).
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It has also been documented that observed productivity differences are

informative about firm growth rates. Therefore, in Appendix H we consider

a version of the model with TFP heterogeneity and show that the results

are hardly affected.

The presence of heterogeneity in technology types implies a cohort-

level size distribution of firms, which we can confront with the BDS data.

We set the total number of technology types equal to the number of size

groups available in the BDS database, where we group the three largest

size categories into one, giving us I = 9 technology types.

We exclude production functions with increasing returns to scale. To

pin down the returns to scale parameters, we target average firm size in the

9 size categories reported in the BDS data for firms aged between 16 and

20 years (averaged over the period 2000−2010). The implied values for the

returns to scale parameters are shown in the bottom part of Table 2. They

range between 0.890 and 0.988, which is within the range of estimates of

Basu and Fernald (1997).

To pin down the steady state measure of business opportunities in each

technology type, ψi, we match the distribution of the number of firms

between 16 and 20 years old, over the nine size categories reported in

the BDS data, again averaged over the period 2000 − 2010. The implied

probabilities of successfully starting a business of a given type can be found

at the bottom of Table 2. These probabilities may be interpreted as the

survival rates in the first year of a firm’s existence. The values imply

an average entrant survival rate of 43%. While not a calibration target,

this value is essentially identical to the empirical one of 44% based on the

Business Employment Dynamics (BED) database.28

4.1.3 Parameters common to all firm types

Parameters that are common across all technology types are the expansion

cost function, ζ(.), the exogenous firm exit rate, ρa, the entry cost, χ, the

mass of potential entrants, Ψ, and the elasticity of the number of startups

28Unlike the BDS, the BED has quarterly information (for establishments), starting
in 1992Q3, allowing one to calculate the survival rate of firms younger than one year.
In a given year, the survival rate is calculated as the number of firms reported to be
younger than 1 year in March of the given year divided by the sum of the number of
establishments which started up in the relevant March-to-March period.
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with respect to firm values, φ. We assume the expansion cost is quadratic,

ζ(Δnt) =
ζ
2
(nt − nt−1)

2, as in e.g. Kaas and Kircher (2011). Here, ζ is a

level parameter which we calibrate to match the average size of entrants of

6.1 as in the BDS data. Given that we also match average sizes of 16− 20

year old firms, ζ essentially pins down the average firm growth rate. To

capture the age-dependency of exit rates observed in the data, we let the

exit probability be ρa = ξ0 +
ξ1
a
. For a < K, the parameters ξ0 and ξ1 are

chosen to closely match the empirical exit rates conditional on age in the

BDS.

The last parameters in this category pertain to firm entry. We set

the entry cost χ such that total entry costs are equal to 0.73% of GDP

which is the average value for the US economy in the years 2004 to 2010

as documented by the “Doing Business” database of the World Bank. The

measure of business opportunities Ψ is set such that the total mass of firms

in the economy, M , is normalized to 1 in the steady state. Finally, recall

that the parameter φ commands the degree to which the number of entrants

changes in response to the changes in firm values. We therefore set φ such

that the model approximates the relative volatility of the (log) number of

entrants with respect to (log) real GDP as observed in the data.

4.2 Parameters estimated using Maximum Likelihood

The remaining parameters pertain to the exogenous aggregate shocks and

these are estimated using Maximum Likelihood. In particular, we estimate

the persistence, ρJ , and volatility, σJ , parameters for J = A,Q,X,Z. We

use four data series for this purpose: aggregate real GDP, the aggregate

employment rate, the average size of entrants and the average size of five

year old firms taken from the BDS data.29 An important by-product of the

estimation is that we obtain estimated time-series for all model variables,

which we use in counterfactual exercises.

The estimated parameters are reported in Table 2. The parameter

values of the aggregate TFP, preference and expansion cost shocks are in

29All time series are in logs and linearly detrended. We use a linear trend instead of the
HP-filter in order not to introduce artificial serial correlation in the model’s state-space
representation. Nevertheless, the results are robust to using HP-filtered data.
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Figure 4: Shock identification: impulse response functions
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Notes: Impulse response functions to positive one-standard-deviation shocks. Dotted
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increase by one on impact. Arrows denote the cohort born in the initial period of the
shock

line with estimates in the literature.30 The parameter values pertaining to

the composition shock are more difficult to interpret directly, but in Section

5 we extensively discuss the quantitative importance of the composition

shock, as implied by the estimation, and its potential interpretations.31

4.2.1 Shock identification

Because the results depend crucially on the estimated shocks, we now dis-

cuss their identification. While real GDP and the employment rate are

directly informative about the aggregate TFP and preference shocks, the

average size time-series are the main sources of identification for the the

composition and expansion cost shocks.

To help understand the identification of the latter two, Figure 4 depicts

the impulse response functions of average entrant size and average size of

30Interpreting the expansion cost shock as an investment shock, the reported values
are broadly in line with e.g. Justiniano, Primiceri, and Tambalotti (2010), who also find
that the investment shock is considerably more volatile than a TFP shock (in their case
roughly 7 times).

31To get a sense of the magnitude of the composition shock we calculate average firm
size in an economy assuming that the composition shock is permanently one standard
deviation above (below) its steady state value. The implied average size deviates by
about ±2.75% from its benchmark steady state level.

26



five year old firms to positive one-standard-deviation expansion cost and

composition shocks. The figure shows that both shocks reduce average en-

trant size upon impact. Five years later, this fall is reflected in a reduction

in the average size among five year old firms, i.e. within the cohort born in

the initial period of the shock. While this is true for both types of shocks,

the relative magnitudes differ starkly.

In the case of the expansion cost shock, the decline after five years

is substantially smaller than the initial decline, whereas the opposite is

true for the composition shock. The underlying reason is that while the

expansion shock triggers some composition effect, it mainly affects post-

entry employment decisions. The latter gradually die out as the cohort

ages and the expansion cost shock reverts to its mean. The opposite is true

for the composition shock which mainly affects the distribution of firm

types among startups. As the cohort ages, the effects of the composition

shock gain in strength as the lower number of high-growth potential firms

starts kicking in. The fact that we use information on cohorts at different

ages thus enables us to disentangle the various shocks and, by implication,

estimate the overall degree of fluctuations in entrant composition.32

4.3 Properties of the steady-state equilibrium

Before further evaluating the dynamics of the model, we analyze the deter-

ministic steady state equilibrium. Figure 5 plots the steady-state employ-

ment of firms by age and technology type. Firms of the lowest returns-to-

scale type (α = 0.890) start with an employment level of 1.8 which grows to

only 2 later on in the firms’ lives. On the other extreme, the most scalable

firms (α = 0.988) have nearly constant returns to scale and grow from 247

employees in the year of startup to a maximum of 7800 employees.

As firms with high returns to scale grow older, they account for an in-

creasingly large share of the cohort’s total employment. While the most

scalable firms account for only about 7 percent of the cohort’s total em-

ployment in the year of birth, they account for more than half by the age

of fifty. Firms with low returns to scale, by contrast, are relatively more

32We have also checked that the estimation procedure does well in identifying the true
parameters using Monte Carlo simulations in which the model is repeatedly used as the
true data-generating-process.
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Figure 5: Steady state: firm size by age and type
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Notes: Steady state firm growth paths by type.

important during the early years of a cohort’s life.

4.4 Model performance

We now evaluate the model’s dynamic performance along several dimen-

sions not directly exploited in the estimation. To this end we calculate

several model statistics and compare them with their empirical counter-

parts (see Table 3). First, panel A shows that the model does a good job

in matching our empirical stylized facts described in Section 2.33

Panel B shows that the predictions of the model are close to the data

also for dynamics of firms older than five years. First, we quantify how

cohort-level employment changes (in percent) are related to changes in

the average size within these cohorts. Second, we correlate employment

of older firms with that at entry summed over the appropriate five-year

window. Third, we compare the dispersion in (log) average sizes across

cohorts of old firms with that of startups. These results are reassuring

because we do not use any direct information on firms between 5 and 15

in our calibration or estimation procedure and we only use cohort-level

information about average size, not total cohort-level employment. The

last statistic in panel B is especially interesting because it shows that in

the data (and the benchmark model) the dispersion of firm sizes across

33Note that in order to be consistent with the model-generated statistics, the data
has been linearly detrended instead of HP-filtered (see footnote 29).
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Table 3: Model performance

data model

A: Employment dynamics of startups
corr(N0, N) 0.59 0.85
corr(N0, N5) 0.68 0.71
var(S0−5)
var(N5)

69% 65%

B: Employment dynamics of older firms
corr(Δ log(N11−15),Δ log(S11−15)) 0.88 0.73
corr(N0, N11−15) 0.89 0.65
std(log(S0))/std(log(S11−15)) 1.83 1.48
C: Dynamics of large and small firms
corr(ΔĝL−S , u) −0.52 −0.67
corr(ΔĝOL−Y S , u) −0.24 −0.36

Notes: Untargeted model statistics and their empirical counterparts. corr(., .) denotes
the correlation, var(.) denotes the variance and σ(.) denotes the standard deviation
of a given variable. Na and Sa denote, respectively, employment and average size in

firm cohorts of age a, N denotes the aggregate employment rate, var(S0−5)
var(N5)

denotes the

fraction of total cohort-level employment variation among five year old firms attributed
to variations in average firm size, Δ denotes the difference operator, ΔĝL−S denotes the
differential growth rate of large and small firms as defined in Moscarini and Postel-Vinay
(2012) and ΔĝOL−Y S denotes the differential growth rate between old large and young
small firms as defined in Fort, Haltiwanger, Jarmin, and Miranda (2013).

.

cohorts increases (in percentage terms) as cohorts age.34

Panel C of Table 3 shows that the dynamics of the model are also consis-

tent with recent findings by Moscarini and Postel-Vinay (2012), who doc-

ument that larger firms are more cyclical than smaller ones. Furthermore,

consistent with patterns in the data documented by Fort, Haltiwanger,

Jarmin, and Miranda (2013), also in the model the aforementioned corre-

lation is driven more by mature firms rather than young businesses.

Finally, we compare the model’s predictions on real wages to the data.35

The correlation between the real wage in the model and the data is encour-

34To highlight how the composition shock affects this feature of the model, we esti-
mated an alternative model without changes in startup composition. In particular, in-
stead of the composition shock, startups are hit by an additional adjustment cost shock
in this version. The model is able to match the same four time-series as the benchmark
model. However, because of missing composition changes the dispersion of average sizes
across cohorts declines as they age. In particular, std(log(S0))/std(log(S11−15)) = 0.74
in this model. Thus allowing for compositional effects is crucial in accounting for the
long-term persistence present in the BDS data.

35As a data equivalent we use real hourly compensation in the nonfinancial corpora-
tions sector, as reported by the Bureau of Labor Statistics.
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agingly high: 0.6. Also, the volatility of the real wage is only moderately

higher in the data than in the model (1.33 in the data versus 1.08 in the

model). The pro-cyclicality of wages, however, is too strong in the model

relative to the data, a common finding in Neoclassical models of the busi-

ness cycle.

5 Model results

This section first analyzes cohort-level fluctuations implied by the model.

Our primary goal is to quantify the importance of the year of birth in

determining a cohort’s success in providing jobs and to understand the

underlying drivers. Next, we investigate whether birth-determined factors

are washed out in the aggregate, or whether they can help to understand

fluctuations also in aggregate employment. Finally, we discuss the inter-

pretation of the estimated shocks and potential additional drivers behind

the estimated fluctuations in entrant composition.

5.1 Cohort-level implications

At any age after birth, a cohort’s employment level is to some extent deter-

mined by the economic state in the year of birth. The remainder is due to

shocks that realized after birth. Disentangling the relative importance of

these two contributors empirically is difficult, if only because the aggregate

state may include unobservable variables.

Within our estimated model, however, we can quantify the contribution

of the economic state at birth precisely. To do so, first define cohort-

level employment as Na,t ≡ ∑I
i=1 ni,a,t. We can then decompose cohort-

level employment as Na,t = Et−a [Na,t] + N̂a,t, where the first term is the

expectation of Na,t conditional on information available in the year of birth.

It follows that N̂a,t is the prediction error depending only on the shocks

realized in the years after birth which are orthogonal to the state in the

year of birth. Using this orthogonality we can decompose the unconditional
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variance of Na,t as:

V ar (Na,t) = V ar (Et−a [Na,t])︸ ︷︷ ︸
aggregate state at birth

+ V ar
(
N̂a,t

)
︸ ︷︷ ︸
shocks after birth

The top left panel of Figure 6 plots the results of the variance decom-

positions for cohorts up to twenty years after birth. The importance of the

aggregate state at birth is overwhelming, contributing over 90 percent to

employment variance, regardless of age. A very similar pattern is found

for cohort-level average size (middle left panel) which is consistent with it

being a strong driver of the employment patterns. However, for the em-

ployment of an individual firm of a certain type, the state at birth loses

importance in the years following entry (bottom left panel),because it does

not play any direct role in the firm’s evolution. The persistence that re-

mains is driven by that of the shock processes itself and by the endogenous

part of the aggregate state.

Additional insight into the drivers of cohort-level persistence is obtained

by quantifying the contributions of the four aggregate shocks (right panels

of Figure 6). For cohort-level employment, the composition shock is of

minor importance in the year of birth. As the cohort ages the composition

shock gains prominence, accounting for nearly 80 percent of cohort-level

employment twenty years after entry. A similar pattern is observed for av-

erage firm size (middle right plot). While the expansion cost shock remains

relatively important even for cohorts of twenty year old firms, the impact

of TFP and labor wedge shocks almost entirely dies out. For an individual

firm of a given type, the composition shock does not account for much of

the fluctuations (bottom right panel). However, its contribution does not

fall to zero, which is because of general equilibrium responses triggered by

the shock.

5.1.1 Revisiting the empirical variance decomposition

We now shed more light on the variance decomposition of Section 2.4, by

conducting the same exercise using model-generated data, see Figure 7.

Given that we have not targeted this variance decomposition directly, the

figure looks reassuringly similar to its empirical counterpart presented in
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Figure 6: Model: variance decompositions.
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Notes: Contributions of the aggregate state at birth and post-entry shocks (left panels)
and the contributions of the four aggregate shocks (right panels) to variation in cohort-
level employment (top row), average size (middle row) and employment of an individual
firm (bottom row).

Figure 3.

Unlike in the empirical exercise, we can now use the model to quantify

precisely how much of the contribution of the intensive margin is due to

compositional effects (solid line with circles).This contribution is computed

using the counterfactual time series for average size obtained by fixing firm-

level employment within each age/type bracket to its steady state value.
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Figure 7: Contribution of average size to employment variation: model
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Notes: Contributions of average firm size at different ages to the variation in cohort-level
employment of cohorts as a percentage of the total variation. Data are obtained from
the estimated model. The orange solid line, “composition”, plots the covariance between
the counterfactual average size series (obtained by fixing firm-level employment within
age/type brackets to its steady-state value) and overall cohort-level employment, scaled
by the total variance of cohort-level employment.

The line thus represents the covariance between this counterfactual average

size series and the model-predicted time series for cohort-level employment,

scaled by its total variance. In the year of entry, only about a quarter of

average size fluctuations is due to compositional effects. The importance of

composition, however, grows markedly with age and by the age of five it ac-

counts for almost 90 percent of the contribution of the intensive margin. At

this age, the total contribution of composition far exceeds the contribution

of entrant size (lightest shade), because compositional shifts importantly

affect also post-entry growth.

5.2 Aggregate implications

This subsection discusses the aggregate implications of changes in startup

conditions. As with cohort-level variables, we conduct variance decomposi-

tions of aggregate variables into the contribution of startup conditions and

post-entry choices. We then move on to analyze the general equilibrium ef-
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Figure 8: Employment rate: data, HP-trends and estimated contribution
of startup decisions
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Notes: Employment rate data, its HP trend, and a model-based counterfactual employ-
ment rate based on the fixing the age/type size to their respective steady state values.

fects present in the model and to discuss potential drivers of the estimated

changes in startup composition.

5.2.1 Aggregate employment fluctuations

To analyze the importance of startup conditions for aggregate fluctuations,

we first isolate (in an accounting sense) the contribution of startup condi-

tions to fluctuations in aggregate employment. Figure 8 plots the fluctu-

ations in aggregate employment accounted for by changes in startup con-

ditions alone together with the actual aggregate employment rate.36 The

figure also plots two time series for the trend component of the actual em-

ployment rate, constructed using the HP filter with smoothing coefficients

6.23 and 100.

Figure 8 shows that the magnitude of aggregate employment fluctua-

tions due to startup conditions alone is large, with a volatility of nearly

two thirds of the actual employment rate series. More interestingly, the

36The employment rate due to fluctuations in startup conditions is calculated by
fixing average size in each age/type bracket to its steady state value, but letting the
distribution of firms (their number and composition) vary as predicted by the estimated
model, and aggregating over all firms.
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employment rate implied by changes in startup conditions closely resem-

bles the empirical trend components in aggregate employment. The cor-

relation coefficient between the counterfactual employment rate and the

HP-filter trend is 0.61 and 0.56 for smoothing coefficient 6.23 and 100, re-

spectively.37 Thus, startup decisions appear important for understanding

the low-frequency movements of aggregate employment, often ignored in

business cycle analysis.

Decomposing the counterfactual further into the contribution of the

number of firms and the contribution of the composition of firms reveals a

roughly equal importance. The volatility of the counterfactual employment

rate resulting from changes in the composition of firms only is 45 percent

that of the counterfactual which allows for changes in both the composition

and the number of firms.38

5.2.2 General equilibrium effects

Next, we investigate the importance of startup conditions further, by ana-

lyzing the aggregate effects of fully stabilizing the number of entrants and

their composition. In particular, we run the estimated shocks through a

version of the model which does not allow for changes in startup condi-

tions. This counterfactual exercise differs from the one above because all

variables in the economy are free to adjust in equilibrium.

Table 4 displays the effect on various aggregate variables between 1979

and 2011. The effects of stabilizing startup conditions are sizeable. Changes

in aggregate employment and output can be as large as one third to one

half of a percentage point on average in the five year windows.39 However,

the table also makes clear that stabilizing startup conditions does not fully

eliminate the low-frequency components of aggregate employment. In gen-

eral equilibrium, post-entry employment decisions adjust in response to the

fixed startup conditions, offsetting part of its effects.

37The estimation uses linearly detrended employment rate data. However, the linear
trend is very modest and therefore comparing the counterfactual with the HP-filter trend
of the data used for estimation delivers very similar results.

38The extensive margin appears especially important at medium-term horizons
whereas the intensive margin (average size) accounts for lower-frequency movements.

39Further splitting up the period into annual intervals reveals a maximum effect of
0.7 percentage points.
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Table 4: Counterfactual scenarios: aggregate implications

1979-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2011

average firm size 0.63 −0.21 0.36 1.32 1.71 0.85
employment 0.34 −0.02 −0.02 −0.31 0.11 0.19
output 0.46 0.09 0.04 −0.35 0.01 0.13
labor productivity 0.12 0.11 0.06 −0.04 −0.10 −0.06
real wage 0.07 0.15 0.07 −0.04 −0.15 −0.09

Notes: Percentage deviations from the benchmark model.

5.3 Potential drivers behind compositional variations

The main purpose of this paper is to identify changes in the composition of

startups over the business cycle and to quantify their effects. Part of these

fluctuations are driven by a shock to the distribution of startup technolo-

gies, but the reduced form of our model nests other microfounded frictions

that form alternatives or complements to this shock. The benefit of our

approach is that we do not rule out that all or a subset of these frictions

operate at the same time, avoiding potential underestimation of overall

composition fluctuations. Nonetheless, it is interesting to explore which

frictions appear quantitatively most relevant.

In this section, we investigate the link between our estimated compo-

sition changes and the three frictions proposed in Appendix I: financial

frictions, uncertainty and product market frictions. We do so by correlat-

ing measures of estimated variation in entrant composition with proxies for

the above frictions proposed in the literature (see Table 5).40 For financial

frictions we consider the “GZ credit spread” developed in Gilchrist and Za-

kraǰsek (2012) and the net percentage of domestic banks tightening lending

standards for small firms from the Senior Loan Officer Opinion Survey on

Bank Lending Practices. As uncertainty measures we take the uncertainty

index computed by Bloom (2009) and a measure of firm-level uncertainty

constructed in Jurado, Ludvigson, and Ng (2013). Finally, product market

frictions are proxied by the ratio of advertising expenditures to GDP con-

structed by Hall (2013) and the consumer sentiment index taken from the

40We exclude the final six years of data from the analysis because for entrants born
during this period we have no observation when they are aged 5. Following the reasoning
in Section 4.2.1 the composition of entrants is not likely to be pinned down very precisely
over this period. Including the final six years gives similar results, however.
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Table 5: Correlations of startup composition with various indicators

exogenous part total

Financial frictions
credit spread (Gilchrist and Egon Zakraǰsek, 2012) −0.27 (0.18) −0.09 (0.67)
lending standards (Senior Loan Officer Opinion Survey) −0.07 (0.81) 0.02 (0.93)
Uncertainty
uncertainty index (Bloom, 2009) 0.05 (0.81) 0.22 (0.25)
firm-level uncertainty (Jurado, Ludvigson, Ng, 2013) −0.32 (0.10) −0.13 (0.50)
Product market frictions
advertising-to-GDP (Hall, 2013) 0.43 (0.02) 0.42 (0.03)
consumer sentiment (University of Michigan Survey) 0.29 (0.13) 0.25 (0.19)

Notes: “exogenous part” refers to entrant size due to composition variation driven by
only the composition shock, while “total” refers to that driven by all shocks. Num-
bers between brackets denote p-values. All proxies are logged (except for the lending
standards which are expressed in percent) and detrended with a linear trend.

University of Michigan Survey.

The only statistically significant relationship is found in the case of

the advertising-to-GDP ratio. Hall (2013) suggests a model in which an

increase in product market frictions reduces advertising-to-GDP. The re-

ported correlation in Table 5 is consistent with the interpretation that times

during which acquiring new customers is difficult may be unattractive for

the entry of highly scalable firms which need to build a large customer base.

6 Conclusion

This paper exploits the recent opportunity to break down aggregate em-

ployment data into cohort-level observations, in order to improve our under-

standing of fluctuations in macroeconomic aggregates. New stylized facts

direct our attention to the birth stage of entering firms and in particular

decisions affecting their scalability. Our results indicate that the impact

of these decisions not only persists as cohorts mature, but actually grows

over time since highly scalable firms need time to reach their full poten-

tial. Hence, compositional differences across cohorts become increasingly

pronounced with age, accounting for slow-moving but large fluctuations

in aggregate employment. Our estimates open up a promising avenue for

further research, suggesting that product market frictions and vintage tech-
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nology shocks are at the origin of these low-frequency movements.
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Sedláček, P. (2014): “Lost Generations of Firms and Aggregate Labor
Market Dynamics,” mimeo.

Syverson, C. (2011): “What Determines Productivity?,” Journal of Eco-
nomic Literature, 49(2), 326–265.

40


