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Abstract: This paper examines how geography a¤ects the location of borders between
sovereign states in Europe and surrounding areas from 1500 to today. We �nd that borders

tend to be located on mountains, by rivers, closer to coasts, and in areas suitable for rainfed,

but not irrigated, agriculture. Borders are also highly spatially clustered and persistent across

centuries. Over time, mountains have become more important determinants of borders, while

most other measures of geography have become less important. We also �nd that rivers are

more likely to delineate state borders than language borders. We propose a simple model

which can account for some of these observations.
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1 Introduction

When comparing political and geographic layers on a map it is hard not to become curious.

Does geography determine the size and shape of countries? Are some borders more �natural�

than others, i.e., determined more by geography than social or political factors? If so,

which borders? What precise geographic characteristics make a border more or less natural?

Are some regions more culturally homogenous and politically uni�ed today due to their

geography? Is Europe�s relative diversity a by-product of its physical landscape? How has

the role of geography in shaping borders changed over time? Does geography a¤ect political

borders �or �political diversity��di¤erently than ethnic diversity?

In this paper we attempt to address these questions using data on geography and border

locations, mostly between sovereign states, but also between language areas. We look at

the grid-cell level over a region encompassing Europe, Western Asia, and North Africa, from

1500 to modern days.

We �nd that borders between states are more often found in mountainous terrain and

along rivers than elsewhere. Language borders are also more common in mountainous areas,

but not as much along (in particular small) rivers, consistent with anecdotal evidence.

Locations closer to the coast also tend to have more borders.

How suitable the land is for agriculture matters too, but di¤erently depending on the

type of agriculture: locations more suitable for rainfed agriculture tend to have more borders;

those more suitable for irrigated agriculture have fewer. One possible explanation, inspired

by Wittfogel (1957), is that empires emerged where rulers could control water supply.

When regressing our baseline outcome variable �border frequency from 1500 to 2000

� on our preferred set of geography variables, the R-squared reaches about 10%. While

not negligible, this leaves plenty to be explained. By comparison, when entering border

frequency in neighboring cells as a control the R-squared rises to about 60%. In other words,

borders are highly clustered. At the same time, the e¤ects of most geography variables

remain signi�cant also with such neighbor controls.

We also try to assess if Europe�s fragmentation can be explained by its geography. This

is an important question, because many have suggested that interstate competition was in-

strumental to Europe�s unique historical path. If geography caused Europe�s fragmentation,

then it might have indirectly caused the rise of Europe, and all that followed with it.

To explore this, we enter a Europe dummy into the regressions, somewhat arbitrarily de-

�ned as cells north of Gibraltar and west of Odessa, although alternative de�nitions generate

the same results. Due to Europe�s high political fragmentation, this dummy on its own has a

positive and signi�cant correlation with borders. Moreover, it stays positive and signi�cant

when entering any combination of our geography controls. This suggests that geography, as

we measure it, cannot account for Europe�s fragmentation.
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Interestingly, the Europe dummy does turn insigni�cant when entering neighbor controls.

One interpretation is that Europe became fragmented not due to geography, but by luck �

borders just happened to cluster there �but we discuss other interpretations too.

We also �nd that borders change very gradually over time: borders today are located

similarly to where they were centuries ago. When running panel regressions with cell and

time �xed e¤ects, and interacting time with geography, we �nd that most geography variables

have become less important determinants of borders over time. One exception is mountains,

which have become more important. In a sense, borders have �moved up mountains.�

Finally, to interpret what we �nd, we propose a model of endogenous borders, where

states trade o¤ greater tax revenue from a larger territory against the costs of administering

that territory and defending its borders. Both tax revenues and the cost of border defence

are lower at higher elevations, so a country expanding its territory does not stop in a valley,

but at an easy-to-defend location, from where further territorial gains bring little marginal

tax revenue. In our setting, this is a local mountain peak, but more generally it could be a

river, a coast, or any other type of natural border.

This paper is inspired by a sizable body of literature, discussed further in Section 2.1

below, on the positive e¤ects of political fragmentation on long-run economic development.

However, our interest is in the determinants of political fragmentation, not its e¤ects.

In that regard, our paper contributes to a debate on whether geography caused Europe�s

fragmentation compared to the more uni�ed China (e.g., Diamond 1997, Ko et al. 2014; see

also Section 2.3 below). Our data do not cover China, so we cannot speak to that directly;

we do not compare regions, but rather grid cells within a region. However, our approach may

complement existing Europe-China comparisons, since if geography does determine fragmen-

tation, then we should presumably expect political borders to follow some distinguishable

features of the landscape.

This paper also relates to recent work on the determinants of ethno-linguistic fraction-

alization (e.g., Ahlerup and Olsson 2012, Michalopoulos 2012, Ashraf and Galor 2013). For

example, our data allow us to compare the e¤ects that geography has on political and lan-

guage borders, with some interesting results.

Finally, our paper shares a lot topics-wise with several studies on the size, shape, and

composition of countries (e.g., Bolton and Roland 1997, Alesina and Spolaore 2003, Gancia

et al. 2014). Alesina et al. (2011) measure how arti�cial, or non-natural, modern borders are

and correlate this measure with economic outcomes. We rather examine what geographical

features constitute natural borders in the �rst place. Given the focus on Europe and its

surroundings, and going back to 1500, the borders we observe should be natural almost by

de�nition, or at least not drawn up by colonial powers.

The rest of this paper is organized as follows. Next Section 2 discusses why political
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fragmentation is interesting, and summarizes some of the existing discussion on the geography

of borders. In Section 3 we discuss our data. Section 4 presents our empirical results with

di¤erent border measures as the dependent variable, using ordinary least-squares, logistic,

and panel regressions, and entering a variety of di¤erent controls. Section 5 sets up a simple

model to interpret some of our results. Section 6 ends with a concluding discussion.

2 Background

2.1 Political fragmentation and development

As argued above, the roots of political fragmentation are interesting because of the many

possible links from fragmentation to preindustrial economic and institutional development.

For example, it has been proposed and/or documented that interstate competition created

incentives for ruling elites to build state and �scal capacity (Tilly 1992, Besley and Persson

2011, Dincecco and Prado 2012), invest in education (Aghion et al. 2014), and be less

hostile to technological change than they would otherwise have been (Jones 1981, McNeill

1982, Lagerlöf 2014a). Interstate con�ict also promoted the emergence of credit markets as

rulers sought to �nance wars through borrowing (Ferguson 2009, Gennaioli and Voth 2013).

Other mechanisms relate to migration. For example, political fragmentation allowed

talented individuals to �ee somewhere when authorities went after them (Mokyr 2006, 2007).

Evidence suggests that events that increased repression spurred emigration by writers in

Europe 1660-1961 (Potrafke and Vaubel 2014). Despots who cared about the size of their

populations also had incentives to reform to curb emigration (Karayalçin 2008).

Finally, political fragmentation might serve as a mechanism for spreading risks. When

there are several small states it is less likely that widespread destructive consequences will

follow if one single ruler makes one bad decision, as could happen in more uni�ed regions.

The perhaps most commonly cited example is that of China�s large 15th-century overseas

explorations, which ended in the wake of in�ghting within the Chinese court, while Christo-

pher Columbus could solicit funding for his voyages from di¤erent European monarchs (e.g.,

Diamond 1997, pp. 412-413; Landes 1998, pp. 93-98).

2.2 Geography and borders

The role of mountains and rivers in determining political borders has been well recognized,

probably since the emergence of the �rst states, and at least since the early 20th century

(e.g., Lord Curzon of Keddleston 1907, Holdich 1916, Brigham 1919; for a nice and more

recent overview, see Pounds 1972).

4



One reason that mountains might constitute natural borders is that they tend to be

sparsely populated and easy to defend militarily (Pounds 1972, pp. 86-88). Many famous

defensive forti�cations were located in mountainous and rugged areas, like the Great Wall

of China, Hadrian�s Wall in Britain, and the Walls of Ston in modern-day Croatia.

Rivers are di¤erent, in that they often had a unifying character; people have always lived,

traveled, and traded along rivers (Pounds 1972, Ch. 11). The fragmenting role of rivers

seems to be a by-product of states growing militarily stronger. In the words of Lord Curzon

of Keddleston (1907, p. 8): �As States developed and considerable armies were required

for their defence, the military value of rivers, in delaying the enemy, and in concentrating

defensive action at certain bridges, or fords, or posts, became apparent.�Consistent with

this interpretation, we �nd that the positive e¤ect of rivers is stronger on political borders

(i.e., between states) than on language borders, the latter possibly predating the emergence

of states. We also �nd that big rivers over time became more important determinants of

borders up until 1900.

How suitability for rainfed and irrigated agriculture could impact borders may relate to

work by Wittfogel (1957), who argued that large-scale irrigation projects tended to make

societies more despotic; see also Bentzen el al. (2012) for a test of this hypothesis. Strong

and despotic states and rulers may in turn have been prone to, and capable of, spatial

expansion. The Middle Eastern regions where states and irrigated agriculture �rst evolved

were also centres of several of the world largest empires (Taagepera 1978, Lagerlöf 2014b).

The rise of the �rst central states in the region has been linked to centralized control of the

water supply (see, e.g., Nissen and Heine 2009, Ch. 5). By contrast, where it rains a lot no

single group or state can monopolize water supply for a larger region, making it harder to

dominate smaller states.

2.3 Diamond�s explanation of Europe�s fragmentation

Diamond (1997, pp. 414-415) may be the �rst to explicitly suggest geography as the fun-

damental cause of political (and linguistic) fragmentation. He uses the examples of Europe

and China, the latter being outside the region we study, but his main points could apply

also when comparing Western Europe to Russia or the Middle East.1

Diamond explains Europe�s fragmentation partly by its indented coastline, i.e., its many

peninsulas and islands, like Iberia, Italy, Scandinavia, Britain, and Ireland. This is hard

to test because not all coasts constitute borders between countries. For example, Denmark

and Greece are made up partly by archipelagos.2 In our data, coasts are not counted as

1See also, e.g., Van Evera (1998, p. 19) and Ko et al. (2014).
2Scania (Skåne), today located in southern Sweden, was part of Denmark up until 1658. Before that the

coast of Denmark were less of a border than it is today.
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borders, unless they contain more than one state. However, we do �nd that cells closer

to a coast have more borders, suggesting a fragmenting e¤ect of an indented coastline, as

Diamond suggested, since many land borders are located around the mainland connections

of peninsulas, e.g., between Spain and France.

Diamond also proposes that Europe is particularly disconnected by mountain chains, like

the Alps and Pyrenees. While we do �nd that mountains are more likely to have borders,

as we shall see this does not account for Europe�s fragmentation relative to its surrounding

areas, which are just as mountainous.

Diamond also suggests that rivers in Europe (compared to China, in his argument) are

particularly likely to separate states and peoples because they run north-to-south, thus

connecting regions which are climatically di¤erent. Our data cannot speak to this directly.

We do �nd that cells with rivers are more likely to have political borders than other cells,

but we cannot tell if this depends on the directions in which rivers �ow.

3 Data

Here we provide a brief description of our data. (See Section A of the appendix for more

details.) The unit of observation is a cell with sides 0.5 degrees. (One degree is approximately

111 km at the equator.)

Our basic source for borders is Euratlas (Nüssli 2010), which supplies data on sovereign

state territories at the turn of the centuries 1500-2000 (i.e., for six di¤erent years), over a

large region centered on Europe; cf. Figure 1. Sovereign statehood seems like the relevant

criterion, given the discussion in Section 2.1 about, e.g., state competition and opportunities

to �ee despots. Our border dummies take the value one if more than one sovereign state was

present in a cell in a given year, and zero otherwise.

After dropping sea cells, and cells lacking a state in any of the six years, we end up with

a baseline sample of 5202 land (including coastal) cells.3 We sometimes use a dummy for an

area which might represent Europe: cells located north of Gibraltar and west of Odessa; see

Figure 1 again.

We also use data on language borders, de�ned as cells with more than one language,

according to the World Language Mapping System. Similarly, we compute a dummy for

what we here label current borders from the Global Administrative Areas, a common source

for contemporary country borders. This is highly correlated with the Euratlas border dummy

for 2000.

We use a couple of di¤erent measures of how mountainous a territory is. Log elevation

3Sea cells are those completely covered by sea. All other cells we call land cells, some of which are coastal

cells, meaning they are partly covered by sea. See Section A of the appendix for details.
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is the natural logarithm of the mean elevation across a cell and log ruggedness is the logged

standard deviation in elevation.4 Most of our regressions use what we call mountain dummies,

indicating whether the mean elevation of the cell exceeds 1000 or 2000 meters, respectively.

Big and small rivers are those de�ned by Euratlas. Examples of big rivers are the Rhine,

the Danube, and the Nile. The big and small river dummies indicate whether, or not, such

a river is present in the cell.

Data on agricultural suitability come from the Global Agro-Ecological Zones project.

These measure agricultural output when using intermediate levels of input, relative to the

maximum attainable with the same inputs, under perfect environmental conditions. These

data are available separately for rainfed and irrigated agriculture, and for various crops. We

use the average of the most common crops �wheat, barley, oats and rye �and normalize

them to fall between zero and one.

Among the 5202 cells in the baseline sample, suitability for rainfed agriculture is missing

for 346 cells, many around the Nile and the Red Sea. Data on suitability for irrigated

agriculture is missing for the same 346 cells plus 581 more, including most of Scotland and

Ireland. (See Figure 6 for a map.) It seems plausible that these data points, had they not

been missing, would have taken extreme values on these two variables, in ways that would

have ampli�ed the patterns we document, so it is reassuring that our results hold without

them.

Log distance from the coast is the (log) distance in radians to the nearest coastal cell,

de�ned as a cell covered by both land and sea. This is calculated through a Haversine

formula, using the Stata command nearstat.

4 Empirical results

4.1 Descriptive statistics

From the summary statistics in Table 1 we note that the fraction border cells declines

monotonically from about 18% in 1500 to about 9% 1900, and then increases to almost 16%

in 2000. This mirrors the trends in the number of sovereign states overall (e.g., Alesina and

Spolaore 2003, Gancia et al. 2014).

Figure 2 shows a map of the border locations in 1500 and 1900. The decline in the

number of border cells is clearly visible; note e.g. the uni�cations of Germany and Italy.

Table 2 shows partial correlations between border dummies for di¤erent years. All cor-

relation coe¢ cients are positive and signi�cant, but typically larger between closer years.

4While related, ours is not exactly the same de�nition of ruggedness as in Nunn and Puga (2012), but

rather similar to what Michalopoulos (2012) calls variation in elevation.
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That is, borders are not stationary but change gradually over time; today�s borders were

often borders centuries ago. Such strong historical dependence is perhaps surprising, given

the rise and fall of several states and empires over these centuries, and that borders and the

states they delineate have meant so di¤erent things in di¤erent eras. This might suggest

some underlying constant factor determining border locations.

To analyze the cross-sectional correlation between borders and geography we construct

a general border index, which is simply the fraction of the six years (1500 to 2000) in which

a cell had a border. Averaging across centuries this way should alleviate concerns about the

changing roles of state borders, e.g. due to growing geographical reach of state capacity.

Letting bi;t be the border dummy, indicating if a border was present in cell i and year t, this

index can be written

Bi =
1

6

X2000

t=1500
bi;t. (1)

Figure 3 shows the means of some geography variables for di¤erent levels of the border index.

Among cells with a border present in all six years (Bi = 1) almost 10% had mountains above

2000 meters and about 50% had a big river present; the corresponding numbers for cells with

no borders in any year (Bi = 0) were about 2% and 20%, respectively. Similarly, ruggedness

and distance from coast change more or less monotonically, but in di¤erent directions, when

moving from low to high border frequency.

In Table 3 we see that the border index shows a highly signi�cant partial correlation

with several geography variables, in particular dummies for mountains over 1000 and 2000

meters, and log elevation and log ruggedness; borders tend to be located by high mountains

and in rugged terrain. See also Figure 4. As we would expect, in particular log elevation

and log ruggedness are highly positively correlated, since more mountainous areas also have

steep slopes and thus more variation in elevation; the correlation coe¢ cient is over 0.8.

Big and small river dummies also show a strong positive correlation with the border index,

and much less correlation with the mountain variables. Rivers thus capture a dimension quite

separate from mountains, through which geography correlates with borders.

The variables measuring agricultural suitability (rainfed and irrigated) do not show as

strong correlations with the border index as the other variables, but an interesting observa-

tion is that they carry di¤erent signs, a pattern which we return to below.

Log distance from the coast shows a negative correlation with the border index, which

we also interpret below.
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4.2 Regressing borders on geography

We next present the results from a number of cross-cell regressions when using the border

index in (1) as the dependent variable. Our baseline regression speci�cation is:

Bi = �+Gi� + "i, (2)

where i indicates the cell, Bi is the border index, Gi a vector containing di¤erent geography

variables, � a vector with the coe¢ cients of interest, � a constant, and "i an error term.

Table 4 shows the results when estimating (2) with ordinary least squares. (This esti-

mation technique seems most intuitive, but the results below are very similar when using

ordered logistic regressions.) Columns (1)-(3) con�rm that borders are more common in cells

with high mountains and rugged terrain, consistent with the partial correlations in Table 3.

As discussed, the mountain dummies and log ruggedness to some extent measure the same

variation, but mountains over 2000 meters and log ruggedness both come out as positive and

signi�cant when entered together in column (4).

Column (5) con�rms that cells with small and big rivers have more borders, also with

other geography controls.

Columns (6)-(8) show that areas suitable for rainfed agriculture have more borders, while

those more suitable for irrigated agriculture have fewer. This holds when these are entered

both separately and together.

To interpret this, Figure 5 shows a cross-cell plot of the two suitability variables. These

are highly correlated (cf. Table 3), but many cells unsuitable for rainfed agriculture are

quite suitable for irrigated agriculture. Cells with maximum border frequency (Bi = 1), and

European cells, are underrepresented among these. For example, cells with rainfed suitability

below 0.3 and irrigated above 0.6 are located in Spain, North Africa, the Middle East, and

along the Volga River close to the Caspian sea in today�s Russia. These are areas that have

been comparatively politically uni�ed, and lie mostly outside Europe.

As discussed in Section 2.2, this pattern is reminiscent of the theories of Wittfogel (1957)

about the role of irrigation in the rise to despotic states. In our context, the correlations

suggest that smaller states may have found it easier to survive in regions where external

powers could not control water supply.

Column (9) shows that locations farther from the coast have fewer borders. This partly

captures the fact that (western) Europe, which is more fragmented than other regions, also

has a relatively indented coastline, thus placing its land cells on average closer to the coast

(many being coastal cells themselves, thus having zero distance).

Recall also that we measure only land borders. For example, most cells along the British

Isles are non-border cells, since they contain only one sovereign state. (Exceptions are cells

containing both France and England, located by the most narrow segments of the English
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Channel.) In that sense, Europe�s indented coastline could have a more fragmenting e¤ect

than we measure here.

Finally, Table 4 shows that, except for agricultural suitability, the e¤ects of most geog-

raphy variables are relatively stable in size across speci�cations. They thus seem to capture

quite di¤erent features of the landscape that constitute natural borders.

4.3 Adding borders in neighboring cells

One possible concern is that our results might be driven by spatially correlated errors. For

example, a small state surrounded by several other small states might be more likely to

survive than one located next to a big empire. Then border presence would depend directly

on the (possibly random) border presence in neighboring cells. Some regions could end up

having many borders by sheer luck, or coincidence.

To address this we add the average border index among the eight closest neighboring

cells as a control. More precisely, if Ni is the set of (indices of) the eight closest neighboring

cells of cell i, and Bj is the border index in cell j, de�ned by (1), then

B�i =
1

8

X
j2Ni

Bj (3)

is the average border frequency among cells surrounding cell i. The regression equation can

now be written

Bi = �+Gi� + 
B�i + "i. (4)

We want to know if the estimates of the coe¢ cients in the vector � remain signi�cant

when adding the third term on the right-hand side of (4). Columns (1) and (3) of Table 5 are

identical to columns (5) and (9) in Table 4, respectively, showing the results when regressing

the border index on two di¤erent sets of geography variables without any neighbor control

(imposing 
 = 0); columns (2) and (4) add the third term.

An immediate insight from Table 5 is that borders in neighboring cells come out as

highly signi�cant, and raise the R-squared to about 60%, compared to less than 10% with

only geography controls. This clearly illustrates how highly clustered borders are. In Section

4.4 below, we discuss how such clustering could arise through coordination.

Entering a neighbor control also renders mountains and small rivers insigni�cant. This

may not be too surprising, since they are themselves clustered around the same regions as

borders. For example, many borders follow mountain chains. Small rivers are present in

most places (about 68% of the cells; cf. Table 1), but less so in today�s Russia, a relatively

uni�ed region.

However, the other geography variables �big rivers, log distance from coast, the agri-

cultural suitability variables, and log ruggedness � still show signi�cant correlation with
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borders, although the estimated coe¢ cients are smaller in size and sometimes signi�cant at

somewhat lower con�dence levels. Because some geography variables are clustered by nature

it is di¢ cult to isolate the e¤ects of geography, but it is reassuring that some of geography

variables remain signi�cant when controlling for clustering.

4.3.1 Predicting border locations

We can examine how geography performs compared to the neighbor control by examining

where each of these (sets of) variables under- or overpredicts borders. This may also provide

some clues about which factors our geography variables fail to capture.5

Out of 4275 cells with data for all geography variables, 54 had borders in all six years

1500-2000 (Bi = 1). Panel (a) of Figure 6 shows a map of the locations of these cells, as

well as the 54 cells predicted to have the highest border frequency, based on two di¤erent

regressions: one using only geography as explanatory variables [the speci�cation in column

(9) of Table 4], and one with only neighbor e¤ects (Bi = � + 
B�i + "i). Panel (b) does

the same for 388 cells with borders in at least four of the six years (Bi � 2=3). Note that

cells missing agricultural suitability data are disregarded, since we use these variables in our

predictions.

Both geography and neighbor e¤ects predict high border frequency around the Alps.

While the neighbor control does better overall, in particular around today�s Germany, geog-

raphy better predicts the border separating Spain and France in the Pyrenees.

Geography overpredicts border frequency in the Caucasus area, meaning this region has

been more uni�ed than geography would suggest. One reason could be its relative vicinity

to large empires, such as the Ottoman Empire and Russia.

4.4 Europe e¤ects

Next we examine if geography can explain Europe�s fragmentation compared to its surround-

ing regions. To that end, we construct a Europe dummy, indicating if a cell is located north

of Gibraltar and west of Odessa (cf. Figure 1). This de�nition of Europe is arbitrary but the

results below are robust to using, e.g., log distance from Paris as a measure of �Europeness.�

The regression equation can now be written

Bi = �+Gi� + 
B�i + �Ei + "i, (5)

where Ei is the Europe dummy, and the notation is otherwise the same as in (4). If our

estimate of � is signi�cantly di¤erent from zero, then the interpretation is that something

makes Europe more fragmented, in ways that the other variables cannot account for.

5We are grateful to Kris Inwood for this suggestion.
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In Table 6, the Europe dummy does come out as positive and signi�cant, both on its

own in column (1), and when controlling for various sets of geography variables in columns

(2)-(4). That is, geography seems unable to explain Europe�s political fragmentation. The

reason is that Europe�s geography is not very di¤erent from its surrounding regions. For

example, while there are many borders around the European Alps, many non-European and

relatively uni�ed regions were equally mountainous; see Figure 4.

At the same time, the estimated coe¢ cients of most geography variables are largely

unchanged when including a Europe dummy, suggesting that the e¤ect of geography on

borders is a general phenomenon, not speci�c to Europe.6

In columns (5)-(8) we enter neighbor controls, here computed as the border index for

both the eight and 24 closest neighbors. Either of these is enough to make the Europe

dummy insigni�cant, with or without geography controls. As we saw in Section 4.3, borders

are highly clustered, and the Europe dummy comes out as signi�cant because these clusters

are mostly located in Europe. Conditional on being close to a border cluster, cells in Europe

do not have more borders. As in Section 4.3, neighbor controls also render some geography

variables insigni�cant, but others stay signi�cant at conventional levels, although smaller in

size.

Why are most border clusters located in Europe then? One possibility is that borders

are fundamentally determined by geography, but that geography itself is more clustered

in Europe than elsewhere. However, then geography should probably pick up more of the

variation in border frequency, and render the neighbor e¤ect and the Europe dummy less

signi�cant.

Another possibility is that there are multiple equilibria. If one cell has a border, neigh-

boring cells could be more likely to have them too, making a whole region fragmented. For

example, small states may be more likely to survive when surrounded by other small states,

and located far from empires. Once a state becomes stronger than its neighbors it can

conquer more land and resources, allowing its population to grow, making it stronger still,

eventually leading to complete uni�cation.7 Then borders can be clustered even if geography

has no direct e¤ect on borders. That is, Europe�s fragmentation could be coincidental, and

unrelated to geography.8

6The exception is the coe¢ cient on log distance to the coast in column (4), which turns positive when

entering the Europe dummy. As discussed earlier, this variable partly captures Europe�s indented coastline,

and here the Europe dummy absorbs that e¤ect. The estimate shifts back to negative when entering neighbor

controls in columns (6) and (8).
7This type of mechanics is modelled by Lagerlöf (2014b) in a multi-country setting with Malthusian

population dynamics.
8This explanation is similar to Hui (2004), who compares China and Europe, arguing that di¤erences in

fragmentation are due more to seemingly random historical events than geography.
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A third possibility is that geography determines which equilibrium a region coordinates

on, the uni�ed or the fragmented one. For example, Europe�s mountains may be distributed

such that it was harder for any single state to get that initial empire-building momentum.

If the Pyrenees had been �at land, for instance, then France and Spain might have evolved

into a single political and cultural entity, much larger than its neighbors, and thus harder for

other European powers to resist militarily. Similarly, if some other region is initially more

uni�ed because its land is more suitable for irrigated agriculture, or because it has a less

inundated coastline, that may have tilted the outcome toward the uni�ed equilibrium.

This would allow geography to exert a multiplicative e¤ect on fragmentation, working

through the neighbor e¤ect: natural borders can fragment a region directly, by dividing it

into two or more separate political entities, and indirectly, by making it less likely that any

of them absorbs the others.

Indicative of the direct e¤ect being present is that some geography variables do remain

signi�cant also with neighbor controls.

4.5 Logistic regressions

Our analysis so far has been based on the average border frequency 1500-2000 de�ned in (1).

Next we look at border dummies in each of the six centuries separately, as well as current and

language borders from the GAA and WLMS, respectively (see Section 3). Let bi;j 2 f0; 1g
be the same border dummy as before, equal to one if cell i had a border in year j, or in this

case a language or current border. That is, j 2 f1500; :::; 2000;LB;CBg, with LB and CB
indicating language and current borders, respectively.

The logistic regression equations (one for each outcome variable j) can now be written:

Pr(bi;j = 1) = F (�j +Gi�j + �i;j), (6)

where F (x) = ex=(1+ ex) is the logistic function, Gi the same vector of geography variables

as before, �j a constant, �j a vector of coe¢ cients, and �i;j an error term. Note that �j
and �j are allowed to di¤er across outcome variables. We want to learn how the estimated

elements of �j di¤er across j.

Columns (1)-(6) of Tables 7 and 8 show the results for border dummies in the six di¤erent

centuries, and columns (7) and (8) the corresponding results with current and language

border dummies as dependent variables. We report the coe¢ cient estimates, rather than the

odds ratios, since we are primarily interested in the signs of the e¤ects.

Table 7 uses a smaller set of geography variables �mountains above 2000 meters, log

ruggedness, and small and big rivers. The coe¢ cient estimates in columns (1)-(6), when

signi�cant, carry mostly the same signs as in the ordinary least squares regressions in column

(5) of Table 4, and they are mostly signi�cant. In other words, the results when using the
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average border index in (1) as dependent variable do not seem to be driven by any particular

year.

The outcomes when using current and language borders in columns (7) and (8) are also

qualitatively similar, even though these borders come from di¤erent sources and, in the case

of language borders, arguably measure something quite di¤erent. This suggests that the

patterns documented earlier are not a re�ection of any peculiarities in the Euratlas data.

The same patterns hold with a broader set of explanatory variables in Table 8, adding

the two agricultural suitability variables and log distance to coast. Most coe¢ cients carry

the same signs as in the ordinary least squares regressions in column (9) of Table 4. One

exception is log distance to the coast which carries a signi�cantly positive sign for language

borders: more inland locations tend to be more linguistically fragmented, but more politically

uni�ed.

We also note the smaller and less signi�cant e¤ect of (in particular small) rivers on

language borders in Tables 7 and 8, compared to political borders. This �ts with the idea

that rivers are unifying at the micro level, while also constituting natural borders between

states, as discussed in Section 2.2. That is, rivers may have become political borders for

reasons related to the military expansion of states, while people living by the same river

have continued to share language.9

4.6 Panel regressions

Recall that our Euratlas border dummies, bi;t, vary both over time (i.e., across the six

centuries 1500-2000) and across space (i.e., across the cells), allowing us to control for both

time (i.e., century) and cell �xed e¤ects. Because geography (as we measure it) is constant

over time, we cannot enter geography variables when controlling for cell �xed e¤ects, so these

regressions cannot speak directly to how geography has a¤ected fragmentation. However, we

can learn which geographical characteristics have become more or less important over time.

We do this by entering interaction terms between the di¤erent geography variables and a

variable we label Century, which increases (linearly) from 1 to 6 between 1500 and 2000.

The regression equation can be now written:

Pr(bi;t = 1) = F (�i + �t + CtGi� + �i;t), (7)

where F (�) is the logistic function, �i and �t are cell and century �xed e¤ects, Ct the variable
Century (i.e., Ct = [t � 1400]=100), � a vector of coe¢ cients to be estimated, and �i;t an
error term.

9The result is also similar to Michalopoulos (2012, p. 1525 and Footnote 10), who �nds that the e¤ect of

rivers and lakes on lingustic diversity is either positive and insigni�cant, or negative and sign�cant, implying

that these are, if anything, unifying.
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Table 9 shows the results. Columns (1)-(6) let the interaction e¤ects enter separately

(although the two agricultural suitability variables enter together), and column (7) shows a

�horse race�regression, where all enter together. Recall from Table 1 that border frequency

reaches a minimum in 1900, so Column (8) drops the year 2000, allowing changes in the

e¤ects of geography to reverse around then.

To interpret the results, note that if a geographical factor has become more (less) im-

portant over time, then the geography-century interaction should carry the same (opposite)

sign as in the cross-sectional regressions in Tables 4 to 8.

The positive and signi�cant estimates of the interactions between Century and the two

mountain dummies in columns (1) and (2) indicate that mountains, which already have

a positive e¤ect on borders, have become more important determinants of borders. The

probability of a cell having a border, while decreasing overall since 1500, has decreased less

in cells with mountains. This holds whether we de�ne mountains as elevation exceeding 1000

or 2000 meters. It also holds when the 2000-meter dummy is entered together with other

interaction terms in column (7), and when dropping the year 2000 in column (8). In short,

borders have �moved up mountains.�

To get an understanding of what drives this result, Figure 7 shows what we can think

of as the pro�le of a mountain, namely mean elevation levels for cells with a midpoint of

49 degrees latitude, i.e., the 49th parallel, passing through today�s France (close to Paris),

into Germany (close to Stuttgart), Austria (north of Vienna), and then the Czech Republic,

ending in current Slovakia close to the mountain peak Kriváµn at 20 degrees east longitude.10

Figure 7 also indicates which cells were border cells in 1500 and in 1900, respectively, the

peak and trough years for border frequency in our data. As seen, the borders that are

still there in 1900 tend to be at higher elevations. The disappearing borders illustrate the

expansion of France from the west, and the Habsburg Empire from the east.

Columns (3) and (7) in Table 9 show that land suitability for rainfed and irrigated

agriculture, respectively, have become less important determinants of border locations. That

is, rainfed agriculture tends to make cells more likely to have a border, but less so over time,

and vice versa for irrigated agriculture. One interpretation could be that the importance of

local food production declined with increased trade, which could have made local rainfall a

less important determinant of the survival of small states, while also making borders more

costly. (As argued by Gancia et al. 2014, growing trade may have directly reduced the

usefulness of borders.) By contrast, areas with irrigated agriculture were already relatively

uni�ed.

Distance from the coast has a direct negative e¤ect on borders. Columns (4) and (7)

10The 49th parallel is chosen arbitrarily but is known for constituting part of the border between the US

and Canada.
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indicate that this negative e¤ect weakened over time. Put di¤erently, the unifying e¤ect of

being far from the coast weakened. One explanation could be that the state-building e¤ects

of sea travel increased over time in this era, exerting a unifying e¤ect in coastal regions, not

felt as strongly inland. Another could be the break-up of empires located in more inland

regions.

Small and big rivers have a direct positive e¤ect on borders. How these e¤ects changed

over time depends on the time period considered. When considering the whole period 1500-

2000, small rivers seem to have become less important [columns (5) and (7)], while there is

no signi�cant e¤ects for big rivers [columns (6) and (7)]. For the period 1500-1900 [column

(8)], the results instead suggest that big rivers have become more important, while the

corresponding e¤ect for small rivers is no longer signi�cant.

The result for big rivers up to 1900 seems consistent with Lord Curzon�s argument in

Section 2.2: rivers became borders because they were easy to defend militarily, and thus a

by-product of the emergence of military states. That this e¤ect goes away after 1900 may

suggest that new technologies, e.g. improved �re power, eventually diminished the military

obstacle of even big rivers.11

5 Model

In the preceding sections we learned several interesting facts about borders. Here we propose

a model to help interpret some of these, in particular the following: that borders show

persistence over time; that they are geographically clustered; that they are more likely to be

located in mountainous terrain; and that mountains over time have become more important

determinants of borders.

We thus model only one geographical variable, elevation, but our results may carry over

to a framework where geography varies in multiple dimensions across the landscape.

The model itself rests on a few plausible assumptions. First, countries (or their respective

elites) set their territories to maximize tax revenues net of spending on border defence and

control of the territory. Second, higher elevations generate less tax revenue. Third, borders

are less costly to defend at more elevated points.

There is a continuum of locations, l 2 [0; 1], with elevations h(l) > 0. Location l = 0

is the coast. We assume that h(1) > h(0), but h(l) need not be monotonically increasing.

Going from low to high l is thought of as moving up the mountain.

There are N > 1 countries, indexed i 2 f1; :::; Ng, with adjacent territories ordered such
that lower-i countries are closer to the coast. Country i�s territory is (� i�1; � i], where � i�1
11The weaker interaction e¤ects for small rivers could be due to other factors, as they might have always

been less of a military obstacle. Recall also that small rivers are present in 68% of the cells.
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and � i are referred to as its downhill and uphill borders, respectively. Country 1�s downhill

border is the coast, � 1 = 0.

Lower-i countries (closer to the coast) are militarily stronger, in the sense that they can

take as much uphill territory as they want (although at a cost, as detailed below). Each

country takes the border to its downhill neighbor (if any) as given, and chooses the location

of the border to its uphill neighbor. The exception is countryN , which has territory (�N�1; 1]

and survives only as long as country N � 1 sets �N�1 < 1.
There are many possible interpretations of this geographical power structure. For exam-

ple, France grew by annexing the land of smaller and weaker states, often in mountainous

regions, like Lorraine and Savoy. The expansion of the Roman Empire could be another

example.12

Let tax revenue at location l be Z [h(l)]��, where Z > 0 and � > 0. This negative

relationship between tax revenue and elevation may be interpreted as population density, or

other determinants of the tax base, being lower at higher elevations. Z is an elevation-neutral

measure of population density, which we will later vary to study how the border structure

changes. Tax revenue of country i, which controls territory (� i�1; � i], now becomes:

Ri =

Z � i

� i�1

Z [h(l)]�� dl, (8)

where (recall) country 1�s downhill border is the coast, � 1 = 0.

While country i�s uphill border is chosen freely, it needs to be defended, and the territory

needs to be administered, which carries the cost

Ci = a(� i � � i�1)
 + b [r(� i; d)]�� , (9)

where a > 0, b > 0, 
 > 1, � > 1, and r(� i; d) is the relative height of the border post over

a distance d > 0 from � i:

r(� i; d) =
h(� i)

h(� i + d)
. (10)

Costs of border defense are thus falling with the local elevation at the border location: it

is less expensive to defend mountain peaks.13 Letting the cost of holding the territory (the

�rst term in Ci) be increasing and convex in size of the territory ensures that country 1 does

not take all land.
12The assumption can also be motivated by lower-i countries having higher territorial pro�ts, which will

soon be seen to be an equilibrium outcome.
13More formally, we could assume that the probability of an uphill neighbor overtaking its downhill neigh-

bor equals one if spending on border forti�cations by the downhill power falls below b [r(� i; d)]
�� . Note also

that the downhill border does not need defending, since it abuts a stronger power; if it wanted the territory

it would just expand its border uphill.
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At any given level of Z, and other exogenous parameters, an equilibrium is a set of border

locations, f� igN�1i=1 , such that � i 2 [� i�1; 1] maximizes �i = Ri � Ci.14

5.1 Simulation

We want to examine how the equilibrium border structure changes when increasing Z, cap-

turing a long-run rise in population density. To this end, we simulate the model for a simple

numerical example with six countries (N = 6) and �ve borders, approximating the contin-

uous set of locations by a grid of about 2000 points. Since this serves only as illustration

other parameters are set arbitrarily (see Section B of the appendix). However, we enter

some realism by letting h(l) match elevation data along the same 49th parallel illustrated in

Figure 7, although here at a �ner grid level. To match scales, the peak at 20 degrees east

longitude (here l = 1) is normalized so that h(1) = 50.

Figure 8 shows this mountain pro�le, and the �ve uphill border locations, for Z = 0:3

and Z = 1; country 1�s border is most downhill and country 5�s most uphill (facing the

residual country 6). For any given Z, borders tend to be located on local mountain peaks.

As Z increases from 0:3 to 1 the territories and borders move up the mountain, each country

being pushed by its respective downhill neighbor.

Figure 8 also shows border frequency. This is measured as the number of times a location

has a border when Z varies in 50 steps from 0:3 to 1; a border frequency of 50 means that

a location has a border continuously for all levels of Z. As seen, some locations have higher

border frequency than others, in particular around mountain peaks. Some segments of

the [0; 1] line have many border dense locations, e.g., around 0:5-0:75. Others are almost

completely border free, e.g., around 0:75-0:9, even though this segment belongs to di¤erent

countries for di¤erent levels of Z.

Such variation in border density resembles the border clustering observed in the data

and discussed in Section 4.3. It is here driven by the spatial pro�le of the single geography

variable, elevation, and its assumed e¤ects on tax revenues and defense costs. Intuitively,

when countries expand their territories uphill, they do not stop in rich and populous valleys,

but expand until they reach a location that is easy to defend and fromwhere further conquests

bring little marginal tax revenue. Here that location is a mountain peak. In a richer model

it could be a river, a coast, or any other type of natural border.

Figure 9 lets Z vary in 50 discrete steps from 0:3 to 1. The top left panel shows the

locations on the [0; 1] scale of the most uphill and downhill borders, and the average location

of all �ve. These are constant over long intervals, making discrete jumps when Z passes

14Country i can set its uphill border at the same location as its downhill border, � i = � i�1, in which case

it ceases to exist spatially. In the numerical example considered below, however, all countries have positive

territory in equilibrium.
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certain thresholds. Intuitively, when borders do change they leap from one mountain top to

another. Borders are in that sense rigid, as in the data discussed in Section 4.1.

The top right panel shows elevation at the border locations, and the average elevation

across both the �ve border locations and all locations on [0; 1]. Border locations have above-

average elevation, consistent with elevation and mountain dummies showing a positive cor-

relation with borders in the cross section. Moreover, elevation at border locations increases

with Z. Thus, long-run increases in population density can explain why borders have moved

up mountains since 1500, as found in the panel regressions in Section 4.6. Similarly, the top

left panel shows that borders move away from the coast (i.e., location zero) as Z increases,

also consistent with the panel regressions.15

The bottom left panel shows the pro�ts gained by each country in equilibrium, �i =

Ri�Ci. Pro�ts of downhill countries are higher, and increase more with Z. Intuitively, these
hold territories where increases in Z have the greatest impact (namely at low elevations),

and can also expand their territories more. A richer (perhaps dynamic) model could thus

link these higher revenues to greater military strength, as is here imposed by assumption.

There are many more possible extensions of this model. We could interpret the nega-

tive relationship between tax revenue and elevation as land being less productive at higher

elevations. To be consistent with our data, this should refer to productivity in irrigated

agriculture, because more elevated locations have more borders and, recall, suitability for

irrigated �but not rainfed �agriculture shows a negative correlation with border frequency.

A model with multiple geography variables could distinguish explicitly between produc-

tivity of rainfed and irrigated agriculture, along the lines discussed in Section 2.2. For

example, the cost of controlling a territory in (9), and/or the tax revenue it provides in (8),

could vary with the type of agriculture for which it is suitable, and the type of agriculture

could itself be a choice variable. We leave such extensions for future work.

6 Conclusions

Does geography determine where borders between sovereign states are located? To answer

this, we have examined grid-cell level data across Europe and surrounding areas from 1500 to

2000. We �nd that several measures of geography indeed correlate with borders: mountains,

rivers, distance to the coast, and suitability for rainfed and irrigated agriculture.

These measures do not by any means explain all of the variation in border frequency.

Taken together their explanatory power reaches about 10% by a standard R-squared measure.

15Note, however, that log distance to the coast is negatively correlated with average border density (Bi)

in the data, while in this simulation the corresponding variable �border frequency as shown in Figure 8 �

does not increase monotonically when moving away from the coast.
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Neither can geography account for Europe�s fragmentation relative to its neighboring regions:

a dummy for Europe stays signi�cant also when controlling for geography.

At the same time, borders are highly clustered: adding borders in neighboring cells as

a control pushes the R-squared to 60%, and renders the Europe dummy insigni�cant. We

discussed how a multiple-equilibrium story might drive this pattern, but we readily admit

that this conjecture calls for further research.

We also examined how the importance of geography has changed over time since 1500.

Somewhat surprisingly, some dimensions of geography, in particular elevation, have become

more important border determinants over time.

To interpret many of these results, we also proposed a model of endogenous borders. In

short, countries set borders where they are easy to defend, and from where further territorial

gains bring little marginal tax revenue. In our model, this means borders are located on

mountain peaks, because both costs of border defence, and tax revenues, depend negatively

on elevation.
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APPENDIX

A Data

A.1 Border variables

A.1.1 Cell size

The cells are of size 0:5� 0:5 degrees, and span from �19:25 to 60:25 degrees longitude, and
from 19:25 to 60:25 degrees latitude. One degree is about 111 km at the equator; the exact

length depends on where on earth it is measured.

A.1.2 Euratlas data (1500-2000)

The border data were purchased from Euratlas (www.euratlas.com), c
 2010 Christos Nüssli.

For each turn of the century from 1 to 2000 CE, the Euratlas data contain shape�les for

di¤erent political formations in Europe and its surroundings (as well as data on rivers, as

discussed below). We de�ne a cell as having a border if it contains more than one sovereign

state, which is de�ned by Euratlas as a state with an authority, ruling over a territory and

a population, and where �this authority is sovereign, i.e. not subject to any other power or

state�(Nüssli 2010).

For the �rst several centuries after 1 CE, it is unclear if (sovereign) statehood meant the

same as today, as central government capacities were often limited. Many of the mechanisms

through which political fragmentation might have impacted economic and institutional de-

velopment may not have been at play either. Here we measure borders from 1500 (i.e., in

1500, 1600, 1700, 1800, 1900, and 2000).

Over this time span more regions have come to be covered by states. Since our ambition

is to analyze how geography correlates with state fragmentation, rather than the presence of

states in the �rst place (an interesting question in itself), we restrict attention to cells where

some state was present in all years 1500-2000.

Because we de�ne border cells as those with more than one sovereign state, we in e¤ect

consider only (or mostly) land borders. Coasts, which make up the contours of many sov-

ereign states, e.g. England, are typically not counted as borders. The exception is when

two sovereign states enter the same cell from opposite sides of a narrow coast. For example,

France and England/UK share a border in a few cells by the English Channel.

This also means that an indented coastline does not automatically translate to higher

border frequency, but we compute distance from the nearest coastal cell, which may capture

some of the e¤ect on an indented coast line (see below).
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Our Europe dummy is de�ned as cells within the Euratlas map, and with midpoints

located at 36 degrees latitude north (the approximate latitude of Gibraltar), or north of

that; and at 31 degrees longitude (the approximate longitude of Odessa), or west of that (see

Figure 1).

A.1.3 Language and current borders

Data on borders between language areas are from the World Language Mapping System

(www.worldgeodatasets.com/language).

Current border data are from Global Administrative Areas Version 2 (www.gadm.org).

We do not know which speci�c point in time that these current borders refer to, but the

GADM Version 2 data that we use were posted in January 2012. As discussed, current

borders are highly correlated with the Euratlas border dummy for 2000.

A.2 Geography variables

Data on elevation (topography) is from the National Geophysical Data Centre (NGDC) at

the National Oceanic and Atmospheric Administration (NOAA), available to download here:

www.ngdc.noaa.gov/mgg/topo/globe.html

These data refer to land areas only and are provided at the 30-arc-second (about 1 km)

grid-cell level. For each cell that we use as unit of observation (of size 0:5 � 0:5 degrees),
there are thus at most about 100 elevation points, depending on how much of it is covered

by land.

We de�ne sea cells as those cells for which either the NGDC data are completely missing,

or which have zero variation in elevation. The latter category are �at-surface cells according

to the NGDC elevation data, consisting of the Caspian and Aral seas. These are so-called

endorheic basins, i.e., disconnected from other oceans and with run-o¤ through evaporation.

Cells that are not sea cells are land cells (i.e., they do not miss NGDC data and have

non-zero variation in elevation).

Some land cells are covered only partly by the NGDC data. These we de�ne as coastal

cells. Land cells surrounding the Caspian and Aral seas are fully covered by NGDC data

(although some of it with zero variation in elevation), and are thus not classi�ed as coastal

cells; see Figure 1. This makes sense since these basins are endorheic, making boat travel to

other seas impossible.

In our baseline sample of 5202 land cells with state presence in all years, about 73 cells

have negative elevation. In order not to drop these cells when constructing our variable log

elevation, we take logs of elevation exceeding (one plus) the lowest level in the sample. That
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is, if xi denotes mean elevation of cell i (in meters) and bx is the minimum xi across the 5202
cells (which in our baseline sample is �28 meters, located around the Caspian Sea), then log
elevation is constructed as

ln(1 + xi � bx),
which starts at zero. For consistency we do the same when generating log ruggedness; in that

case xi is the standard deviation in elevation across the cell, and bx is the minimum standard
deviation across all 5202 cells, which equals around :37.

We also construct two indicator variables for whether or not a large or small river was

present in the cell, which is from the Euratlas data (see above). There are some minor

changes in the location of these rivers over time, but those changes are extremely small,

so we use the river data in 1500 for all years. (The only new river in the Euratlas data is

essentially the Suez canal, which we do not count as a river.)

A.3 Agricultural variables

The source for the agricultural suitability data is the Global Agro-Ecological Zones (GAEZ)

website (www.fao.org/nr/gaez), sponsored by the Food and Agriculture Organization of the

United Nations (FAO).

This suitability index measures agricultural output of some given crop and level of input,

relative to the output level for the same crop and the same level of inputs, but under perfect

environmental conditions, and based on the climatic conditions 1960-91.

The data sources also distinguish between two types of water supply, rain and irriga-

tion. The variables we construct refer to the average of wheat, barley, oats and rye, under

intermediate inputs, and for each of the two water-supply categories. We normalize these

variables to run from 0 to 1 (the original scale runs from 0 to 10,000).

B Simulation

To create the mountain pro�le, we �rst let ArcGIS generate mean elevation across 3000 cells

of size 0:01�0:01 degrees, with centroids from �2:995 to 26:995 degrees longitude, and with
the common latitude of 49:000 north. Among these we select cells which are completely on

land (and for which we can thus measure elevation), and which are located at, or to the west

of, the cell with centroid 19:565 degrees longitude, which has the highest elevation of all 3000

cells (1423 meters). This leaves us with 2113 cells from �1:555 to 19:565 degrees longitude,
which can be interpreted as the western slope of a mountain. Letting z 2 f1; :::; 2113) be an
index ordering the cells from west to east, h(l) is then approximated by the mean elevation

in cell z, where l = z=2113, but here normalized so that h(1) = 50.
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For each z (and approximated l), we approximate r(l; d) at l = z=2113 by h(z=2113)=h([z+

30]=2113); cf. (10). This implies a value of d of 30=2113 � 0:014.
Other parameter values are set as follows: a = :0001; � = 1, 
 = � = b = 2, and N = 6.

We then choose a sequence of 50 values for Z on [0:3; 1]. For each Z, we compute location

of the N � 1 borders, using the following algorithm:

1. For the �rst (lowest) value for Z �nd � i (i.e., the uphill boundary of country i) as

follows:

(a) Given � i�1, and the value chosen value for Z (and the values for other parameters),

let Matlab �nd optimal � i by searching across the 2113 cells and select the � i =

z=2113 that maximizes �i = Ri � Ci. (Note that � 1 = 0 is given.)

(b) Given � i determined under (a), �nd � i+1. Then iterate on Step (a) until i = N�1.

2. Choose the next value for Z and iterate on Step 1.
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Variable Mean Std. Dev. Min. Max. Observations

Border dummy 1500 0.179 0.384 0 1 5202

Border dummy 1600 0.145 0.352 0 1 5202

Border dummy 1700 0.146 0.353 0 1 5202

Border dummy 1800 0.101 0.301 0 1 5202

Border dummy 1900 0.087 0.283 0 1 5202

Border dummy 2000 0.156 0.363 0 1 5202

Current border dummy 0.166 0.372 0 1 5202

Language border dummy 0.374 0.484 0 1 5202

Mountain dummy (> 2000m) 0.019 0.136 0 1 5202

Mountain dummy (> 1000m) 0.116 0.32 0 1 5202

Log elevation 5.484 1.084 0 7.906 5202

Log ruggedness 4.113 1.287 0 7.073 5202

Big river dummy 0.246 0.431 0 1 5202

Small river dummy 0.681 0.466 0 1 5202

Agric. suitability (irrigated) 0.708 0.203 0 1 4275

Agric. suitability (rainfed) 0.550 0.230 0 1 4856

Log distance to coast 0.037 0.040 0 0.225 5202

Europe dummy 0.564 0.496 0 1 5202

Table 1: Summary statistics.



Variables Border 1500 Border 1600 Border 1700 Border 1800 Border 1900 Border 2000 Current border

Border dummy 1600 0.500 1.000

(0.000)

Border dummy 1700 0.539 0.631 1.000

(0.000) (0.000)

Border dummy 1800 0.420 0.397 0.581 1.000

(0.000) (0.000) (0.000)

Border dummy 1900 0.230 0.224 0.342 0.385 1.000

(0.000) (0.000) (0.000) (0.000)

Border dummy 2000 0.228 0.216 0.290 0.303 0.459 1.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Current border dummy 0.214 0.201 0.270 0.287 0.432 0.915 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Language border dummy 0.080 0.107 0.120 0.099 0.227 0.509 0.526

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 2: Correlation coefficients across 5202 cells for the different border dummies, with p-values in parentheses.



Variables Border
1500-
2000

Mountain
(> 2000m)

Mountain
(> 1000m)

Log ele-
vation

Log
rugged-
ness

Big
river

Small
river

Agric.
suit.
(rain-
fed)

Agric.
suit.
(irri-
gated)

Mountain (> 2000m) 0.085 1.000

(0.000)

Mountain (> 1000m) 0.086 0.382 1.000

(0.000) (0.000)

Log elevation 0.119 0.284 0.613 1.000

(0.000) (0.000) (0.000)

Log ruggedness 0.145 0.204 0.474 0.812 1.000

(0.000) (0.000) (0.000) (0.000)

Big river 0.162 -0.020 -0.010 -0.001 -0.019 1.000

(0.000) (0.146) (0.491) (0.923) (0.181)

Small river 0.245 0.074 0.156 0.277 0.303 0.106 1.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Agric. suit. (rainfed) 0.045 -0.095 -0.154 -0.057 -0.185 0.088 0.100 1.000

(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Agric. suit. (irrig.) -0.036 -0.034 -0.009 0.072 -0.019 0.047 0.073 0.688 1.000

(0.018) (0.026) (0.555) (0.000) (0.204) (0.002) (0.000) (0.000)

Log dist. to coast -0.074 0.031 0.008 0.053 -0.251 0.072 -0.106 0.290 0.178

(0.000) (0.027) (0.557) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 3: Pairwise correlation coefficients across cells for the border index 1500-2000 (Bi) and some of the more important
geography variables, with p-values in parentheses.



Dependent variable: Fraction borders 1500-2000

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mountain dummy (> 2000m) 0.148∗∗∗ 0.100∗∗∗ 0.100∗∗∗ 0.101∗∗∗ 0.073∗∗ 0.081∗∗ 0.100∗∗∗

(4.516) (3.061) (3.114) (3.145) (2.065) (2.344) (2.857)

Mountain dummy (> 1000m) 0.064∗∗∗

(5.292)

Log ruggedness 0.027∗∗∗ 0.025∗∗∗ 0.014∗∗∗ 0.016∗∗∗ 0.011∗∗∗ 0.017∗∗∗ 0.015∗∗∗

(9.848) (9.021) (5.038) (5.440) (3.692) (5.202) (4.287)

Big river dummy 0.079∗∗∗ 0.078∗∗∗ 0.074∗∗∗ 0.072∗∗∗ 0.075∗∗∗

(9.493) (9.143) (8.593) (8.431) (8.834)

Small river dummy 0.103∗∗∗ 0.096∗∗∗ 0.102∗∗∗ 0.095∗∗∗ 0.090∗∗∗

(18.828) (15.584) (15.868) (14.443) (13.806)

Agric. suitability (rainfed) 0.038∗∗∗ 0.152∗∗∗ 0.184∗∗∗

(2.859) (7.800) (8.939)

Agric. suitability (irrigated) −0.064∗∗∗ −0.179∗∗∗ −0.185∗∗∗

(−3.364) (−7.106) (−7.264)

Log distance to coast −0.571∗∗∗

(−6.950)

R2 0.01 0.01 0.02 0.02 0.09 0.08 0.07 0.08 0.09

Observations 5202 5202 5202 5202 5202 4856 4275 4275 4275

Table 4: Ordinary least squares regressions with robust standard errors. The dependent variable is the fraction years 1500-2000
that the cell had a border (Bi). t statistics in parentheses; * indicates p < 0.10, ** p < 0.05, and *** p < 0.01.



Dep. var.: Fraction borders 1500-2000

(1) (2) (3) (4)

Fraction borders in eight neighb. cells 1.004∗∗∗ 1.000∗∗∗

(57.525) (52.421)

Mountain dummy (> 2000m) 0.100∗∗∗ 0.033 0.100∗∗∗ 0.015

(3.114) (1.614) (2.857) (0.705)

Log ruggedness 0.014∗∗∗ 0.004∗∗ 0.015∗∗∗ 0.004∗

(5.038) (2.263) (4.287) (1.669)

Big river dummy 0.079∗∗∗ 0.018∗∗∗ 0.075∗∗∗ 0.019∗∗∗

(9.493) (3.438) (8.834) (3.391)

Small river dummy 0.103∗∗∗ 0.000 0.090∗∗∗ −0.000

(18.828) (0.126) (13.806) (−0.064)

Agric. suitability (rainfed) 0.184∗∗∗ 0.030∗∗

(8.939) (2.041)

Agric. suitability (irrigated) −0.185∗∗∗ −0.035∗∗

(−7.264) (−2.164)

Log distance to coast −0.571∗∗∗ −0.141∗∗

(−6.950) (−2.439)

R2 0.09 0.60 0.09 0.58

Observations 5202 5202 4275 4275

Table 5: Ordinary least squares regressions with robust standard errors. The dependent
variable is the fraction years 1500-2000 that the cell had a border (Bi). The fraction
borders in neighboring cells is the variable B−i in the text. t statistics in parentheses; *
indicates p < 0.10, ** p < 0.05, and *** p < 0.01.



Dependent variable: Fraction borders 1500-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Europe dummy 0.129∗∗∗ 0.110∗∗∗ 0.110∗∗∗ 0.120∗∗∗ 0.001 −0.000 0.001 −0.003

(21.854) (18.689) (17.086) (14.998) (0.341) (−0.106) (0.095) (−0.579)

Mountain dummy (> 2000m) 0.157∗∗∗ 0.136∗∗∗ 0.133∗∗∗ 0.015 0.021

(5.158) (4.130) (4.037) (0.709) (0.808)

Log ruggedness 0.015∗∗∗ 0.018∗∗∗ 0.019∗∗∗ 0.004∗ 0.006∗∗

(5.584) (5.580) (5.685) (1.664) (2.270)

Big river dummy 0.077∗∗∗ 0.072∗∗∗ 0.070∗∗∗ 0.019∗∗∗ 0.014∗∗

(9.614) (8.664) (8.493) (3.382) (2.361)

Small river dummy 0.063∗∗∗ 0.057∗∗∗ 0.056∗∗∗ −0.000 0.001

(11.610) (8.816) (8.594) (−0.083) (0.134)

Agric. suitability (rainfed) 0.130∗∗∗ 0.114∗∗∗ 0.029∗∗ 0.043∗∗∗

(6.761) (5.469) (1.973) (2.630)

Agric. suitability (irrigated) −0.149∗∗∗ −0.145∗∗∗ −0.035∗∗ −0.049∗∗∗

(−6.053) (−5.858) (−2.164) (−2.798)

Log distance to coast 0.246∗∗ −0.138∗ −0.214∗∗∗

(2.440) (−1.959) (−2.787)

Fra. borders in 8 nb cells 1.017∗∗∗ 1.000∗∗∗

(57.645) (52.043)

Fra. borders in 24 nb cells 1.048∗∗∗ 1.028∗∗∗

(50.245) (46.295)

R2 0.07 0.13 0.12 0.12 0.59 0.52 0.58 0.50

Observations 5202 5202 4275 4275 5202 5202 4275 4275

Table 6: Ordinary least squares regressions with robust standard errors. The dependent variable is the fraction years 1500-2000 that
the cell had a border (Bi). The fraction borders in neighboring cells is the variable B−i in the text. The Europe dummy (Ei) is an
indicator variable for the region north of Gibraltar and west of Odessa. t statistics in parentheses; * indicates p < 0.10, ** p < 0.05,
and *** p < 0.01.



Dependent variable: Border dummies for different years (or current/language)

(1) (2) (3) (4) (5) (6) (7) (8)

1500 1600 1700 1800 1900 2000 Current Language

Mountain dummy (> 2000m) 0.174 0.494∗∗ 0.287 0.990∗∗∗ 0.249 1.097∗∗∗ 1.035∗∗∗ 1.265∗∗∗

(0.753) (2.042) (1.124) (4.155) (0.920) (5.120) (4.803) (5.442)

Log ruggedness 0.149∗∗∗ 0.040 0.050 0.123∗∗∗ 0.318∗∗∗ 0.137∗∗∗ 0.099∗∗∗ 0.123∗∗∗

(4.679) (1.182) (1.430) (2.932) (6.835) (3.908) (2.850) (5.011)

Big river dummy 0.566∗∗∗ 0.506∗∗∗ 0.679∗∗∗ 0.700∗∗∗ 0.753∗∗∗ 0.602∗∗∗ 0.520∗∗∗ 0.207∗∗∗

(7.060) (5.903) (8.019) (7.082) (7.300) (7.174) (6.343) (3.111)

Small river dummy 1.276∗∗∗ 1.510∗∗∗ 1.229∗∗∗ 1.581∗∗∗ 0.928∗∗∗ 0.836∗∗∗ 0.785∗∗∗ 0.116∗

(11.468) (11.910) (10.530) (9.707) (6.423) (8.068) (7.957) (1.769)

Pseudo R2 0.06 0.06 0.06 0.08 0.07 0.05 0.04 0.01

Observations 5202 5202 5202 5202 5202 5202 5202 5202

Table 7: Logistic regressions with robust standard errors. The dependent variable is an indicator variable for the presence of a border
in the cell in the given year, or whether the cell had a current or language border (bi,t). t statistics in parentheses; * indicates p < 0.10,
** p < 0.05, and *** p < 0.01.



Dependent variable: Border dummies for different years (or current/language)

(1) (2) (3) (4) (5) (6) (7) (8)

1500 1600 1700 1800 1900 2000 Current Language

Mountain dummy (> 2000m) −0.070 0.877∗∗∗ 0.707∗∗ 1.122∗∗∗ 0.585∗ 0.894∗∗∗ 0.795∗∗∗ 1.112∗∗∗

(−0.227) (3.015) (2.216) (3.897) (1.916) (3.546) (3.179) (4.349)

Log ruggedness 0.130∗∗∗ 0.042 0.017 0.094∗ 0.307∗∗∗ 0.186∗∗∗ 0.153∗∗∗ 0.192∗∗∗

(3.592) (1.058) (0.430) (1.916) (5.551) (4.431) (3.709) (6.430)

Big river dummy 0.527∗∗∗ 0.486∗∗∗ 0.690∗∗∗ 0.682∗∗∗ 0.735∗∗∗ 0.539∗∗∗ 0.473∗∗∗ 0.219∗∗∗

(6.150) (5.237) (7.509) (6.422) (6.719) (6.117) (5.464) (3.076)

Small river dummy 0.929∗∗∗ 1.373∗∗∗ 0.985∗∗∗ 1.403∗∗∗ 0.920∗∗∗ 0.768∗∗∗ 0.770∗∗∗ 0.124

(7.655) (9.174) (7.498) (7.529) (5.389) (6.313) (6.449) (1.568)

Agric. suitability (rainfed) 2.015∗∗∗ 2.409∗∗∗ 2.350∗∗∗ 1.213∗∗∗ 1.144∗∗∗ 1.561∗∗∗ 1.175∗∗∗ 0.504∗∗

(7.275) (7.757) (7.347) (3.200) (2.671) (4.717) (3.666) (2.306)

Agric. suitability (irrigated) −1.809∗∗∗ −2.411∗∗∗ −2.333∗∗∗ −1.386∗∗∗ −1.102∗∗∗ −1.158∗∗∗ −1.022∗∗∗ −0.816∗∗∗

(−6.380) (−7.562) (−7.104) (−3.698) (−2.822) (−3.736) (−3.396) (−3.659)

Log distance to coast −7.664∗∗∗ −6.539∗∗∗ −11.104∗∗∗ −3.812∗∗∗ −4.009∗∗ 0.004 1.500 4.725∗∗∗

(−6.183) (−4.867) (−8.327) (−2.576) (−2.350) (0.004) (1.277) (4.981)

Pseudo R2 0.06 0.07 0.07 0.06 0.06 0.04 0.04 0.02

Observations 4275 4275 4275 4275 4275 4275 4275 4275

Table 8: The same logistic regressions as in Table 7, but with more controls.



Dependent variable: Border dummy

(1) (2) (3) (4) (5) (6) (7) (8)

Century × mountain> 1000 m 0.132∗∗∗

(2.973)

Century × mountain> 2000 m 0.262∗∗∗ 0.267∗∗ 0.368∗∗

(3.061) (2.190) (2.476)

Century × agric. suitability (rainfed) −0.285∗∗ −0.350∗∗∗ −0.620∗∗∗

(−2.394) (−2.837) (−3.203)

Century × agric. suitability (irrigated) 0.488∗∗∗ 0.481∗∗∗ 0.684∗∗∗

(3.494) (3.495) (3.416)

Century × log distance to coast 3.081∗∗∗ 2.797∗∗∗ 1.645∗∗

(6.045) (4.921) (2.002)

Century × small river −0.137∗∗∗ −0.089∗∗ −0.064

(−3.537) (−2.025) (−0.986)

Century × big river 0.017 0.049 0.132∗∗∗

(0.516) (1.363) (2.673)

Pseudo R
2 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.09

Observations 10416 10416 9084 10416 10416 10416 9084 6495

Table 9: Logistic regression with year (century) and cell fixed effects (coefficient estimates not reported here). The variable
Century increases from 1 to 6 between 1500 and 2000 and is interacted with different geography variables to examine which ones
of these become more important determinants of borders over time. Column (8) drops the year 2000. t statistics in parentheses;
* indicates p < 0.10, ** p < 0.05, and *** p < 0.01.
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Figure 1: Map illustrating the baseline data set, which consists of the white (non-colored) and red (coastal) cells.
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Figure 2: Map illustrating borders in 1500 and 1900, when the fraction cells with borders was at its highest and lowest, respectively.
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Figure 3: The means of different geography variables across cells with different border frequencies, Bi. For example, cells with borders
present in four of the six years 1500-2000 have Bi = 2/3.
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Figure 4: Map illustrating the location of borders in 1900 and some geography variables.
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Figure 5: Plot showing agricultural suitability for the different cells, inside and outside Europe, and also indicating in which cells a
border was always present 1500-2000 (Bi = 1).
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(a) Borders all years 1500-2000 (Bi = 1).
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(b) Borders at least 2/3 of the years 1500-2000 (Bi ≥ 2/3).

Figure 6: Maps of actual and predicted border locations. Panel (a) shows the locations of the 54 cells
with borders in all years 1500-2000, and the 54 cells with the highest predicted border frequency, by either
geography or neighbor effects. Panel (b) does the same for cells with borders in at least 2/3 of the years
(388 cells in total). Predictions are based on the 4275 cells for which agricultural suitability data are not
missing. Light green indicates absence of statehood at some point 1500-2000; cf. Figures 1, 2, and 4.
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Figure 7: A mountain profile along the 49th parallel, and border locations in 1500 and 1900.
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Figure 8: The figure shows a mountain profile (elevation) along the 49th parallel, but on a finer grid than that in Figure 7. Border
frequency is the total number of times a location has a border when Z varies from 0.3 to 1. The figure also shows, for Z = 0.3 and
Z = 1, the uphill border locations of the five countries that choose these.
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Figure 9: The top panels show the locations and elevations at the uphill border locations of countries 1 and 5 when Z varies from 0.3
to 1, and the averages across all 5 borders. The solid black line in the top right panel shows the average elevation across all locations,
whether they have a border or not. The bottom left panel shows the maximized value of the countries’ profit functions.
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