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Abstract

Using data on house sales and inventories of unsold houses, this paper shows that changes

in sales volume are largely explained by changes in the frequency at which houses are put up

for sale rather than changes in the length of time taken to sell them. Thus the decision to move

house is key to understanding the volume of sales. This paper builds a model where homeowners

chose when to move house, which can be seen as an investment in housing match quality. Since

moving house is an investment with upfront costs and potentially long-lasting benefits, the

model predicts that the aggregate moving rate depends on macroeconomic variables such as

interest rates. The endogeneity of moving also means that those who move come from the

bottom of the existing match quality distribution, which gives rise to a cleansing effect and

leads to overshooting of housing-market variables.
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1 Introduction

Many transactions in the housing market involve moving from one house to another. This process

entails a listing (putting up for sale) of an existing house, and the eventual purchase of another

house. These are not independent decisions. This paper presents empirical evidence showing the

importance of understanding moving decisions and builds a tractable model to analyse moving

house.

Data on sales and inventories of existing single-family homes in the U.S. are available from the

National Association of Realtors (NAR).1 These data are used to construct quarterly time series

between 1989 and 2013 of new listings (houses put up for sale), and the listing and sales rates. As

is well known, both the volume of sales and the sales rate vary substantially over time, rising in the

decade prior to 2005 and falling sharply afterwards. It is less well known that the listing rate has

also varied significantly, also rising between 1995 and 2005 and then falling back.2 Understanding

variation in listings is interesting in its own right, but more importantly, it turns out that it is

impossible to account for the magnitude of fluctuations in the volume of sales if changes in the

listing rate are ignored.

A simple counterfactual exercise is used to quantify this claim by considering the sales volume

that would have been obtained if the listing rate were constant at its sample average while the sales

rate varied as in the data. This hypothetical sales series fails to capture any of the major movements

in actual sales volume and has a correlation of only 0.11 with the actual sales series. On the other

hand, if the sales rate were held constant at its sample average while the listing rate varied as in

the data, the hypothetical sales volume series now tracks closely the main changes in actual sales

volume and has a correlation with it of 0.89. The reason why changes in the sales rate account for

little of the changes in sales volume is essentially that the average time taken to sell a house is so

short (a few months) relative to the average time spent in a house (more than a decade). Thus,

understanding the decision to move house is the key to understanding the volume of sales.

To understand what might drive changes in the listing rate, this paper presents a search-and-

matching model of endogenous moving. The model is based around the idea that moving house

constitutes an investment in match quality. Match quality refers to the idiosyncratic values home-

owners attach to the house they live in. This match quality is a persistent variable subject to

occasional idiosyncratic shocks, representing life events such as changing jobs, marriage, divorce,

and having children.3 These shocks degrade existing match quality, following which homeowners

decide whether to move. Eventually, after sufficiently many shocks, current match quality falls

below a ‘moving threshold’ that triggers moving to a new house and a renewal of match quality.

1NAR provides monthly estimates of home sales and inventories of homes for sale at the end of each month.
These data are for existing homes, covering single-family homes and condominiums. The methodology and recent
data are available at http://www.realtor.org/research-and-statistics/housing-statistics. The data for
single-family homes represent about 90% of total sales of existing homes.

2This is consistent with the evidence presented in Bachmann and Cooper (2014) from data on households’ changes
of residence in the Panel Study of Income Dynamics (PSID). More specifically, for the period 1989–2009, they find
that the own-to-own moving rate increased sharply during the decade 1995–2005 before declining afterwards.

3These are the main reasons for moving according to the American Housing Survey.
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Moving house is a process with large upfront costs that is expected to deliver long-lasting benefits,

and is thus sensitive to macroeconomic variables such as interest rates that influence other investment

decisions. These variables affect the threshold for existing match quality that triggers moving. Thus,

while idiosyncratic shocks are the dominant factor in moving decisions at the individual level, changes

in the moving threshold lead to variation in the aggregate moving rate. In contrast, in a model of

exogenous moving, the aggregate moving rate is always equal to the arrival rate of an idiosyncratic

shock that forces moving. Furthermore, with endogenous moving, those who move are not a random

sample of existing homeowners.

The modelling of the buying and selling process for houses is close to the existing literature.

There are search frictions in the sense that time is needed to view houses, and viewings are needed

to know what idiosyncratic match quality would be in a particular house. Buyers and sellers face

transaction costs and search costs. There is a ‘transaction threshold’ for match quality above which

a buyer and a seller agree to a sale. The housing-market equilibrium is characterized by the moving

threshold and the transaction threshold, which determine the sales and moving (listing) rates, and

inflows to and outflows from the stock of houses for sale.

The model is tractable and can be solved analytically to conduct some comparative statics

exercises. These exercises illustrate the interpretation of moving house as an investment in match

quality, and how incentives to invest are affected by macroeconomic conditions and changes in the

housing market. The decade from 1995 to 2004 is noteworthy as a period of booming activity in

the housing market. Two stylized facts emerge during those years: houses are selling faster, but

as discussed earlier, this cannot account for the large rise in sales volume. Moreover, the stock of

houses for sale actually rises in spite of the sharp rise in the sales rate. Reconciling these two stylized

facts requires an increase in the moving rate, which adds to the stock of house for sale, and also

generates a large rise in sales volume.

The 1995–2004 period featured a number of widely noted developments in the U.S. that have

implications for moving decisions according to the model. To name a few of these: the decline in

mortgage rates,4 the post-1995 surge in productivity growth (Jorgenson, Ho and Stiroh, 2005), and

the rise of internet-based property search. These developments can be represented in the model by

changing parameters, and the implication is that all three unambiguously increase the moving rate.

The rise in the moving rate following these developments works through an increase in the moving

threshold predicted by the model. Lower mortgage rates, interpreted as a fall in the rate at which

future payoffs are discounted, create an incentive to invest in improving match quality because the

capitalized cost of moving is reduced. An increase in productivity growth raises income and increases

the demand for housing, which increases the marginal return to higher match quality. Finally, the

adoption of internet technology reduces search frictions, making it cheaper for homeowners to move

in order to invest in a better match.

The endogenous-moving model’s predictions are also consistent with the stylized facts on sales

volume and inventories, in contrast to a model where moving is exogenous. In an exogenous-moving

4Interest rates on 30-year conventional mortgages declined from 9.2% at the beginning of this period to 5.8% at
the end of the period.
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model, the listing rate is constant. Even if the three developments led to an increase in the sales rate

(unlike the increase in the moving rate, the model’s predictions for the sales rate are ambiguous),

the implied increase in the volume of sales would be far too small compared to the large rise seen

in the data. Furthermore, a higher sales rate implies that the stock of houses for sale would fall,

while the data show the opposite. In the endogenous-moving model, all three developments lead to

a higher moving rate, implying a large rise in sales volume together with an increase in the stock of

houses for sale, which are what is observed in the data.

The moving decision also generates new transitional dynamics that are absent from models that

impose exogenous moving. Endogenous moving means that those who choose to move are not a

random sample of the existing distribution of match quality: they are the homeowners who were

only moderately happy with their match quality. Together with the persistence over time of existing

match quality, endogenous moving thus gives rise to a ‘cleansing effect’. An aggregate shock that

changes the moving threshold leads to variation in the degree of cleansing. Since match quality

is a persistent variable, more cleansing now leads to less cleansing in the future, which implies

overshooting in the moving rate and other housing-market variables.

The model is calibrated to address the quantitative effects of the three developments in 1995–

2004 period discussed earlier (lower mortgage rates, the productivity boom, and internet search).

Together they imply (depending on the time horizon) an 18% to 37% rise in the moving rate,

which accounts for a substantial fraction of the rise in the listing rate derived from the NAR data.

Interestingly, this is also consistent with the independent empirical finding by Bachmann and Cooper

(2014) of a 33% rise in the own-to-own moving rate using household-level data from the PSID. The

model can also account for a substantial fraction of the rise in sales volume observed in the data and

the rise in the stock of houses for sale. Both are improvements relative to a model with exogenous

moving.

There is a strand of the literature (starting from Wheaton, 1990, and followed by many others)

that studies frictions in the housing market using a search-and-matching model as done here. See,

for example, Albrecht, Anderson, Smith and Vroman (2007), Anenberg and Bayer (2013), Moen,

Nenov and Sniekers (2014), Caplin and Leahy (2011), Coles and Smith (1998), Dı́az and Jerez

(2013), Head, Lloyd-Ellis and Sun (2014), Krainer (2001), Moen, Nenov and Sniekers (2014), Ngai

and Tenreyro (2014), Novy-Marx (2009), and Piazzesi and Schneider (2009). The key contribution

of this paper to the literature is in studying moving house, which is exogenous in the earlier papers

with the exception of Guren (2014).

An endogenous moving decision is analogous to the endogenous job-separation decision intro-

duced in Mortensen and Pissarides (1994) for labor markets, but there is an important difference in

the nature of the arrival process of new match quality. There, when an existing match is subject to

an idiosyncratic shock, a new match quality is drawn independently of the match quality before the

shock (the stochastic process for match quality is ‘memory-less’). Here, idiosyncratic shocks degrade

match quality, but an initially higher-quality match remains of a higher quality than a lower-quality

match hit by the same shock (match quality is persistent). This difference matters because it turns

out that when match quality is persistent, the moving rate is affected by the transaction threshold as
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well as the moving threshold. More importantly, persistence of match quality makes the modelling

of moving closer to an investment decision that is influenced by a predetermined stock of existing

match quality. This means aggregate moving rates can display high volatility for similar reasons

that capital investment rates do. Endogenous moving is also present in Guren (2014), though the

focus there is on how the existence of a concave demand curve can amplify price insensitivity in

housing market, helping to account for the positive autocorrelation of house-price changes (momen-

tum). Endogenous moving is modelled there by assuming homeowners face idiosyncratic shocks to

the cost of moving from their current houses. Like Mortensen and Pissarides (1994), the moving

decision is effectively ‘memory-less’ (the focus is mainly on how moving decisions react to short-run

expectations of price changes).

The plan of the paper is as follows. First, section 2 substantiates the claim that changes in

the listing rate are the key determinant of housing-market activity. Section 3 presents the model

of endogenous moving, and section 4 solves for the equilibrium analytically. Section 5 studies

developments in the U.S. economy that can rationalize the observed behaviour of the housing market

during the period 1995–2004 using a calibration of the model. Section 6 concludes.

2 The importance of changes in the moving rate

The existing literature on housing markets has focused mainly on the decision processes of buyers

and sellers that lead to sales. This section presents evidence that shows the decision of homeowners

to put their houses up for sale is important not only for understanding the behaviour of listings per

se, but also crucial for understanding sales and overall housing-market activity.

2.1 The basic idea

It is possible to grasp the relative importance of changes in sales and listing rates with some minimal

empirical discipline combined with a basic stock-flow accounting identity.

A stock-flow accounting identity is a natural starting point when thinking about any market

with search frictions:

u̇t = n(1− ut)− sut, [2.1]

where ut is houses for sale as a fraction of the total stock of all houses (u̇t is the derivative of ut

with respect to time t), s is the rate at which houses for sale are sold, and n is the rate at which

homeowners decide to move. Given s and n, steady-state houses for sale (where u̇t = 0) are

u =
n

s+ n
,

and the volume of sales S (as a fraction of the total stock of houses) in the steady state is:

S =
sn

s+ n
. [2.2]
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Convergence to the steady state occurs at rate s + n (this is the coefficient of ut in [2.1]), and

given that houses sell relatively quickly (a few months on average), s is large enough that transitional

dynamics are of limited importance. Therefore, understanding the evolution of the volume of sales

over any period of time longer than a few months is mainly a question of understanding how changes

in s and n affect equation [2.2]. The total derivative of sales volume S is:

dS

S
=

s

s+ n

dn

n
+

n

s+ n

ds

s
.

The relative importance of changes in the moving and sales rates for the volume of sales depends

on the ratio of the sales rate s to the moving rate n.

The average time taken to sell a house is 1/s, and the average time homeowners spend living in

a house is 1/n. The importance of changes in the moving rate relative to changes in the sales rate

in explaining changes in sales volume is therefore related to the ratio of the average time to sell and

the average time spent in a house. The former is a few months and the latter is more than a decade,

suggesting a ratio s/n of around 30. Consequently, huge changes in sales rates would be required to

have any significant lasting effect on sales volume. Intuitively, with no change in the moving rate,

the stock of houses for sale would be rapidly depleted by faster sales, leaving overall sales volume

only very slightly higher. On the other hand, even if the moving rate increased significantly, since

the stock of potential movers is so large relative to the stock of houses for sale (the ratio (1− u)/u

is also s/n), this can have a sustained impact on the number of homeowners who move and thus on

the volume of sales.

The argument is represented graphically in Figure 1. The stock of houses for sale is on the

horizontal axis. There is an upward-sloping line representing the volume of outflows (sales) and a

downward-sloping line representing inflows (listings). The gradients of these lines are the sales and

listing rates, which are inversely related to the average time taken to sell a house, and the average

time an owner lives in a house before putting it up for sale. Since the average time taken to sell a

house is quite short, the point where inflows are equal to outflows and the stock of unsold houses

stabilizes is reached very quickly.

Crucially, with a sales rate approximately 30 times the moving rate, the outflows line is very

steep and the inflows line is very flat (the ratio of the gradients is the ratio s/n). This means that

the effects of any rotation of the outflows line fall largely on the horizontal-axis variable (houses for

sale), rather than on the vertical-axis variable (sales volume). In contrast, a rotation of the inflows

line has a large impact on sales volume. Therefore, any attempt to understand sustained changes

in sales volume will founder without accounting for changes in the moving rate.5

2.2 Empirical evidence

The quantitative importance of the claims above can be seen by using data on house sales and

inventories of unsold houses to construct a measure of new listings (the number of houses put up

5In this analysis, sales volume is relative to the total stock of all houses. Empirically, it will be necessary to
account for changes in the housing stock due to new construction.
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Figure 1: Inflows (listings) and outflows (sales)

Volumes
of sales and

listings

Houses
for sale

Outflows

Inflows

Notes: The inflows and outflows lines are drawn for given inflow and outflow rates. The intersection
where inflows and outflows are equal is where the stock of houses for sale stabilizes.

for sale). Let Nt denote the inflow of houses that come on to the market during month t (new

listings), and let St denote sales (the outflow from the market) during that month. If It denotes the

beginning-of-month t inventory (or end-of-month t− 1) then the stock-flow accounting identity is:

Nt = It+1 − It + St. [2.3]

NAR provides monthly estimates of sales of houses during each month and inventories of houses for

sale at the end of each month for existing homes including single-family homes and condominiums.6

The focus here is on data for single-family homes, which represent 90% of total sales of existing

homes. Monthly data on sales and inventories covering the period from January 1989 to June 2013

are first deseasonalized.7 The data are then converted to quarterly series to smooth out excessive

volatility owing to possible measurement error. Quarterly sales are the sum of the monthly sales

numbers, and quarterly inventories are the level of inventories at the beginning of the first month

of the quarter.

A quarterly listings series Nt is constructed that satisfies the accounting identity [2.3]. Assuming

inflows Nt and outflows St both occur uniformly within a time period, the average number of houses

Ut available for sale during quarter t is equal to:

Ut = It +
Nt

2
− St

2
=
It + It+1

2
. [2.4]

Since the time series for inventories It is quite persistent, the measure Ut of the number of houses for

6The methodology and recent data are available at http://www.realtor.org/research-and-statistics/

housing-statistics. The NAR data on inventories and sales are for existing homes, so newly constructed houses
are excluded.

7Multiplicative monthly components are removed from the data.
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sale turns out to be highly correlated with inventories (the correlation coefficient is equal to 0.99).

Using the constructed series Ut for houses for sale, the sales rate is st = St/Ut.
8

The listing rate is defined as the ratio of new listings Nt to the total stock of houses not already

for sale. There is no comparable monthly or quarterly series for the total housing stock during the

period covered by the sales and inventory data. The listing rate is calculated using a measure K of

the average housing stock, that is, nt = Nt/(K − Ut).9 The quantitative analysis later in the paper

will make a correction for estimated changes in the housing stock over time.

Figure 2 plots sales, listings, the sales rate, the listing rate, and houses for sale as differences in

log points relative to the first quarter of 1989. The housing-market crash of 2007 has been the focus

of much commentary, but Figure 2 reveals that the decade 1995–2004 was also a time of dramatic

change. That period was characterized by a high level of housing-market activity: houses were

selling faster, more houses were sold, and at the same time, more houses were put up for sale. The

volume of sales rose by 51%, while the sales rate increased by only 22%. Despite the rise in the

sales rate, the stock of houses for sale did not fall, and in fact increased by 29%. The time series

of listings plays a key role in reconciling the behaviour of sales, the sales rate, and houses for sale.

During the 1995–2004 period, the volume of listings rose by 54% (the listing rate increased by 55%).

Not only were houses selling faster (the rise in the sales rate), but at the same time homeowners

decided to move more frequently. This increase in listings generated a rise in the stock of houses for

sale, which also boosted sales volumes.

As is well known, there was a boom in construction during the period in question with the

stock of single-family homes increasing by an estimated 20%.10 While the NAR data on sales and

inventories do not directly include newly constructed houses, a rise in the total stock of houses will

over time lead to changes in market activity for existing homes. If the sales and listing rates were

unchanged, increases in the housing stock would be expected to increase the volumes of sales and

listings, and the stock of houses for sale by the same proportion. Thus, net of new construction

over the 1995–2004 period, sales volume rose by 31%, the volume of listings increased by 34%, and

the stock of houses for sale by 9%. There remains a substantial rise in sales volume even after

accounting for the effects of new construction.

A simple counterfactual exercise can be used to quantify the importance of the listing rate

in understanding changes in housing-market activity. Note that equations [2.3] and [2.4] and the

definitions of the sales and listing rates imply the following identity:

It+1 =

(
1− st+nt

2

)
It + ntK

1 + st+nt
2

. [2.5]

8The average time taken to a sell a house is the reciprocal of the sales rate. Time-to-sell is highly correlated with
the ‘months supply’ variable reported by NAR, which is defined as inventories divided by sales. Mean time-to-sell is
6.7 months, compared to 6.5 for ‘months supply’.

9The housing stock is the stock of single-family homes excluding those occupied by renters according to the
American Housing Survey. More precisely, it is the sum of ‘owner occupied’ and ‘vacant for sale’ in Table 1A–1. The
main effect of the value of K is on the average value of the listing rate. The expected time a homeowner will live in a
newly purchased house is the reciprocal of the average listing rate, which is approximately 14.4 years. This is similar
to direct estimates of the average time spent in a house from the American Housing Survey.

10The measurement of the housing stock is described in footnote 9.
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Figure 2: Housing market activity

Notes: Series are logarithmic differences from the initial data point. Monthly data (January 1989–
June 2013), seasonally adjusted, converted to quarterly series. Definitions are given in section 2.2.
Source: National Association of Realtors

Two counterfactuals are considered using this identity. The first holds the listing rate constant at its

sample average (nt = n̄) while st varies as in the data, and the second holds the sales rate constant

at its sample average (st = s̄) while nt varies as in the data. Equation [2.5] is used to construct a

hypothetical inventories series It given the sales and listing rates st and nt (starting from the initial

inventories given in the data). With this series, houses for sale Ut can be calculated using [2.4], which

yields a counterfactual series for sales volume using St = stUt. The log differences of the actual

sales volume series and the two counterfactuals are shown in Figure 3. The constant listing-rate

counterfactual is largely unrelated to the actual sales volume series (the correlation coefficient is

0.11). On the other hand, the counterfactual that completely ignores all variation in the sales rate

is still able to reproduce most of the variation seen in the actual sales volume series (the correlation

coefficient is 0.89).

The reason for the failure of the constant listing-rate counterfactual to generate a sales volume

series at all close to the actual data can be understood using the logic set out in section 2.1 above.

Given that convergence to the steady state in equation [2.2] occurs within a few months, the evolution

of sales volume over time can be understood through the lens of the following equation:

S∗t =
stnt
st + nt

, [2.6]
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Figure 3: Actual sales volume and two counterfactual sales volumes

Notes: The calculation of the two counterfactual sales volume series is described in section 2.2. The
series are plotted as log differences relative to the initial value of actual sales volume.

where st and nt are the empirical sales and listing rates. The variable S∗t is what the steady-

state sales volume would be at each point in time given the (time-varying) sales and listing rates.

The correlation between S∗t and actual sales volume St is quite high (the correlation coefficient is

0.88), which is not surprising given that convergence to the steady state is fast. To see the relative

importance of the sales and listing rates, consider what [2.6] would be if each of the two rates were

held constant at its sample average:

S∗s,t =
stn̄

st + n̄
, and S∗n,t =

s̄nt
s̄+ nt

,

where s̄ and n̄ are the average sales and listing rates. The time series of S∗t , S
∗
s,t, and S∗n,t are plotted

in Figure 4 below as log differences. It is striking, yet consistent with the basic idea set out above,

that even large changes in the sales rate account for almost none of the large variation over time in

the volume of sales (abstracting from short-lived transitional dynamics).

This section has shown that understanding changes in listings can be important not only for its

own sake but also for understanding other important housing-market variables such as sales volume.

The next section builds a tractable model with both endogenous listings and sales.
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Figure 4: Decomposition of steady-state sales volume

Notes: The construction of these series is described in section 2.2. The series are reported as log
differences relative to their initial values.

3 A model of investment in housing match quality

This section presents a search-and-matching model of the housing market that studies both the

decision of when to move for an existing homeowner, and the buying and selling decisions of those

in the market to buy a new house or sell their current house. The model focuses on the market for

existing houses.11

3.1 Match quality

The mere existence of an inventory of houses for sale together with a group of potential buyers

indicates the presence of search frictions in the housing market. There are broadly two kinds of

search frictions: the difficulty of buyers and sellers meeting each other, and the difficulty for buyers

of knowing which properties would be a good match prior to viewing them. The first friction is

usually modelled using a meeting function.12 The second friction relates to the number of properties

that buyers would need to view before an ideal property is found. The ideal property is not easily

determined simply by knowing objective features such as the number of bedrooms. What is meant

11It abstracts from new entry of houses from either new construction or previously rented houses, and abstracts
from the entry of first-time buyers to the market.

12The term ‘matching function’ is not used here because not all viewings will lead to matches.
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by ideal is a good match between the idiosyncratic preferences of the buyer and the idiosyncratic

characteristics of the house for sale. This type of search friction can be modelled as a stochastic

match-specific quality that only becomes known to a buyer when a house is actually viewed. The

first friction can then be seen as an initial step in locating houses for sale that meet a given set of

objective criteria such as size, and the second friction can be seen as the time needed to view the

houses and judge the match quality between the buyer and the house.

A measure of the importance of the second friction is the average number of viewings needed

before a house can be sold (or equivalently, before a buyer can make a purchase), referred to here

as viewings-per-transaction. Genesove and Han (2012) report data on the number of homes visited

using the ‘Profile of Buyers and Sellers’ surveys from the National Association of Realtors (NAR)

in the U.S. for various years from 1989 to 2007. In the UK, monthly data on time-to-sell and

viewings-per-sale are available from the Hometrack ‘National Housing Survey’ from June 2001 to

July 2013.13 The data are shown in Figure 5.14 Viewings-per-transaction are far greater than one,

indicating that there is substantial uncertainty about match quality prior to a viewing. The figure

illustrates that variation in time-to-sell is associated with movements in viewings-per-transaction in

the same direction, and is not simply due to variation in the time taken to meet buyers, in other

words, a meeting function alone is not sufficient.

The existence of multiple viewings per sale indicates that the quality of the match with a particu-

lar house varies among potential buyers. Given an initial level of match quality when a buyer moves

in, and the plausible assumption of some persistence over time in match quality, it is natural to

think that moving is not simply exogenous: there is a comparison of what homeowners already have

to what they might hope to gain. An innovation of this paper is to model homeowners’ decisions to

put their house up for sale, which is absent from the earlier literature.

3.2 Houses

There is an economy with a unit continuum of families and a unit continuum of houses. Each house

is owned by one family (though families can in principle own multiple houses). Each house is either

occupied by its owning family and yields a stream of utility flow values, or is for sale on the market

while the family searches for a buyer.15 A family can occupy at most one house at any time. If all a

family’s houses are on the market for sale, the family is in the market searching for a house to buy

and occupy.

It is implicit in the model that families moving house might temporarily use the rental market in

between selling and buying. However, there is no explicit modelling of the rental market: effectively,

13Hometrack data are based on a monthly survey starting in 2000. The survey is sent to estate agents and surveyors
every month. It covers all postcodes of England and Wales, with a minimum of two returns per postcode. The results
are aggregated over postcodes weighted by the housing stock.

14Correctly measured, both homes visited and viewings-per-sale are equal to viewings-per-transaction. However,
if houses are listed with multiple realtors then viewings-per-sale might underestimate the number of viewings per
transaction.

15The model abstracts from the possibility that those trying to sell will withdraw from the market without com-
pleting a sale.
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Figure 5: Viewings per transaction and time to sell

Notes: Left panels, U.S. data, annual frequency (years in sample: 1989, 1991, 1993, 1995, 2001,
and 2003–2007); Right panels, U.K. data, monthly frequency (June 2001–July 2013). Time-to-sell is
measured in weeks.
Source: U.S. data, Genesove and Han (2012); U.K. data, Hometrack (www.hometrack.co.uk).

this is treated as a distinct segment of the housing market. This view is consistent with Glaeser and

Gyourko (2007) who argue that there is little evidence in support of significant arbitrage between the

rental and owner-occupied segments of the housing market because owner-occupied homes typically

have different characteristics from rental units, as is also the case for homeowners themselves in

comparison to renters. More recently, Bachmann and Cooper (2014) calculate gross flows across

and within the owner and renter categories using PSID data. They conclude that rental and owner-

occupied markets are distinct segments owing to the dominance of moves within the same tenure

category. Moreover, between 1970 and 2009, they find that most house sales are associated with

own-to-own moves, rather than own-to-rent moves (the former is 2.3 times the latter), suggesting

the majority of owners selling their houses are buying another house.16

16Using a different data source (AHS data from 2001), Wheaton and Lee (2009) find 42.6% of house purchases are
by existing homeowners, as opposed to renters and newly formed households. To reconcile this with the conclusion
drawn from Bachmann and Cooper’s (2014) facts that the majority of owners selling their houses are buying another
house, note the following observations. First, using Wheaton and Lee’s (2009) data, 57.1% of listings of existing
houses occur through own-to-own transitions, rather than through own-to-rent or owner exit. Second, some own-to-
rent and rent-to-own transitions may be extremely short lived as part of what is effectively an own-to-own move, for
example, someone who lives temporarily in a rented home while a newly purchased home is under refurbishment.
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3.3 Behaviour of homeowners

To understand the decision to move, the key variable for homeowners is their match quality ε, which

will be compared to owners’ outside option of search. Match quality is the idiosyncratic utility flow

value of an occupied house. This is match specific in that it is particular to both the house and the

family occupying it. A homeowner with match quality ε receives a utility flow value of εξ over time

while the house is occupied, where ξ is a variable representing the exogenous economy-wide level of

housing demand. Homeowners also incur a flow maintenance cost M irrespective of whether houses

are occupied or on the market for sale. The variable ξ is common to all homeowners, whereas ε is

match specific. Moving decisions will lead to an endogenous distribution of match quality across

homeowners.

Match quality ε is a persistent variable. However, families are sometimes subject to idiosyncratic

shocks that degrade match quality. These shocks can be thought of as life events that make a house

less well suited to the family’s current circumstances. The arrival of these shocks follows a Poisson

process with arrival rate a (time is continuous). If a shock occurs, match quality ε is scaled down

from ε to δε, where δ is a parameter that determines the size of the shock (δ < 1). If no shock occurs,

match quality remains unchanged. Following the arrival of an idiosyncratic shock, a homeowner can

decide whether or not to move. Those who move become both a buyer and a seller simultaneously.

Those who do not experience an idiosyncratic shock face a cost D if they decide to move.17 For

tractability, the model is set up so that a homeowner will always choose not to move in the absence

of an idiosyncratic shock (formally, this is done by assuming the limiting case of D →∞).18

The decision of whether to move or not depends on all relevant variables including homeowners’

own idiosyncratic match quality, and current and expected future conditions in the housing market.

The value function for a homeowner occupying a house with match quality ε at time t (after a

decision not to move has been made) is denoted by Ht(ε). The derivative of the value function with

respect to time is denoted by Ḣt(ε). The Bellman equation for Ht(ε) is

rHt(ε) = εξ −M + a (max {Ht(δε),Wt} −Ht(ε)) + Ḣt(ε), [3.1]

where r is the discount rate, and Wt is the sum of the values of being a buyer and owning a house for

sale. The value function Ht(ε) is increasing in ε. Thus, when a shock to match quality is received,

the homeowner decides to move if match quality ε is now below a ‘moving threshold’ xt defined by:

Ht(xt) = Wt. [3.2]

This equates the value of a marginal homeowner to the outside option of selling an existing house

17This cost represents the ‘inertia’ of families to remain in the same house, which is in line with empirical evidence.
According to the American Housing Survey and the Survey of English Housing, common reasons for moving include
being closer to schools, closer to jobs, or because of marriage or divorce.

18The assumption of a positive D for those who do not receive idiosyncratic shocks has no consequences for the
analysis of the steady state of the model. Furthermore, even in the analysis of the model’s dynamics, if aggregate
shocks are small in relation to the size of transaction costs then the assumption of a positive D has no consequences
for those homeowners who have not yet received an idiosyncratic shock.
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and searching for a new one. The values of being a buyer and a seller are now characterized.

3.4 Search behaviour

The housing market is subject to two types of search frictions. First, it is time-consuming for buyers

and sellers to arrange viewings of houses. Let ut denote the measure of houses available for sale and

bt the measure of buyers. At any instant, each buyer and each house can have at most one viewing.

The arrival rate of viewings is determined by the meeting function V(ut, bt). For houses, viewings

have Poisson arrival rate V(ut, bt)/ut. For buyers, the corresponding arrival rate is V(ut, bt)/bt.

During this process of search, buyers incur flow search costs F (and homeowners continue to incur

maintenance costs M). The meeting function V(ut, bt) is assumed to have constant returns to scale.

Given the unit measure of houses, there are 1−ut houses that are matched in the sense of being

occupied by a family. As there is also a unit measure of families, there must be ut families not

matched with a house, and thus in the market to buy. This means the measures of buyers and

sellers are the same (bt = ut). The arrival rates of viewings for buyers and sellers are then both

equal to the constant v = V(ut, ut)/ut. This arrival rate summarizes all that needs to be known

about the frictions in locating houses to view.19

The second aspect of the search frictions is heterogeneity in buyer tastes and the extent to which

any given house will conform to these. As a result of this friction, not all viewings will actually

lead to matches.20 When a viewing takes place, match quality ε is realized from a distribution with

cumulative distribution function G(ε). For analytical tractability, new match quality is assumed to

be drawn from a Pareto distribution (with minimum value 1 and shape parameter λ):

G(ε) = 1− ε−λ. [3.3]

When a viewing occurs, the value of ε that is drawn becomes common knowledge among the

buyer and the seller. The value to a family of occupying a house with match quality ε is Ht(ε).

By purchasing and occupying this house, the buyer loses the option of continuing to search, with

the value of being a buyer denoted by Bt. If the seller agrees to an offer to buy, the gain is the

transaction price, and the loss is the option value of continuing to search, with the value of owning

a house for sale denoted by Ut (‘unsatisfied owner’). Finally, the buyer and seller face a combined

transaction cost C. The total surplus resulting from a transaction with match quality ε at time t is

given by

Σt(ε) = Ht(ε)−Wt − C, [3.4]

19There is no role for ‘market tightness’ (b/u) here. This is not too much of a concern at low frequencies, in
particular for the stylized facts over the period 1995–2004 discussed earlier. Limited data on time-to-buy from
Genesove and Han (2012) show that there is a strong positive correlation at annual frequencies between time-to-buy
and time-to-sell (years in sample: 1987, 1989, 1991, 1993, 1995, 2001, 2003–2007), suggesting market tightness cannot
be the dominant factor during that period. If it were, time-to-buy and time-to-sell would be negatively correlated.

20The two search frictions are also present in the labour-market model of Pissarides (1985), who combines the
meeting function with match quality, where the latter is the focus of Jovanovic (1979). Both frictions also feature in
Novy-Marx (2009).
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where Wt = Bt +Ut is the combined buyer and seller value function. Given that Ht(ε) is increasing

in ε, purchases will occur if match quality ε is no lower than a threshold yt, defined by Σt(yt) = 0.

This is the ‘transaction threshold’. Intuitively, given that ε is observable to both buyer and seller,

and the surplus is transferable between the two, the transactions that occur are those with positive

surplus.21 The transactions threshold yt satisfies the following equation:

Ht(yt) = Wt + C. [3.5]

The combined value Wt satisfies the Bellman equation:

rWt = −F −M + v

∫
yt

(Ht(ε)−Wt − C) dG(ε) + Ẇt. [3.6]

Intuitively, the first term captures the flow costs of being a buyer and a seller, while the second term

is the combined expected surplus from searching for a house and searching for a buyer.

3.5 Price determination

While the equations [3.5] and [3.6] for the transactions threshold yt and the value function Wt do not

depend on the specific price-setting mechanism, this section briefly discusses price determination

under Nash bargaining.

Suppose the seller has bargaining power ω. The buyer and the seller directly bear transaction

costs Cb and Cv (with Cb + Cv = C). The individual value functions of buyers and sellers are Bt

and Ut respectively. If a house with match quality ε is sold at a price pt(ε), the surpluses of the

buyer and seller are:

Σb,t(ε) = Ht(ε)− pt(ε)− Cb −Bt, and Σu,t(ε) = pt(ε)− Cv − Ut, [3.7]

where Σb,t(ε) + Σu,t(ε) = Σt(ε) is the total surplus given in [3.4]. The Bellman equations for the

buyer and seller value functions are:

rBt = −F + v

∫
yt

Σb,t(ε)dG(ε) + Ḃt, and rUt = −M + v

∫
yt

Σu,t(ε)dG(ε) + U̇t. [3.8]

The Nash bargaining solution implies the surplus-splitting equation (1 − ω)Σu,t(ε) = ωΣb,t(ε),

which determines the transaction price pt(ε). As shown in appendix A.2, the average transactions

price Pt is

Pt =
ω

1−G(yt)

∫
yt

Ht(ε)dG(ε) + (1− ω)Cv − ωCb +
ωF − (1− ω)M

r
. [3.9]

The ratio of the seller’s transaction cost Cv to the total transaction cost C is subsequently denoted

21Some extra assumptions are implicit in this claim, namely that there is no memory of past actions, so refusing
an offer yields no benefit in terms of future reputation.
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by κ, and the model will be parameterized in terms of C and κ rather than Cb and Cv.

3.6 Stocks and flows

Let nt denote the rate at which the stock 1−ut of houses occupied by their owners are listed (put up

for sale), and let st denote the rate at which the stock ut of houses for sale are sold. The accounting

identity that connects stocks and flows is

u̇t = nt(1− ut)− stut. [3.10]

The listing (inflow) and sales (outflow) rates nt and st are endogenously determined by the moving

decisions of individual homeowners and the transactions decisions of individual buyers and sellers.

Given that sales occur when the match quality ε from a viewing exceeds the transactions threshold

yt, and using the Pareto distribution of new match quality [3.3], the sales rate st is:

st = vπt, with πt = y−λt , [3.11]

where πt is the proportion of viewings for which match quality is above the transactions threshold yt.

This term captures the second search friction due to buyers’ idiosyncratic tastes. The first friction

is captured by the viewing rate v.

The moving rate nt is derived from the distribution of existing match quality among homeowners

together with the moving threshold xt. The evolution over time of the distribution of match quality

depends on the idiosyncratic shocks and moving decisions. The derivation of the moving rate is

much more complicated than the sales rate. Surviving matches differ along two dimensions: (i) the

duration of time since the match formed, and (ii) the number of shocks received since the match

formed. By using the Pareto distribution assumption [3.3] for new match quality, the following

moving rate nt is derived in appendix A.3:

nt = a− aδλx−λt v

1− ut

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)uτdτ. [3.12]

This equation demonstrates that given the moving threshold xt, the moving rate nt displays history

dependence. The reason is the persistence in the distribution of match quality among existing

homeowners.

The tractability that results from the Pareto distribution assumption comes from the property

that a truncated Pareto distribution is also a Pareto distribution with the original shape parameter.

Together with the nature of the idiosyncratic shock process, this is what allows the explicit expression

[3.12] to be derived. This property of the truncated Pareto distribution is also useful in calculating

the expected surplus from searching for a new house taking into account future moving decisions.

This is because matches receiving idiosyncratic shocks will survive only if δε > x, so the calculation

involves only an integral starting from x/δ. This integral can be easily obtained with the Pareto

distribution (ε, λ) because its probability density function is only a function of ε/ε.
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4 The equilibrium of the model

The equilibrium of the model is derived in two stages. First, moving and transaction thresholds x

and y are obtained. The moving threshold x determines the moving rate n, and the transactions

threshold y determines the sales rate s. These then determine the volumes of sales and listings,

and thus the stock of houses for sale. Throughout, the focus is on the case of perfect foresight with

respect to the parameters of the model (no changes in these parameters are anticipated).

4.1 The moving and transactions thresholds

The analysis assumes a case where the idiosyncratic shock is large enough to induce a homeowner

with match quality y (a marginal homebuyer) to move, that is, δy < x. This is true when the

parameters of the model satisfy the condition in equation [4.8] below.

When δy < x, it follows from the homeowner’s value function [3.1] that the value for a marginal

homebuyer satisfies:

(r + a)H(y) = ξy + aW. [4.1]

Using equation [3.1] again, the value for a marginal homeowner (in the sense of being indifferent

between remaining a homeowner or moving) satisfies:

(r + a)H(x) = ξx+ aW. [4.2]

These two values are related as follows using the definitions of the moving and transactions thresholds

in [3.2] and [3.5]:

H(y) = H(x) + C. [4.3]

Equations [4.1]–[4.3] together imply that:

y − x =
(r + a)C

ξ
, [4.4]

which is the first equilibrium condition linking the moving and transaction thresholds x and y.

A second equation linking x and y is obtained by deriving the combined buyer-seller value W

as a function of the moving and transactions thresholds. First, from the definition of the moving

threshold x, equations [3.2] and [4.2] together imply that:

H(x) = W =
xξ

r
. [4.5]

Second, the value W can be obtained directly from the flow value equation [3.6] by computing the

surplus from a match. The expected surplus from a new match is shown to be the following in
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appendix A.1:

∫
y

(H(ε)−W − C)dG(ε) =
ξ
(
y1−λ + aδλ

r+a(1−δλ)x
1−λ
)

(r + a)(λ− 1)
. [4.6]

Allowing for moving decisions means that the expected surplus of a new match depends not only

on the transactions threshold y but also on the moving threshold x. Combining this equation with

[3.6] and [4.5] yields the second equilibrium condition linking x and y:

x =
v
(
y1−λ + aδλ

r+a(1−δλ)x
1−λ
)

(r + a)(λ− 1)
− F

ξ
. [4.7]

Together, equations [4.4] and [4.7] can be jointly solved for x and y without reference to state

variables such as the number of houses for sale or the distribution of existing match quality. Figure 6

depicts the determination of the moving and transaction thresholds as the intersection between

an upward-sloping equation [4.4] and a downward-sloping equation [4.7]. Intuitively, the upward-

sloping line ties the value of a marginal homebuyer to that of a marginal homeowner together with

the transaction cost (which is sunk for someone who has decided to become a buyer, but not for

an existing homeowner who can choose to stay). This line is referred to as the ‘homebuyer’ curve.

The downward-sloping curve ties the value of the marginal homeowner to the expected value of

becoming a buyer. This line is referred to as the ‘homeowner’ curve.

Figure 6: Determination of the moving (x) and transactions (y) thresholds

Transactions
threshold (y)

Moving
threshold (x)

Homeowner

Homebuyer

Notes: The homebuyer and homeowner curves represent equations [4.4] and [4.7] respectively.

In (x, y) space, these two curves pin down the equilibrium values of x and y. So if an equilibrium

exists, it must be unique. It is shown in appendix A.1 that an equilibrium satisfying the conditions
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y > 1 and δy < x exists if and only if:

max

{
1,

(r + a)C

(1− δ)ξ

}1−λ

+
aδλ

r + a(1− δλ)

(
max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ

)1−λ

− (λ− 1)(r + a)

v

(
max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ
+
F

ξ

)
> 0. [4.8]

4.2 Steady state

Taking as given the moving and transaction thresholds x and y, there exists a unique steady state

for all stocks and flows. This steady state naturally has u̇t = 0, but also the distribution of existing

match quality must have converged to its ergodic limit, which in practice requires that both ut and

nt are constant over time.

First, the transaction threshold y directly pins down the sales rate s using equation [3.11]:

s = vy−λ. [4.9]

The steady-state moving rate can be derived from [3.10] and [3.12] using u̇t = 0 and ṅt = 0:

n =
a

1 + δλ

1−δλ
(
y
x

)λ . [4.10]

Note that the term in the denominator can be expressed as

1 +
δλ

1− δλ
(y
x

)λ
= 1 +

(
δy

x

)λ
+

(
δ2y

x

)λ
+ . . . , [4.11]

which is equal to the sum of the conditional survival probabilities (starting from ε > y) after receiving

k shocks, summing over k = 0, 1, 2, . . .. When no shocks have been received, the match is of quality

y > x, so the survival probability is 1. After k ≥ 1 shocks, the conditional survival probability is

(δky/x)λ.

Given the steady-state sales and moving rates s and n, the steady-state for houses for sale follows

immediately from [3.10]:

u =
n

s+ n
. [4.12]

4.3 Transitional dynamics

Following a change in the moving and/or transaction thresholds, the housing market will begin a

process of convergence to the new steady state for the volume of transactions, the moving rate, and

the stock of houses for sale. There are two facets of these transitional dynamics. First, there is the

convergence in the stock of houses for sale given the inflow and outflow rates, which is a common

feature of most search models. Second, endogenous moving together with persistence in existing

match quality gives rise to a novel source of transitional dynamics as the distribution of existing
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match quality converges to its ergodic limit.

First, abstracting from any transitions in the match-quality distribution, if the moving threshold

is constant, then the moving rate will also be constant. Given constant sales and moving rates s

and n, the dynamics of houses for sale can be described as follows from the law of motion [3.10] and

the steady-state equation [4.12]:

u̇t = −(s+ n)(ut − u). [4.13]

The gap between ut and u is closed over time at rate s + n. Since time-to-sell (the reciprocal

of s) is fairly short on average (a few months), the speed of convergence to the steady state is

sufficiently rapid that these dynamics are of limited interest (as is also the case for unemployment

in the labour-market analogue of this model).

The second source of transitional dynamics can be isolated using the following method. Denote

by u∗t the hypothetical level of houses for sale if the first source of transitional dynamics is ignored:

u∗t =
n∗t

st + n∗t
,

where n∗t is the moving rate implied by [3.12] when ut = u∗t . Associated with u∗t and n∗t is the volume

of sales and listings S∗t = N∗t = su∗t = n∗t (1− u∗t ). It is shown in appendix A.5 that the transitional

dynamics of these variables are given by:

Ṡ∗t
S∗t − S

=
Ṅ∗t

N∗t −N
=

u̇∗t
u∗t − u

= −a(1− δλ)
(a
n

)(s+ n

s+ a

)
, and

ṅ∗t
n∗t − n

= −a(1− δλ)
(a
n

)(s+ n∗t
s+ a

)
.

Even ignoring the inflow-outflow dynamics in houses for sale, the housing market would still not reach

its steady state immediately. The equation above shows that S∗t , N
∗
t , and u∗t converge monotonically

to the steady state at a common rate. For n∗t , the differential equation is not linear, but qualitatively,

the pattern of convergence is the same as the other variables. Quantitatively, the rate of convergence

is largely determined by a, and also the ratio of a/n (since s is large relative to a and n, the final

term in parentheses is close to one). Since moving is infrequent (homeowners live in their houses for

more than a decade on average), the arrival rate a of the idiosyncratic shock cannot be too large,

and therefore convergence in the match quality distribution is relatively slow.

4.4 Exogenous moving model

The general model embeds an exogenous moving model as a special case when δ = 0. In this case

any homeowner will move house after an idiosyncratic shock because match quality will drop to

zero. Thus the listing rate is the same as the exogenous arrival rate of the idiosyncratic shock a.

By substituting [4.4] into [4.7] and setting δ = 0, the transaction threshold y is the solution of the
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equation:

vy1−λ

(r + a)(λ− 1)
=

(
y +

F − (r + a)C

ξ

)
, [4.14]

where the first term is the expected surplus of a new match when future moving occurs at an

exogenous rate a. This changes the effective discount rate to a+ r, which is applied to the expected

flow surplus vy1−λ/(λ−1) from a new match. The inflow rate n is now simply a, whereas the outflow

rate s is the same as in [4.9].

4.5 The importance of transaction costs

In the special case of zero transactions costs, the model has the surprising feature that its steady-

state equilibrium is isomorphic to the exogenous moving model with the parameter a redefined as

a(1 − δλ). The logic behind this is that equation [4.4] implies y = x when C = 0. From [4.10],

this means that n = a(1 − δλ), so the moving rate is independent of the equilibrium moving and

transactions thresholds. Hence only those parameters directly related to the shocks received by

homeowners affect the moving rate. The equilibrium value of y is then determined by replacing x

by y in [4.7] and simplifying to:

vy1−λ

(r + a(1− δλ))(λ− 1)
= y +

F

ξ

This equation is identical to [4.14] for the exogenous moving model with a(1 − δλ) replaced by a.

Therefore, all steady-state predictions of the two models would be the same if C = 0.

5 The boom in housing-market activity: 1995–2004

During the decade 1995–2004 the housing market underwent a period of booming activity, with

houses selling faster, more houses for sale, and increasing volumes of sales and listings.22 As shown

earlier in Figure 2 and Figure 3, there are two interesting stylized facts that emerge during this

decade: (i) there is a large increase in sales volume, but the rise in the sales rate can only explain

a tiny fraction of it; and (ii) the stock of houses for sale rose in spite of the rise in the sales rate.

There are three features of the economic environment during this decade that have an impact on

moving decisions so as to generate changes in housing-market activity consistent with these stylized

facts. These are the fall in mortgage rates, the increase in productivity growth, and the adoption

of internet technology. Lower mortgage rates reduce the opportunity cost of capital and thus lower

the discount rate r in the model. An increase in productivity growth raises incomes and increases

the demand for housing ξ. Finally, the adoption of internet technology reduces search frictions in

making viewings by distributing information about available houses and their general characteristics

22There was of course a boom in house prices, typically dated as beginning and ending two or three years later
than the period under consideration here.
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more widely among potential buyers. This raises the meeting rate v implied by the meeting function.

It was explained in section 4.4 how the exogenous moving model can be interpreted as a special

case of the general model when the idiosyncratic shock is extremely large, that is, when δ tends to

zero. The exogenous-moving model generates a rise in sales volume only if there is a rise in the

sales rate. As shown in Figure 7, this is equivalent to a rotation anti-clockwise of the outflows line.

It is obvious from [4.14] that there is a range of parameters such that the transactions threshold y

decreases (sales rate increases) when r decreases, or ξ or v increases. Thus the exogenous-moving

model can potentially generate an increase in the sales rate and an increase in sales volume. However,

given that the outflow line is very steep (owing to the short time taken to sell) and the inflow line

is very flat (owing to the long average time between moves for homeowners), the effect of the rise in

the sales rate falls almost completely on the stock of houses for sale (decreasing u) rather than on

sales volume (increasing S). Therefore, the exogenous moving model fails to account for both the

substantial rise in sales volume and the rise in the stock of houses for sale.

Figure 7: Exogenous moving versus endogenous moving
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In Figure 7, the difference when homeowners can choose whether to move is that the inflows line

is no longer fixed. Using Figure 6, which depicts equations [4.4] and [4.7], both a fall in r and a rise

in ξ imply the two curves shift to the right (this is shown in the left panel of Figure 8), while a rise

in v implies the curve representing [4.7] shifts to the right (as shown in the right panel of Figure 8).

In all cases, the moving threshold x increases, and increases proportionately more than y. Then

using [4.10], a rise in x/y leads to an increase in the moving rate n, thus the inflows line rotates

clockwise in Figure 7. Given that the outflows line is relatively steep, this leads to a large increase

in sales volume. It also acts as an opposing force to the fall in the stock of houses for sale caused

by the rise in the sales rate.

The intuition for the effects on the moving threshold is the following. Take the case of a reduction

in r. This increases the present discounted value of flows of housing services, so it increases the

incentive to invest in match quality, reducing the tolerance for low current match quality (higher

moving threshold x), resulting in more frequent moves. However, there are two offsetting effects on
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transactions decisions. On the one hand, buyers are more keen to make a purchase to receive the

higher discounted sum of flow values, so they become less picky (lower transaction threshold y). On

the other hand, owing to the reduced tolerance for low quality matches as a homeowner, the expected

duration of a match is shortened, which goes against the interest-rate effect and makes buyers more

picky (higher y). The intuition is essentially the same for the effects of higher housing demand ξ. In

the case of the higher viewing rate v, the effect is to increase the expected surplus from searching.

This increases the incentive to search both for existing homeowners and homebuyers, making both

more picky (higher moving and transaction thresholds x and y).

Figure 8: Comparative statics of moving and transaction thresholds
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Notice that the effect on the sales rate, and thus on the outflows line, depends on parameters

in both versions of the model. But the endogenous-moving model clearly predicts an increase in

the moving rate, thus the inflows line rotates clockwise. This alone generates an increase in sales

volume and an increase in the stock of house for sale, as observed in the data. Hence, independently

of what happens to the sales rate, the endogenous-moving model improves on the exogenous-moving

model for both stylized facts owing to its prediction of an increasing moving rate.

Quantifying the predictions of the model discussed above requires a calibration of the model’s

parameters. This is the goal of the next section.

5.1 Calibration

The model contains a total of 11 parameters {a, δ, λ, v, C, F,M, ω, κ, r, ξ}. Some parameters can be

directly matched to the data, while others can be determined indirectly by choosing values that make

the predictions of the model consistent with some empirical targets. Finally, for some parameters,

reasonable values are directly imposed.

Starting with the parameters that have values directly imposed, the (annual) discount rate r is

set to 7% (r = 0.07).23 Buyers and sellers are assumed to have equal bargaining power (ω = 0.5).

23This is close to the 6.9% 30-year real mortgage rate in 1995 (9.2% nominal, 2.3% PCE inflation).
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The parameters C, F , M , and κ are calibrated to match the costs of owning a house and the

costs involved in buying and selling houses, and how those costs are distributed across buyers and

sellers. Let c = C/P , f = F/P , and m = M/P denote the costs C, F , and M relative to the average

house price P in the steady state of the model. The data provide information on costs relative to

price, so calibration targets for c, f , and m are adopted that will determine C, F , and M indirectly.

As shown in appendix A.4, the cost-to-price ratios predicted by the model are:

c =

C
ξ

κC
ξ
− M

rξ
+ ω

(
1
r

+ yλ

v

)(
x+ F

ξ

) ; [5.1a]

f =

F
ξ

κC
ξ
− M

rξ
+ ω

(
1
r

+ yλ

v

)(
x+ F

ξ

) ; [5.1b]

m =

M
ξ

κC
ξ
− M

rξ
+ ω

(
1
r

+ yλ

v

)(
x+ F

ξ

) . [5.1c]

Observe that C, F , and M appear only as ratios to ξ, so the value of ξ can be normalized to 1.

Following Poterba (1991), the flow cost M of owning a house is set so that in equilibrium it is

4.5% of the average house price (m = 0.045). This cost is made up of a 2.5% maintenance cost

and a 2% property tax. The maintenance cost is interpreted as the cost required perpetually to

maintain a house in the same physical condition as when it was first purchased. The value of 2.5%

from Poterba (1991) is used a benchmark for this maintenance cost.

The costs incurred in buying and selling houses comprise the one-off transactions cost C and

the flow costs of search F . For transaction costs, Quigley (2002) estimates the total costs as being

in the range 6–12% of price in the U.S., with about 3–6% being the realtor’s fee paid by the seller.

Ghent (2012) summarizes recent research and uses a total transaction cost of 13.1%, where 5.1% is

the realtor’s fee borne by the seller. In light of these findings, the total transaction cost C is set so

that it is 10% of the price (c = 0.1), and the share κ of these costs borne by the seller is set to be

1/3.

For the flow cost parameter F , unfortunately there are almost no estimates of the flow costs

of moving home.24 The approach taken here is to base an estimate of F on the opportunity cost

of the time spent searching. Assuming one house viewing entails the loss of a day’s income, the

value of F can be calibrated by adding up the costs of making the expected number of viewings.

In the model, time-to-buy is equal to time-to-sell, so buyers will incur search costs TsF per housing

transaction on average, where Ts denotes time-to-sell. With viewings-per-sale equal to the average

number of viewings made by a buyer, the total search cost should be equated to VsI/365, where

Vs denotes average viewings-per-sale and I denotes average annual income. Thus, the calibration

24Friedman and Weinberg (1981) provide some estimates of moving costs for low-income renters in Phoenix and
Pittsburgh.
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assumes TsF = VsI/365, and by dividing both sides by PTs, this implies an equation for f ≡ F/P :

f =
1

365

I

P

Vs
Ts
.

Using a house-price to income ratio of 2 as a reasonable average value (Case and Shiller, 2003)

together with the values of Ts = 6.5/12 and Vs = 10 discussed below, the ratio of the flow cost

of search to the average price is calibrated to be 2.5% (f = 0.025). Note that 2.5% should be

interpreted as the hypothetical cost of spending a whole year searching.

While the data described above provide information about the ratios of the parameters C, F ,

and M to the average house price P , since determination of the price P depends in general on all

the other parameters, the calibration must be done jointly with that for the remaining parameters

{a, δ, λ, v}. These four parameters will be calibrated using four additional empirical targets: the

average time to sell a house, the average number of viewings per sale, the expected tenure (expected

duration of new matches), and the average years of ownership (the average time existing home-

owners have spent in their homes).

The average time to sell is the reciprocal of the average sales rate obtained using data from the

National Association of Realtors (NAR) on sales and inventories (for existing single-family homes),

as described in section 2.2. Average time-to-sell over the period 1991–2013 is 6.5 months.

Previous research on housing markets has used a variety of sources for data on time-to-sell, and

there is a considerable dispersion in these estimates. Using the ‘Profile of Buyers and Sellers’ survey

collected by NAR, Genesove and Han (2012) report that for the time period 1987–2008, the average

time-to-sell is 7.6 weeks, the average time-to-buy is 8.1 weeks, and the average number of homes

visited by buyers is 9.9. They also discuss other surveys that have reported similar findings.

However, the estimates of time-to-sell and time-to-buy derived from survey data are likely to be

an underestimate of the actual time a new buyer or seller would expect to spend in the housing mar-

ket. The reason is that the survey data include only those buyers and sellers who have successfully

completed a house purchase or sale, while the proportion of buyers or sellers who withdraw from

the market (at least for some time) without a completed transaction is substantial. Genesove and

Mayer (1997) estimate the fraction of withdrawals at 50%, and Levitt and Syverson (2008) report

a withdrawal rate of 22%. In comparing the efficiency of different platforms for selling properties,

Hendel, Nevo and Ortalo-Magné (2009) explicitly control for withdrawals and report a time-to-sell

of 15 weeks (using the Multiple Listing Service for the city of Madison).25

An alternative approach to estimating time-to-sell that does not face the problem of withdrawals

is to look at the average duration of the time for which a home is vacant using data from the American

Housing Survey. In the years 2001–2005, the mean duration of a vacancy was 7–8 months. However,

that number is likely to be an overestimate of the expected time-to-sell because it is based on houses

25For the U.K., Merlo and Ortalo-Magné (2004) obtain data from four real estate agencies that contain 780
completed transaction histories between 1995–1998 for Greater London and for South Yorkshire. They report an
average time-to-sell of 11 weeks, but this number does not control for withdrawals, which they find occur at a rate of
25% in their data. They also report an average of 9.5 viewings per transaction for a sub-sample of 199 properties in
their data.
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that are ‘vacant for sale’. Houses that are for sale but currently occupied would not be counted in

this calculation of average duration. A further approach that avoids the problem of withdrawals is

to look at the average time taken to sell newly built houses. Dı́az and Jerez (2013) use the Census

Bureau ‘New Residential Sales’ report to find that the median number of months taken to sell a

newly built house is 5.9 (for the period 1991–2012). This is only slightly shorter than the average

of the time-to-sell number constructed using NAR data on existing single-family homes, but there

is reason to believe that newly built homes should sell faster than existing homes owing to greater

advertising expenditure and differences in the target groups of buyers.

In summary, most studies find that average time-to-sell is less than three months in cases where

there is a potential withdrawal bias that is not controlled for. Most studies that are not subject to

this bias, or attempt to control for it, find times-to-sell of more than four months. Since the predic-

tions of the model will be compared to variables constructed from the NAR sales and inventories

data, a measure of time-to-sell consistent with this data will be used. The calibration target is a

time-to-sell of 6.5 months (the average of the NAR ‘months supply’ number and the time-to-sell

number derived from the NAR data), hence Ts = 6.5/12. The calibration target for viewings per

sale is set to 10 (Vs = 10) on the basis of the studies discussed above. In the model, average time-

to-sell is the reciprocal of the sales rate in [4.9], and average viewings per sale is the reciprocal of

the probability π that a viewing leads to a sale:

Ts =
1

vy−λ
, and Vs =

1

y−λ
. [5.2]

The remaining calibration targets are for the number of years a buyer expects to remain in the

same house (expected tenure, Tn), and the average number of years existing homeowners have lived

in their current houses (average years of ownership, Th). Note that these two numbers are not

necessarily the same when the hazard rate of moving is not independent of the time already spent

in a house. An estimate of both expected tenure and average years of ownership can be derived

from the data in Table 2.9 (Year Householder Moved into Unit) of the American Housing Survey,

which gives a frequency distribution for the time since owners moved into their homes. The data are

supplied in 5-year bins for durations of less than 40 years, and in 10-year bins for longer durations.26

In calculating the expected tenure and the average years of ownership, the frequency in each bin is

assumed to be equally distributed within the bin. Elderly owners (over 65 years) are removed from

the data because such individuals are less likely to consider moving. Using the 2005 survey, the

average years of ownership is found to be 11 years (Th = 11).

The expected tenure is found from the same data by calculating the hazard function for moving

house consistent with the frequency distribution of the years of ownership (this assumes that the

empirical distribution is the stationary distribution implied by the hazard function). The method

leads to an estimate of expected tenure of 12.2 years (Tn = 12.2). That the expected tenure is longer

26The first bin requires special treatment because it covers a five-year interval that does not generally coincide with
the survey year, and because the survey itself is conducted in the middle of the year (between mid-April and mid-
September during a survey year). For example, in 2005, the first bin starts in the survey year so this bin effectively
covers only one tenth of the time spanned by the other bins. The frequency in the first bin is scaled up accordingly.
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than the average years of ownership is consistent with the model’s prediction of a hazard rate for

moving that is increasing in time spent in a house. It is shown in appendix A.3 that the model

implies expected tenure Tn and average years of ownership Th are given by:

Tn =
1

a

(
1 +

δλ

1− δλ
(y
x

)λ)
, and Th =

1
a

(
1 + δλ

1−δλ

(
1 + 1

1−δλ

) (
y
x

)λ)
1 + δλ

1−δλ
(
y
x

)λ . [5.3]

The seven calibration targets used to determine the parameters {a, δ, λ, v, C, F,M} are listed in

Table 1. Intuitively, the expected tenure and average years of ownership provide information about

the arrival rate a of idiosyncratic shocks and the size of those shocks (the parameter δ). Both a

lower arrival rate and smaller idiosyncratic shocks would lead to longer expected tenure and longer

average years of ownership. The two parameters can be separately identified because having data

on both Tn and Th provides information not only about the average hazard rate of moving, but also

its dependence on duration. Furthermore, the parameters a and δ have very different effects on the

hazard function. A decrease in the arrival rate a of shocks uniformly decreases the hazard rate for

all durations, while a decrease in the size of the shocks also tilts the hazard function so that its

slope increases. The reason is that with very large idiosyncratic shocks, the moving decision would

essentially depend only on receiving one shock. With smaller idiosyncratic shocks, homeowners who

start with a high match quality would require more than one shock to persuade them to move,

making moving more likely for longer-duration homeowners who have had time to receive multiple

shocks than for those who have moved more recently.

Table 1: Targets used to calibrate parameters

Target description Notation Value

Time to sell (time to buy) Ts 6.5/12
Viewings per sale (viewings per purchase) Vs 10
Expected tenure of homeowners Tn 12.2
Average years of homeownership Th 11
Ratio of transaction cost to average price c 0.10
Ratio of flow search costs to average price f 0.025
Ratio of flow maintenance costs to average price m 0.045

Notes: The data sources for these empirical targets are discussed in section 5.1.

There is also an intuitive connection between the parameter λ and the calibration target time-

to-sell. The value of λ determines the amount of dispersion in the distribution of potential match

quality, and thus the incentive to continue searching. A low value of λ indicates a high degree of

dispersion, in which case families will be willing to spend longer searching for an ideal house. For

the final parameter v, the average time between viewings can be found by dividing time-to-sell by

viewings-per-sale, which directly provides information about the arrival rate v of viewings, as can

be seen from equation [5.2].
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A simple method for exactly matching the seven parameters {a, δ, λ, v, C, F,M} to the seven

empirical targets in Table 1 is described in appendix A.4. The parameters matching the targets and

those directly calibrated are all shown in Table 2.

5.2 Quantitative results

This section presents a quantitative analysis of the three shocks discussed earlier for the period

1995–2004: the decline in mortgage rates, the productivity boom, and the rise of internet-based

property search.

Mortgage rates (30-year conventional) declined from 9.2% in 1995 to 5.8% in 2004, while inflation

(PCE) increased from 2.3% to 2.8%. Real mortgage rates therefore fell from 6.9% to 3%. A simple

measure of productivity growth is the increase in real GDP per person, which grows by a total

of 25% over the decade. A rise in income naturally leads to an increase in housing demand (the

parameter ξ in the model), the extent of the increase also depending on the income-elasticity of

housing, which is assumed to be unity here.27 Finally, the rise of internet-based property search

would be expected to improve the efficiency of search as captured by the meeting function (the

parameter v in the model). Since v = Ts/Vs, data on time-to-sell and viewings-per-sale can be used

to infer the rise in v. Using data from Genesove and Han (2012), the maximum rise in Ts/Vs over

the period in question is 33%, and this is taken as an upper bound on the efficiency gains.

Table 2: Calibrated parameters

Parameter description Notation Value

Parameters matching calibration targets
Arrival rate of shocks a 0.131
Size of shocks δ 0.862
Steady-state distribution of match quality λ 13.0
Arrival rate of viewings v 22.8
Total transaction cost C 0.565
Flow search costs F 0.141
Flow maintenance costs M 0.254

Directly chosen parameters
Share of total transaction cost directly borne by seller κ 1/3
Bargaining power of seller ω 1/2
Discount rate r 0.07
Common component of homeowner flow value (normalization) ξ 1

Notes: The parameters are chosen to match exactly the calibration targets in Table 1.

The quantitative effects of each of these changes individually and taken together are shown in

Table 3. The table reports both the steady-state effects and the effects in the short term before any

27Harmon (1988) finds an income elasticity of housing demand in the range 0.7–1.
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transitional dynamics have occurred (in brackets). The effects are large: the calibrated model shows

that macroeconomic variables can have a large impact on moving and buying decisions, and thus on

stocks and flows in the housing market. Furthermore, as discussed earlier, it is changes in moving

rates that drive the volume of sales and listing in the longer term. The comparison of short-run

and long-run effects in the table also reveals interesting dynamics working through the endogenous

distribution of existing match quality and the cleansing effect. The moving rate displays significant

overshooting because of transitional dynamics in the distribution of match quality following changes

in the moving and transaction thresholds.28

Table 3: Effects of macroeconomic developments in the long run and short run

Sales Moving Sales Listing Houses
Shock rate rate volume volume for sale

Mortgage rates −18% 10% 9% 9% 33%
(r ↓ 57%) [−18%] [23%] [−18%] [23%] [0%]

Productivity boom 5% 10% 9% 9% 4%
(ξ ↑ 25%) [5%] [12%] [5%] [12%] [0%]

Internet search 1% 1% 1% 1% 0%
(v ↑ 33%) [1%] [16%] [1%] [16%] [0%]

Combined −15% 18% 16% 16% 36%
[−15%] [37%] [−15%] [37%] [0%]

Notes: Figures in brackets are the short-run effects. The combined effects are
not the sum of the individual effects because the model is not linear.

Take the effect of lower mortgage rates. Homeowners find it cheaper to invest in improving their

match quality, so they have a higher threshold to remain in the same house, and as a result the

moving rate increases and there is a cleansing effect on the distribution of match quality. As the

match quality distribution improves, the extent of cleansing subsequently declines, which explains

why overshooting occurs.

Comparing the effects across different shocks also reveals another consequence of persistence

in match quality, namely that the magnitude of overshooting depends on what happens to the

transaction threshold. A decrease in the transaction threshold means that the improvement in

match quality due to moving is smaller (even if cleansing of the existing match quality distribution

is occurring), which means that cleansing remains important for longer, so there is less overshooting.

This can be seen from a comparison of the productivity boom to the case of declining mortgage

rates. It is worth noting that in the case of internet search, the transaction threshold is actually

higher, but the effect on the sales rate is offset by the direct effect of the higher meeting rate, which

28There is no overshooting in the sales rate because the distribution of existing match quality is irrelevant for
buying decisions.
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is consistent with there being more overshooting if the transaction threshold is higher.

Overall, the model does a fairly good job in explaining a significant fraction of the rise in the

moving rate, and the volumes of sales and listings in the data. It fails to match the increase in the

sales rate observed in the data, but note that this failure would also be present in a model with

exogenous moving. The advantage of the endogenous-moving model is that it can still generate a

rise in sales volume through the increase in the moving rate.

There are two other potential factors that might have contributed to the rise in the sales rate

during this period: a decrease in buyers’ transaction costs Cb, perhaps due to a fall in the fixed cost

of obtaining a mortgage, and a rise in housing demand owing to demographics (in particular, the

baby-boomer generation). The effects of the former can be understood using Figure 6, where there

would be a downward shift of the homebuyer curve, resulting in a higher moving threshold x and

a lower transaction threshold y (and a higher value of y/x). This would imply that both the sales

and moving rates would increase (which would also boost sales volume). The effects of the baby

boomers (a 25% rise in the age group 25–64) can be seen as an increase in the demand for housing,

with consequences similar to those of the productivity boom discussed earlier. This may help to

explain the rise in the sales rate observed in the data.

6 Conclusions

This paper presents evidence that changes in sales volume are largely explained by changes in the

rate at which houses are put up for sale rather than changes in the rate at which they are sold.

Except for a relatively short transitional period (less than one year), even large changes in the sales

rate have very little impact on the volume of sales.

The paper builds a tractable model to analyse moving house where a homeowner’s decision

to move is an investment in housing match quality. Since moving house is an investment with

upfront costs and potentially long-lasting benefits, the model predicts that the aggregate moving

rate depends on macroeconomic variables such as interest rates. The endogeneity of moving also

means that those who move come from the bottom of the existing match quality distribution. The

non-random selection of movers gives rise to a cleansing effect and leads to overshooting of housing-

market variables. The model is applied to understand the booming housing market during the

decade 1995–2004, and it successfully accounts for some of the key features in the data such as

rising moving rates and rising sales and listing volumes.
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A Appendices

A.1 Value functions and thresholds

The value functions Ht(ε) and Wt and the thresholds xt and yt satisfy the equations [3.1], [3.2], [3.5], and
[3.6]. No other variables appear in these equations. Given constant parameters, there is a time-invariant
solution Ht(ε) = H(ε), Wt = W , xt = x, and yt = y. The time-invariant equations are:

rH(ε) = εξ −M + a (max{H(δε),W} −H(ε)) ; [A.1.1]

H(x) = W ; [A.1.2]

rW = −F −M + v

∫
y
(H(ε)−W − C)dG(ε); [A.1.3]

H(y) = W + C. [A.1.4]

Attention is restricted to parameters where the solution will satisfy δy < x.
Evaluating [A.1.1] at ε = x, noting that δ < 1 and H(ε) is increasing in ε:

rH(x) = ξx−M + a(W −H(x)).

Since H(x) = W (equation [A.1.2]), it follows that:

W = H(x) =
ξx−M

r
. [A.1.5]

Next, evaluate [A.1.1] at ε = y. With the restriction δy < x, it follows that H(δy) < H(x) = W , and hence:

rH(y) = ξy −M + a(W −H(y)).

Collecting terms in H(y) on one side and substituting the expression for W from [A.1.5]:

(r + a)H(y) = ξy −M +
a

r
(ξx−M) = ξ(y − x) +

(
1 +

a

r

)
(ξx−M),

and thus H(y) is given by:

H(y) =
ξx−M

r
+
ξ(y − x)

r + a
. [A.1.6]

Combining the equation above with [A.1.4] and [A.1.5], it can be seen that the thresholds y and x must be
related as follows:

y − x =
(r + a)C

ξ
. [A.1.7]

Using the expression for the Pareto distribution function [3.3] and using [A.1.4] to note H(ε)−W −C =
H(ε)−H(y), the Bellman equation [A.1.3] can be written as:

rW = −F −M + vy−λ
∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε, [A.1.8]

which assumes y > 1. In solving this equation it is helpful to define the following function Ψ(z) for all
z ≤ y:

Ψ(z) ≡
∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(H(ε)−H(z))dε. [A.1.9]

Since δy < x is assumed and z ≤ y, it follows that δz < x, and thus H(δz) < H(x) = W . Equation [A.1.1]
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evaluated at ε = z therefore implies:

rH(z) = ξz −M + a(W −H(z)).

Subtracting this equation from [A.1.1] evaluated at a general value of ε leads to:

r(H(ε)−H(z)) = ξ(ε− z) + a (max{H(δε),W} −H(ε))− a(W −H(z))

= ξ(ε − z) − a(H(ε) −H(z)) + amax{H(δε) −W, 0}.

Noting that W = H(x) and solving for H(ε)−H(z):

H(ε)−H(z) =
ξ

r + a
(ε− z) +

a

r + a
max{H(δε)−H(x), 0}. [A.1.10]

The equation above can be substituted into [A.1.9] to deduce:

Ψ(z) =
ξ

r + a

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(ε− z)dε+

a

r + a

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
max{H(δε)−H(x), 0}dε. [A.1.11]

First, observe that:∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
(ε− z)dε =

z

λ− 1
. [A.1.12]

Next, make the change of variable ε′ = δε in the second integral in [A.1.11] to deduce:

∫ ∞
ε=z

λ

z

( ε
z

)−(λ+1)
max{H(δε)−H(x), 0}dε =

∫ ∞
ε′=δz

λ

δz

(
ε′

δz

)−(λ+1)

max{H(ε′)−H(x), 0}dε′

=

∫ x

ε′=δz

λ

δz

(
ε′

δz

)−(λ+1)

0dε′ +

∫ ∞
ε′=x

λ

δz

(
ε′

δz

)−(λ+1)

(H(ε′)−H(x))dε′

=

(
δz

x

)λ ∫ ∞
ε=x

λ

x

( ε
x

)−(λ+1)
(H(ε) −H(z))dε =

(
δz

x

)λ
Ψ(x),

where the second line uses δz < x (as z ≤ y and δy < x) and H(ε′) < H(x) for ε′ < x, and the final
line uses the definition [A.1.9]. Putting the equation above together with [A.1.11] and [A.1.12] yields the
following for all z ≤ y:

Ψ(z) =
ξz

(r + a)(λ− 1)
+

a

r + a

(
δz

x

)λ
Ψ(x). [A.1.13]

Evaluating this expression at z = x (with x < y):

Ψ(x) =
ξx

(r + a)(λ− 1)
+

a

r + a
δλΨ(x),

and hence Ψ(x) is given by:

Ψ(x) =
ξx

(r + a(1− δλ))(λ− 1)
. [A.1.14]

Next, evaluating [A.1.13] at z = y and using [A.1.14] to substitute for Ψ(x):

Ψ(y) =
ξy

(r + a)(λ− 1)
+

a

r + a

(
δz

x

)λ( ξx

(r + a(1− δλ))(λ− 1)

)
,
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and simplifying yields the following expression for Ψ(y):

Ψ(y) =
ξ

(r + a)(λ− 1)

(
y +

aδλyλx1−λ

r + a(1− δλ)

)
. [A.1.15]

Using the definition [A.1.9], equation [A.1.8] can be written in terms of Ψ(y):

rW = −F −M + vy−λΨ(y),

and substituting from [A.1.5] and [A.1.15] yields:

ξx−M = −F −M + vy−λ
(

ξ

(r + a)(λ− 1)

(
y +

aδλyλx1−λ

r + a(1− δλ)

))
.

This equation can be simplified as follows:

x+
F

ξ
=

v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)
x1−λ

)
. [A.1.16]

The two equations [A.1.7] and [A.1.16] can be solved for the thresholds x and y.
By using equation [A.1.7] to replace x with a linear function of y, the equilibrium threshold y is the

solution of the equation:

I(y) ≡ v

(λ− 1)(r + a)

(
y1−λ +

aδλ

r + a(1− δλ)

(
y − (r + a)C

ξ

)1−λ
)
− y+

(r + a)C

ξ
− F
ξ

= 0. [A.1.17]

It can seen immediately (since λ > 1) that I ′(y) < 0, so any solution that exists is unique. A valid solution
must satisfy x > 0, y > 1, and δy < x. Using equation [A.1.7], the inequality δy < x is equivalent to:

δy < y − (r + a)C

ξ
,

which is in turn equivalent to:

y >
(r + a)C

(1− δ)ξ
.

Thus, to satisfy y > 1 and δy < x, the equilibrium must feature:

y > max

{
1,

(r + a)C

(1− δ)ξ

}
. [A.1.18]

Observe that limy→∞ I(y) = −∞ (using [A.1.17] and λ > 1), so an equilibrium satisfying [A.1.18] exists if
and only if:

I
(

max

{
1,

(r + a)C

(1− δ)ξ

})
> 0. [A.1.19]

If the condition [A.1.18] is satisfied then by using [A.1.7]:

x > max

{
1,

(r + a)C

(1− δ)ξ

}
− (r + a)C

ξ
>

(r + a)C

(1− δ)ξ
− (r + a)C

ξ
=
δ(r + a)C

(1− δ)ξ
> 0,

confirming that x > 0 must hold. Therefore, [A.1.19] is necessary and sufficient for the existence of a unique
equilibrium satisfying all the necessary conditions. Using equation [A.1.17], [A.1.19] is equivalent to the
condition [4.8].

Given x and y, the value functions W , H(x), and H(y) can be obtained from [A.1.5] and [A.1.6]. The
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average surplus can be obtained by combining [A.1.5] and [A.1.8] to deduce:∫ ∞
ε=y

λ

y

(
ε

y

)−(λ+1)

(H(ε)−H(y))dε =
yλ

v
(ξx+ F ). [A.1.20]

Given x and y, the probability π that a viewing leads to a sale, and the expected number of viewings before
a sale Vs = 1/π are:

π = y−λ, and Vs = yλ. [A.1.21]

The selling rate s and the expected time-to-sell Ts = 1/s are given by:

s = vy−λ, and Ts =
yλ

v
. [A.1.22]

A.2 Prices

The price pt(ε) is determined by combining the Nash bargaining solution ωΣb,t(ε) = (1 − ω)Σu,t(ε) with
the expressions for the buyer and seller surpluses in [3.7]:

ω(Ht(ε)− pt(ε)− (1− κ)C −Bt) = (1− ω)(pt(ε)− κC − Ut),

from which it follows that:

pt(ε) = ωHt(ε) + (κ− ω)C + ((1− ω)Ut − ωBt). [A.2.1]

The surplus-splitting condition implies Σb,t(ε) = (1−ω)Σt(ε) and Σu,t(ε) = ωΣt(ε), where Σt(ε) = Σb,t(ε)+
Σu,t(ε) is the total surplus from [4.6]. The Bellman equations in [3.8] can thus be written as:

rBt = −F + (1− ω)v

∫
yt

Σt(ε)dG(ε) + Ḃt, and rUt = −M + ωv

∫
yt

Σt(ε)dG(ε) + U̇t,

and a multiple ω of the first equation can be subtracted from a multiple 1 − ω of the second equation to
deduce:

r((1− ω)Ut − ωBt) = ωF − (1− ω)M + ((1− ω)U̇t − ωḂt).

The stationary solution of this equation is:

(1− ω)Ut − ωBt =
ωF − (1− ω)M

r
,

and by substituting this into [A.2.1]:

pt(ε) = ωHt(ε) + (κ− ω)C +
ωF − (1− ω)M

r
. [A.2.2]

Integrating this equation over the distribution of new match quality yields equation [3.9] for the average
transaction price.

In an equilibrium where the moving and transactions thresholds xt and yt are constant over time, the
value function Ht(ε) is equal to the time-invariant function H(ε). This means that prices pt(ε) = p(ε) are
also time invariant. Using the Pareto distribution function [3.3] and equation [3.9], the average price is:

P = ω

∫
y

λ

y

(
ε

y

)λ
H(ε)dε+ (κ− ω)C +

ωF − (1− ω)M

r
.
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By using the expression for H(y) in [A.1.6], the above can be written as:

P = ω

∫
y

λ

y

(
ε

y

)λ
(H(ε)−H(y))dε+ ω

(
ξx−M

r
+
ξ(y − x)

r + a

)
+ (κ− ω)C +

ωF − (1− ω)M

r
,

and substituting from [A.1.7] and [A.1.20] yields:

P = ω
yλ

v
(ξx+ F ) + ωC +

ωξx

r
+ (κ− ω)C +

ωF −M
r

.

Therefore, the following expression for the average price is obtained:

P = κC − M

r
+ ω

(
1

r
+
yλ

v

)
(ξx+ F ). [A.2.3]

This leads to expressions for the ratios of costs (search, transactions, and maintenance) to the average
price:

f =

F
ξ

κCξ −
M
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) ; [A.2.4a]

c =

C
ξ

κCξ −
M
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) ; [A.2.4b]

m =

M
ξ

κCξ −
M
rξ + ω

(
1
r + yλ

v

)(
x+ F

ξ

) . [A.2.4c]

A.3 Stocks and flows

The formula [3.12] for the moving rate can also be given in terms of inflows Nt = nt(1 − ut), where ut is
the stock of unsold houses:

Nt = a(1− ut)− aδλx−λt v

∫ ∞
τ→−∞

e−a(1−δ
λ)(t−τ)uτdτ. [A.3.1]

The first term a(1−ut) is the quantity of existing matches that receive a shock (arrival rate a). The second
term is the quantity of existing matches that receive a shock now, but decide not to move. The difference
between these two numbers (under the assumption that only those who receive a shock make a moving
decision) gives inflows Nt.

Now consider the derivation of the second term in [A.3.1]. The distribution of existing matches (total
1 − ut) can be partitioned into vintages τ (when matches formed) and the number k of previous shocks
that have been received. At time τ , a quantity uτ of houses were for sale, and viewings arrived at rate
v. Viewings were draws of match quality ε from a Pareto(1, λ) distribution, and those draws with ε ≥ yτ
formed new matches, truncating the distribution at yτ . In the interval between τ and t, those matches that
have received k shocks now have match quality δkε. Some of these matches will have been destroyed as a
result of these shocks, truncating the distributing of surviving match quality. Because the distribution of
match quality is a Pareto distribution, these truncations also result in Pareto distributions with the same
shape parameter λ.

Consider the matches of vintage τ . All of these were originally from a Pareto distribution truncated
at ε ≥ yτ . Subsequently, depending on the arrival of idiosyncratic shocks (both timing and number), this
distribution may be truncated further. Let z denote the last truncation point in terms of the original
match quality ε (at the time of the viewing). This is z = yτ if no shocks have been received, or z = δ−kxT
if k shocks have been received and the last one occurred at time T when the moving threshold was xT .
Conditional on this last truncation point z, it is shown below that the measure of surviving matches is
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z−λvuτ . Furthermore, the original match quality of these surviving matches must be from a Pareto(z, λ)
distribution.

Now consider the distribution of the number of previous shocks k between τ and t. Given the Poisson
arrival rate a, k has a Poisson distribution, so the probability of k is e−a(t−τ)(a(t − τ))k/k!. If a shock
arrives at time t, matches of current quality greater than xt survive. If these have received k shocks earlier,
this means the truncation threshold in terms of original match quality ε is ε ≥ δ−(k+1)xt. Of these matches
that have accumulated k earlier shocks, suppose last relevant truncation threshold (in terms of original
match quality) was z (this will vary over those matches even with the same number of shocks because
the timing might be different), so the distribution of surviving matches in terms of their original match
quality is Pareto(z, λ). The probability that these matches then survive the shock at time t is given by
(δ−(k+1)xt/z)

−λ, and multiplying this by z−λvuτ gives the number that survive:

(δ−(k+1)xt/z)
−λz−λvuτ = (δλ)k+1x−λt vuτ ,

noting that the terms in z cancel out. This is conditional on z, k, and τ , but since z does not appear
above, the distribution of the past truncation thresholds is not needed. Averaging over the distribution of
k yields:

∞∑
k=0

e−a(t−τ)
(a(t− τ))k

k!
(δλ)k+1x−λt vuτ = δλx−λt vuτe

−a(t−τ)
∞∑
k=0

(aδλ(t− τ))k

k!

= δλx−λt vuτe
−a(t−τ)eaδ

λ(t−τ) = δλx−λt vuτe
−a(1−δλ)(t−τ),

where the penultimate expression uses the Taylor series expansion of the exponential function ez =∑∞
k=0 z

k/k! (valid for all z). Next, integrating over all vintages τ before the current time t leads to:∫ t

τ→−∞
δλx−λt e−a(1−δ

λ)(t−τ)dτ = δλx−λt

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)vuτdτ.

Multiplying this by the arrival rate a of the shock confirms the second term of expression for Nt in [A.3.1].
This leaves only the claim that the measure of vintage-τ surviving matches with truncation point z

(in terms of the original match quality distribution ε) has measure z−λvuτ . When these matches first
form, they have distribution Pareto(yt, λ) and measure y−λτ vuτ , so the formula is correct if no shocks have
occurred and z = yτ . Now suppose the formula is valid for some z and truncation now occurs at a new
point w > z (in terms of original match quality). Since matches surviving truncation at z have distribution
Pareto(z, λ), the proportion of these that survive the new truncation is (w/z)−λ, and so the measure
becomes (w/z)−λz−λvuτ = w−λvuτ (with the term in z cancelling out).

Now consider an equilibrium where parameters are expected to remain constant. In this case, the
moving and transaction thresholds x and y are constant over time. Let ψ(τ) denote the survival function
for new matches, in the sense of the fraction of matches forming at time t that survive until at least t+ τ .
Each cohort starts with a match quality distribution ε ∼ Pareto(y;λ) at τ = 0. Now consider some τ > 0.
Moving occurs only if the value of after shocks have occurred (ε′) is such that ε′ < x. Shocks arrive at a
Poisson rate a, so the number k of shocks that would occur to a match over an interval of time τ has a
Poisson(aτ) distribution, which means that probability that k shocks occur is e−aτ (aτ)k/k!. If no shocks
occur, ε′ = ε, so no moving occurs. If k ≥ 1 shocks have occurred then ε′ = δkε, where ε is the initial
draw of match quality. These matches survive only if ε′ ≥ x, that is, ε ≥ x/δk. Since the original values
of ε are drawn from a Pareto distribution truncated at ε = y with shape parameter λ, this probability is
((x/δk)/y)−λ (this expression is valid for all k ≥ 1 since δy < x). Therefore, the survival function is given
by:

ψ(τ) = e−aτ +

∞∑
k=1

e−aτ
(aτ)k

k!

(
x/δk

y

)−λ
= e−aτ +

(y
x

)λ
e−aτ

∞∑
k=1

(aδλτ)k

k!
= e−aτ +

(y
x

)λ
e−aτeaδ

λτ ,

where the final equality uses the (globally convergent) series expansion of the exponential function. The

38



survival function is thus:

ψ(τ) =

(
1−

(y
x

)λ)
e−aτ +

(y
x

)λ
e−a(1−δ

λ)τ , [A.3.2]

observing that ψ(0) = 1.
Given the survival function ψ(τ), the hazard function ξ(τ) for moving is defined by ξ(τ) = −ψ′(τ)/ψ(τ).

Using equation [A.3.2]:

ξ(τ) = − d

dτ
log e−aτ

(
1 +

(y
x

)λ
(eaδ

λτ − 1)

)
= a−

aδλ
( y
x

)λ
eaδ

λτ

1 +
( y
x

)λ
(eaδλτ − 1)

.

Therefore, the hazard function is given by:

ξ(τ) = a

1−
δλ
( y
x

)λ( y
x

)λ
+
(

1−
( y
x

)λ)
e−aδλτ

 , [A.3.3]

which is increasing in τ .
For new matches, the distribution µ(τ) of the time τ until the next move is obtained from the survival

function ψ(τ) using µ(τ) = −ψ′(τ). Hence, by using [A.3.2]:

µ(τ) = a

(
1−

(y
x

)λ)
e−aτ + a(1− δλ)

(y
x

)λ
e−a(1−δ

λ)τ . [A.3.4]

The expected time Tn until the next move for a new match (expected tenure) can be derived from this
distribution:

Tn =

∫ ∞
τ=0

τµ(τ)dτ =

(
1−

(y
x

)λ)∫ ∞
τ=0

aτe−aτdτ +
(y
x

)λ ∫ ∞
τ=0

a(1− δλ)τe−a(1−δ
λ)τdτ

=

(
1−

(y
x

)λ) 1

a
+
(y
x

)λ 1

a(1− δλ)
=

1

a

(
1−

(y
x

)λ
+

1

1− δλ
(y
x

)λ)
.

Thus, an expression for the expected tenure is:

Tn =
1

a

(
1 +

δλ

1− δλ
(y
x

)λ)
. [A.3.5]

The stationary age distribution θ(τ) in the cross-section of surviving matches is proportional to the
survival function ψ(τ):

θ(τ) =
ψ(τ)∫∞

τ=0 ψ(τ)dτ
. [A.3.6]

The expression for ψ(τ) in [A.3.2] can be used to deduce that:∫ ∞
τ=0

ψ(τ)dτ =

(
1−

(y
x

)λ) 1

a
+
(y
x

)λ 1

a(1− δλ)
=

1

a

(
1 +

δλ

1− δλ
(y
x

)λ)
. [A.3.7]

Combining equations [A.3.6] and [A.3.7], the stationary age distribution is:

θ(τ) =
a
(

1−
( y
x

)λ)
e−aτ + a

( y
x

)λ
e−a(1−δ

λ)τ

1 + δλ

1−δλ
( y
x

)λ . [A.3.8]
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This distribution can be used to calculate the average years of ownership Th of existing homeowners:

Th =

∫ ∞
τ=0

τθ(τ)dτ =

(
1−

( y
x

)λ) ∫∞
τ=0 aτe

−aτdτ + 1
1−δλ

( y
x

)λ ∫∞
τ=0 a(1− δλ)τe−a(1−δ

λ)τdτ

1 + δλ

1−δλ
( y
x

)λ
=

(
1−

( y
x

)λ) 1
a + 1

1−δλ
( y
x

)λ 1
a(1−δλ)

1 + δλ

1−δλ
( y
x

)λ =

1
a

(
1−

( y
x

)λ
+ 1

(1−δλ)2
( y
x

)λ)
1 + δλ

1−δλ
( y
x

)λ =

1
a

(
1 +

(
(1−δλ)2−1
(1−δλ)2

) ( y
x

)λ)
1 + δλ

1−δλ
( y
x

)λ .

Simplifying leads to the following formula for Th:

Th =

1
a

(
1 + δλ

1−δλ

(
1 + 1

1−δλ

) ( y
x

)λ)
1 + δλ

1−δλ
( y
x

)λ . [A.3.9]

The average moving rate n can be calculated from the hazard function ξ(τ) and the age distribution
θ(τ):

n =

∫ ∞
τ=0

ξ(τ)θ(τ)dτ =

∫ ∞
τ=0

(
−ψ

′(τ)

ψ(τ)

)
(θ(0)ψ(τ))dτ = θ(0)

∫ ∞
τ=0

(−ψ′(τ))dτ = θ(0),

where the second equality uses the definition ξ(τ) = −ψ′(τ)/ψ(τ), and θ(τ) = θ(0)ψ(τ), which follows from
[A.3.6] noting ψ(0) = 1. Evaluating [A.3.8] at τ = 0 implies the following expression for n:

n =
a

1 + δλ

1−δλ
( y
x

)λ , [A.3.10]

which is the reciprocal of expected tenure (Tn = 1/n), and thus consistent with equation [A.3.5].
Given the moving rate n and the sales rate s, the steady-state stock of houses for sale is:

u =
n

s+ n
. [A.3.11]

The expression for n given in [A.3.10] is consistent with the formula [3.12] in the steady state:

n = a− aδλx−λv u

1− u

∫ ∞
τ=0

e−a(1−δ
λ)τdτ = a− aδλ

(y
x

)λ
vy−λ

n

s

1

a(1− δλ)
,

where the final equality uses u/(1−u) = n/s, as implied by [A.3.11]. Since s = vy−λ according to [A.1.22],
the equation above becomes:

n = a− δλ

1− δλ
(y
x

)λ
n,

which yields the same solution for n as [A.3.10].

A.4 Calibration method

This section shows how the 10 parameters a, δ, λ, v, C, F , M , κ, ω, and r can be obtained from observables.
Three of the parameters (κ, ω, and r) are set directly. The other seven are obtained indirectly from seven
calibration targets. These are time-to-sell Ts, viewings per sale Vs, expected tenure Tn, average years
of ownership Th, the transaction cost to price ratio c, the flow search cost to price ratio f , and the
flow maintenance cost to price ratio m. Note that the model contains one other parameter ξ, but in all
equations determining observables, ξ enters only as a ratio to other parameters (this can be seen from
equations [5.1a]–[5.1c]). This parameter is therefore normalized to ξ = 1.

The method begins by setting κ, ω, and r directly. Next, consider a guess for Tδ, the expected time
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until an idiosyncratic shock occurs. This conjecture determines the parameter a using:

a =
1

Tδ
. [A.4.1]

The admissible range for Tδ is 0 < Tδ < Tn.
Define the following variable ζ:

ζ ≡ δλ

1− δλ
(y
x

)λ
. [A.4.2]

Using equations [A.4.1] and [A.4.2], the expressions for Tn and Th in [A.3.5] and [A.3.9] can be written as:

Tn = (1 + ζ)Tδ, and Th =

(
1 +

(
1 + 1

1−δλ

)
ζ
)
Tδ

1 + ζ
. [A.4.3]

This equation confirms it is necessary that 0 < Tδ < Tn otherwise ζ would not be positive, as required in
[A.4.2]. Solving for ζ using the expression for Tn in [A.4.3]:

ζ =
Tn − Tδ
Tδ

. [A.4.4]

Equations [A.4.3] and [A.4.4] can be used to deduce:

Tn
Tδ

+

(
Tn − Tδ
Tδ

)
1

1− δλ
= 1 +

(
1 +

1

1− δλ

)(
Tn − Tδ
Tδ

)
= (1 + ζ)

Th
Tδ

=
Tn
Tδ

Th
Tδ
,

and multiplying both sides by Tδ/Tn and rearranging yields:(
Tn − Tδ
Tn

)
1

1− δλ
=
Th − Tδ
Tδ

.

This leads to an expression for δλ/(1− δλ):

δλ

1− δλ
=

1

1− δλ
− 1 =

(Th − Tδ)Tn
(Tn − Tδ)Tδ

− 1,

and using this in conjunction with [A.4.2] and [A.4.4]:

(y
x

)λ
=

Tn−Tδ
Tδ

(Th−Tδ)Tn
(Tn−Tδ)Tδ − 1

. [A.4.5]

Now take equation [A.2.3] for the average price and divide both sides by P (recalling the normalization
ξ = 1):

κc− m

r
+ ω

(
1

r
+
yλ

v

)( x
P

+ f
)

= 1.

Noting the expression for Ts in [A.1.22], the equation above can be solved for x/P as follows:

x

P
=

1− κc+ m
r

ω
(
1
r + Ts

) − f. [A.4.6]

Now take the linear equation [A.1.7] involving the thresholds x and y and divide both sides by P (again,
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recalling ξ = 1):

y

P
=
x

P
+ (r + a)c,

and then dividing both sides by x/P and using [A.4.6]:

y

x
=
y/P

x/P
= 1 +

(r + a)c
1−κc+m

r

ω( 1
r
+Ts)

− f
. [A.4.7]

With formulas for both (y/x)λ from [A.4.5] and y/x from [A.4.7], the value of λ can be deduced from
the identity log(y/x)λ = λ log(y/x):

λ =

log

(
Tn−Tδ
Tδ

(Th−Tδ)Tn
(Tn−Tδ)Tδ

−1

)

log

1 + (r+a)c
1−κc+mr
ω( 1

r+Ts)
−f

 . [A.4.8]

Given λ, the transactions and moving thresholds y can be obtained from viewings per sale Vs using [A.1.21]
and [A.4.7]:

y = V
1
λ
s , and x =

V
1
λ
s

1 + (r+a)c
1−κc+mr
ω( 1

r+Ts)
−f

. [A.4.9]

Using [A.1.21] and [A.1.22], the ratio of viewings per sale Vs and time to sell Ts determines the meeting
rate v:

v =
Vs
Ts
. [A.4.10]

Finally, one more equation [A.1.16] must hold. This can be used to verify the initial conjecture for Tδ.

A.5 Transitional dynamics

If the moving and selling rates nt and st were equal to constants n and s, the stock of houses for sale evolves
according to the difference equation:

u̇t = n(1− ut)− sut = −(s+ n)(ut − u), where u =
n

s+ n
.

Using s = 1/Ts and n = 1/Tn, the rate of convergence to the steady state is:

u̇t = −
(

1

Ts
+

1

Tn

)
(ut − u).

Now suppose the moving and transaction thresholds are constant over time at x and y. This means the
sales rate is constant at s = vy−λ. Let u∗t , n

∗
t , S

∗
t , and N∗t denote houses for sale, the moving rate, and the

volumes of sales and listings, ignoring the transitional dynamics in houses for sale. This means that houses
for sale satisfies:

u∗t =
n∗t

s+ n∗t
. [A.5.1]
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Given u∗t , the listing rate n∗t can be obtained using the formula in [3.12]:

n∗t = a− aδλvx−λ

1− u∗t

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)u∗τdτ. [A.5.2]

The volumes of sales and listings are:

S∗t = su∗t , and N∗t = n∗t (1− u∗t ), with S∗t = N∗t , [A.5.3]

where the latter claim follows from the definition of u∗t in [A.5.1]. Multiplying both sides of [A.5.2] by
1− u∗t leads to an equation for N∗t :

N∗t = a(1− u∗t )− aδλvx−λ
∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)u∗τdτ, [A.5.4]

and differentiating with respect to time:

Ṅ∗t = −au̇∗t − aδλvx−λu∗t + a(1− δλ)

(
aδλvx−λ

∫ t

τ→−∞
e−a(1−δ

λ)(t−τ)u∗τdτ

)
.

Using [A.5.4] to substitute for the final integral term above:

Ṅ∗t = −au̇∗t − aδλvx−λu∗t + a(1− δλ)(a(1− u∗t )−N∗t ),

and since [A.5.3] implies u∗t = N∗t /s for all t for which the sales rate s is constant (and thus ṅ∗t = Ṅ∗t /s),
the differential equation above can be written solely in terms of N∗t :

Ṅ∗t = −a
s
Ṅ∗t −

a

s
δλvx−λN∗t + a(1− δλ)

(
a

(
1− N∗t

s

)
−N∗t

)
.

Collecting terms in Ṅ∗t on the left-hand side and grouping terms in N∗t on the right-hand side:(
a+ s

s

)
Ṅ∗t = a(1− δλ)a− a(1− δλ)

(
a+ s

s
+

δλ

1− δλ
vx−λ

s

)
N∗t ,

and using s = vy−λ it follows that:

Ṅ∗t = a(1− δλ)

(
as

a+ s
−
(

1 +
δλ

1− δλ
(y
x

)λ s

a+ s

)
N∗t

)
. [A.5.5]

Now observe that:

as
a+s

1 + δλ

1−δλ
( y
x

)λ s
a+s

=
a

a+s
s + δλ

1−δλ
( y
x

)λ =
a

a
s +

(
1 + δλ

1−δλ
( y
x

)λ) =
a

a
s + a

n

=
sn

s+ n
= N,

which uses the expression for n from [A.3.10], and hence the differential equation [A.5.5] can be written as:

Ṅ∗t = −a(1− δλ)

(
1 +

δλ

1− δλ
(y
x

)λ s

a+ s

)
(N∗t −N). [A.5.6]

The coefficient of N∗t −N gives the rate of convergence to the long-run steady state. Since S∗t = N∗t and
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u∗t = N∗t /s, it follows that the rate of convergence is the same for S∗t and u∗t :

Ṡ∗t = −a(1− δλ)

(
1 +

δλ

1− δλ
(y
x

)λ s

a+ s

)
(S∗t − S);

u̇∗t = −a(1− δλ)

(
1 +

δλ

1− δλ
(y
x

)λ s

a+ s

)
(u∗t − u).

The result is similar for the listing rate n∗t , though this is not a linear function of the other variables:

ṅ∗t = −a(1− δλ)

(
1 +

δλ

1− δλ
(y
x

)λ s

a+ s

)(
s+ n∗t
s+ n

)
(n∗t − n).
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