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Abstract 
 
I follow R.A. Fisher’s The Design of Experiments, using randomization statistical 

inference to test the null hypothesis of no treatment effect in a comprehensive sample of 53 
experimental papers drawn from the journals of the American Economic Association.  
Randomization tests of the significance of treatment coefficients find that 10 to 20 percent of 
conventionally significant coefficients are not significant at the same level.  In joint tests for 
equations with multiple treatment measures, 30 to 40 percent of equations with an individually 
significant coefficient cannot reject the null of no treatment effect.  An omnibus randomization 
test of overall experimental significance that incorporates all of the regressions in each paper 
finds that only 40 to 50 percent of experimental papers are able to reject the null of no treatment 
effect anywhere.  Bootstrap methods support and confirm these results. 
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I:  Introduction 

 In contemporary economics, randomized experiments are seen as solving the problem of 

endogeneity, allowing for the identification and estimation of causal effects.  Randomization, 

however, has an additional strength: it allows for the construction of exact test statistics, i.e. test 

statistics whose distribution does not depend upon asymptotic theorems or distributional 

assumptions and is known in each and every sample.  Randomized experiments rarely make use 

of such methods, relying instead upon conventional econometrics and its asymptotic theorems.  

In this paper I apply randomization tests to randomized experiments, using them to construct 

counterparts to conventional tests of significance within regressions and, more ambitiously, an 

exact omnibus test of overall significance that combines all of the regressions in a paper in a 

manner that is, practically speaking, infeasible in conventional econometrics.   At the coefficient 

level, randomization tests reduce the number of significant coefficients by 10 to 20 percent.  Joint 

tests of statistical significance in multi-treatment equations reduce the number of regression 

specifications with statistically significant treatment effects by 30 to 40 percent, while the 

omnibus test finds that, when all treatment outcome equations are combined, only 40 to 50 

percent of papers can reject the null of no treatment effect.  These results relate, purely, to 

statistical inference, as I do not modify published regressions in any way.  I confirm them with 

bootstrap statistical inference, and use bootstrap sampling to establish the size biases of 

conventional methods and the fact that the power of randomization tests is virtually identical to 

that of conventional methods when these are exact and the assumptions on the independence of 

residuals are similar. 

 Two factors lie behind the discrepancy between the results reported in journals and those 

produced in this paper.  First, published papers fail to consider the multiplicity of tests implicit in 

the many treatment coefficients within regressions and the many regressions presented in each 

paper.  About half of the regressions presented in experimental papers contain multiple treatment 

regressors, representing indicators for different treatment regimes or interactions of treatment 

with participant characteristics.  When these regressions contain a .01 level significant 

coefficient, there are on average 5.9 treatment measures, of which only 1.7 are significant.  I find 

treatment measures within regressions are generally mutually orthogonal, so the finding of a 

significant coefficient in a regression should be viewed as the outcome of multiple independent 
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rolls of 20-sided or 100-sided dice.  However, only 31 of 1009 regressions with multiple 

treatment measures report a conventional F- or Wald-test of the joint significance of all treatment 

variables within the regression.1 

While treatment coefficients within regressions are largely orthogonal, treatment 

coefficients across regressions, particularly significant regressions, are highly correlated.  The 

typical paper reports 10 regressions with a treatment coefficient that is significant at the .01 level, 

and 27 regressions with no treatment coefficient that is significant at this level.2  I find that the 

randomized and bootstrapped distribution of the coefficients and p-values of significant 

regressions are highly correlated across equations, while the insignificant regressions are much 

more independent.  Thus, the typical paper presents many independent tests that show no 

treatment effect and a small set of correlated tests that show a treatment effect.  When combined, 

this information suggests that most experiments have no significant effects.  I should note that 

this result is unchanged when I restrict attention only to regressions with dependent variables that 

produce a significant treatment coefficient in at least one regression.  Thus, it is not a 

consequence of combining the results of regressions of variables that are never significantly 

correlated with treatment with those concerning variables that are consistently correlated with 

treatment.  Dependent variables that are found to be significantly related to treatment in a subset 

of highly correlated specifications are not significantly related to treatment in many other, 

statistically independent, specifications.   

 The second factor explaining the lower significance levels found in this paper is the fact 

that published papers make heavy use of statistical techniques that rely upon asymptotic theorems 

that are largely invalidated and rendered systematically biased in favour of rejection by their 

regression design.  Chief amongst these methods are the robust and clustered estimates of 

variance, which are designed to deal with unspecified heteroskedasticity and correlation across 
                                                   

1These occur in two papers.  In an additional 7 regressions in two other papers the authors make an attempt 
to test the joint significance of multiple treatment measures, but accidentally leave out some treatment measures.  In 
another paper the authors test whether a linear combination of all treatment effects in 28 regressions equals zero, 
which is not a test of the null of no treatment effect, but is closer.  F-tests of the equality of treatment effects across 
treatment regimes (excluding control) or in non-outcome regressions (e.g. tests of randomization balance) are more 
common. 

2Naturally, I only include treatment outcome regressions in these calculations and exclude regressions 
related to randomization balance (participant characteristics) or attrition, which, by demonstrating the orthogonality 
of treatment with these measures, confirm the internal validity of the randomized experiment.  
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observations.  The theorems that underlie these and other asymptotic methods depend upon 

maximal leverage in the regression going to zero, but in the typical regression design it is actually 

much closer to its upper limit of 1.  High leverage allows for a greater spread in the bias of 

covariance estimates and an increase in their variance, producing an unaccounted for thickening 

of the tails of test distributions, which leads to rejection rates greater than nominal size.  The 

failure and potential bias of asymptotic methods is, perhaps, most immediately recognized by 

noting that no less than one fifth of the equation-level coefficient covariance matrices in my 

sample are singular, implying that their covariance estimate of some linear combination of 

coefficients is zero, i.e. a downward bias of 100 percent.  Using the bootstrap I show that the 

conventional test statistics of my experimental papers, when corrected for the actual thickness of 

the tails of their distributions, produce significant results at rates that are close to those of 

randomization tests. 

Conventional econometrics, in effect, cannot meet the demands placed on it by the 

regressions of published papers.  Maximal leverage is high in the typical paper because the 

authors condition on a number of participant observables, either to improve the precision with 

which treatment effects are estimated or convince sceptical referees and readers that their results 

are robust.  These efforts, however, undermine the asymptotic theorems the authors rely on, 

producing test statistics that are biased in favour of rejecting the null hypothesis of no treatment 

effect when it is true.  Randomization inference, however, remains exact regardless of the 

regression specification.  Moreover, randomization inference allows the construction of omnibus 

Wald tests that easily combine all of the equations and coefficient estimates in a paper.  In finite 

samples such tests are a bridge too far for conventional econometrics, producing hopelessly 

singular covariance estimates and biased test statistics when they are attempted.  Thus, 

randomization inference plays a key role in establishing the validity of both themes in this paper, 

the bias of conventional methods and the importance of aggregating the multiplicity of tests 

implicitly presented in papers. 

In a paper of this sort it is important to follow transparent rules rather than opaque 

discretion.  To this end, I set up a set of criteria for inclusion in the sample (presented later) and 

test all treatment coefficients that can be analysed with randomization inference.  Authors might 

argue that this dilutes power, mixing in trivial details with key treatment procedures in joint tests 
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of significance.  To address this, I use additional rules to implement alternative procedures.  I 

separately analyse regressions where treatment measures divide the sample into mutually 

exclusive groups and where such regressions account for at least 1/3 of reported regressions.  

Because of the costs of implementation and their prominence in presentation, it is hard to argue 

that treatment measures that are applied to mutually exclusive groups were of no importance to 

the authors.  I find, however, that the reduction in significance brought about by joint testing is 

similar to that found in the full sample.  Authors might argue that only certain outcome variables 

were of interest to them.  I address this by restricting the sample in the omnibus test to dependent 

variables that are associated with significant treatment effects somewhere in the paper, with little 

change in overall results.  I supplement joint testing procedures, which maximize power for a 

diffuse alternative, with multiple testing procedures, which seek to maximize power on the axes 

(i.e. allowing some treatments to have effects and others not).  The results, in terms of the number 

of equations and papers where significant treatment effects are found, are again quite similar.  

The typical experimental paper honestly and forthrightly reports a vast number of tests, within 

equations and across equations, most of which yield no individually significant effects.  Any 

systematic procedure that accounts for all of this multiple testing must, inevitably, discount some 

of the individually significant results and conclude that there is much less evidence in favour of 

significant treatment effects than is nominally presented. 

The bootstrap plays an important supporting role in this paper.  Randomization tests are 

exact because they are based upon Fisherian thought experiments regarding experimental 

outcomes for a fixed experimental sample.  Readers raised on Neyman’s population sampling 

approach to statistical inference might find more credibility in the population resampling of the 

bootstrap.  The bootstrap not only confirms the randomization results on statistical significance, 

but also allows, through its population resampling, an exploration of size and power.  Bootstrap 

samples drawn from the experimental population itself provide a data generating process that 

mimics the characteristics of the experimental data, i.e. any heterogeneity in treatment effects or 

heteroskedasticity and correlation in errors.  When test statistics are centered on the experimental 

population mean, these samples allow an analysis of size, and show that all of the covariance 

estimation techniques used by authors are on average strongly biased in favour of rejecting the 

null.  When these bootstrap samples are used to test the null of no effects, they illustrate power 
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when the alternative of average treatment effects in the amounts actually found in the 

experiments is true.  In baseline simulations, the conventional methods used by authors appear 

more powerful than randomization tests for two reasons.  First, conventional techniques are 

biased in favour of rejection, a weakness when the null is true, but a positive feature when it is 

false.  Second, many authors cluster at a level below treatment groupings, maintaining that there 

is no cross-correlation in errors amongst individuals living together in regions or participating 

jointly in laboratory sessions.  When the clustering techniques used by authors are adjusted to 

treatment levels, or randomization inference is adjusted to incorporate the independence 

assumptions made by authors, the two techniques have virtually identical power.  Such 

adjustments, however, do little to change the significance rates in the analysis of the papers 

themselves.  In sum, the bootstrap shows that size, and not power, explains the difference 

between conventional and randomization results. 

The power of randomization tests is the subject of some confusion in casual discourse.  

First, they have a general reputation for low power, owing to the fact that they are often used in 

non-parametric tests, such as the Kolmogorov-Smirnov test of equality of distributions, which 

impose little structure on the problem.  Second, the fact that their theoretical motivation is based 

upon testing sharp hypotheses, e.g. the null that treatment has zero effects for each and every 

participant, while the typical econometric null is one of zero, but potentially heterogeneous, 

average treatment effects, leads to the belief that either (a) as the sharp hypothesis is more 

restrictive, power must be even greater than it would be if one were testing for average treatment 

effects; (b) the sharp hypothesis is so restrictive it tells us nothing about average treatment 

effects.  This discourse confuses motivations of size with determinants of power.  Much of 

applied econometrics consists of calculating conditional means.  When I implement 

randomization tests in this paper, I recalculate these conditional means, again and again, for 

different potential distributions of treatment.  While the sharp null motivates the test, in its 

implementation it amounts to no more, nor less, than calculating how conditional averages vary 

across potential distributions of treatment.  There is no intuition as to why the power of this test 

should be any different than that of conventional conditional mean calculations, and in fact it is 

not.  As already noted, in the context of bootstrap samples that mimic the data generating process, 

with all its heterogeneity, in the experiments themselves, I find that randomization and 
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conventional techniques have virtually identical power when the latter are exact and both 

methods make the same assumptions about the independence of residuals.  

 Notwithstanding its results, this paper confirms the value of randomized experiments.  

The methods used by authors of experimental papers are standard in the profession and present 

throughout its journals.  Randomized statistical inference provides a solution to the problems 

identified in this paper, avoiding a dependence on asymptotic theorems that produce inaccurate 

and biased finite sample statistical inference and allowing the simple calculation of omnibus tests 

that incorporate all of the regressions and tests run in an analysis.  While, to date, it rarely appears 

in experimental papers, which generally rely upon traditional econometric methods,3 it can easily 

be incorporated into their analysis.  As proven by Lehmann (1959), only a permutation test, and 

none other, can provide a finite sample exact test of a mean difference between two populations 

that does not depend upon knowledge of the characteristics of the disturbances.4  Thus, 

randomized experiments are ideally placed to solve both the problem of identification and the 

problem of accurate statistical inference, making them doubly reliable as an investigative tool. 

 The paper proceeds as follows:  Section II explains that the 53 paper sample is as 

comprehensive and non-discriminatory as possible, using virtually every paper published in the 

American Economic Review, American Economic Journal: Applied Economics and American 

Economic Journal: Microeconomics revealed by a search on the American Economic Association 

(AEA) website that satisfies a set of criteria derived from the needs and objectives of the analysis 

(i.e. public use data, do-files, data on participant characteristics that are used to condition 

regressions, and regressions that use conventional statistical inference but can be analysed using 

                                                   
3Of the 54 experimental papers that otherwise meet the criteria for inclusion in my sample (discussed 

below), only one uses randomization statistical inference throughout (and hence is not included in the final sample), 
while one other uses randomization inference to analyse results in some regressions and one more indicates that they 
confirmed the significance of results with randomization tests.  Wilcoxon rank sum tests are reported in four other 
papers.  These non-parametric tests are not precisely randomization tests, although Stata describes them as having 
randomization based Fisher exact distributions.  To calculate the distribution of a test statistic based upon 
randomization inference, one must replicate the randomization process.  Stata’s Wilcoxon test reshuffles treatment at 
the observation level, but these tests are used in papers which applied treatment in groups or stratified treatment.  
Hence, the distributions used to evaluate the test statistic are not the distributions that could have been produced 
under the randomization null (unless one wishes to add additional assumptions about the unimportance of the 
treatment groupings).  

4Naturally, this is only for a sharp mean difference, i.e. one where the values for each member of the 
population are specified.  For average differences with unspecified heterogeneity, the randomization test is not exact, 
but then again, neither is any other method, as the error terms become heteroskedastic in an unknown fashion.  
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randomization techniques).  About 70 percent of the 1954 regressions are ordinary least squares 

(OLS)5 and about 70 percent use the clustered or robust estimate of covariance.    

Section III provides a thumbnail review of the theory that underlies later empirical results.   

I show that an asymptotic maximum leverage of zero plays a role in many asymptotic theorems 

and that much of the sample is far from this ideal, with an average maximum leverage of .491 

and .616 in robust and clustered OLS regressions, respectively.  I argue that maximal leverage 

determines the bias and variance of the variance estimates of the robust and clustered covariance 

matrices.  The theory underlying randomization and bootstrap statistical inference is reviewed 

and several alternative measures, with different theoretical properties, are presented.  I note 

particular problems with the way authors implement the bootstrap, using non-pivotal statistics 

that depend upon a variance estimate whose sampling variation is not properly accounted for, 

producing spuriously high rejection rates.  

 Section IV presents the main empirical results.  I begin by reviewing the results on 

statistical significance in joint and multiple tests and the within and across equation coefficient 

correlation discussed above.  I then use bootstrap samples from the experiments themselves to 

explore the size and power properties of conventional and randomization tests.  I show that the 

size distortions of conventional tests, with an average rejection rate of .02 at the .01 level, but 

ranging as high as .886 for particular coefficients, are determined by the bias and variance of the 

variance estimate which, in the case of the robust and clustered covariance matrices, are related to 

maximal leverage.  For the type of average treatment effects present in the experimental 

population, the average power of conventional techniques in coefficient tests at the .01 level is 

.193, while that of different randomization tests is .156 and .168.  This is principally because 

many authors cluster at below treatment levels.  When conventional tests are adjusted to cluster at 

treatment levels, or randomization inference makes use of the independence assumptions authors 

make, the power differences between the two methods largely vanish.  Adjusting for the size bias 

of authors’ methods, one randomization method actually has as much as .052 ln proportional 

greater power at the .01 level than conventional methods, whereas without such adjustment its ln 

proportional power is still only -.025 less than biased conventional methods.  Motivated by these 

                                                   
5Throughout the paper I use the term regression broadly, allowing it to denote any statistical procedure that 

yields coefficient and standard error estimates. 
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investigations, I apply similar adjustments to the analysis of the papers themselves, and find they 

have little effect on the relative number of significant results found in conventional and 

randomization inference, confirming that power is not the main issue.  Section V concludes. 

 This paper follows R.A. Fisher, who in The Design of Experiments (1935) introduced the 

dual concepts of randomization tests and null hypotheses, arguing that permutations of possible 

treatments provided a “reasoned basis” of testing the null hypothesis of no effect without resort to 

distributional assumptions such as normality.  Fisher’s argument can be brought 80 years up to 

date simply by noting that it avoids dependence on asymptotic theorems as well.  Randomized 

allocation of treatment has played a role in medical trials and social research for decades,6 but the 

growth of randomized experiments in economics in recent years is largely due to Kremer and 

Miguel (2004), whose seminal field experiment sparked an enormous literature in development 

and other areas of economics.  Duflo, Glennerster and Kremer (2008) provide a useful overview 

of methods.  The growing dominance of randomized experiments in development research has 

inevitably led to a debate about its merits, with, as examples, Deaton (2010) providing a thought-

provoking critique arguing that randomized experiments face conventional econometric problems 

and Imbens (2010) making the case for the importance of identification and the accuracy of 

randomization inference.  This paper affirms both viewpoints, showing just how seriously biases 

in conventional econometric methods can undermine inference in randomized experiments, while 

arguing that randomization inference, available only to these papers, provides a natural solution 

to such problems.  

 The tendency of White’s (1980) robust covariance matrix to underestimate the sampling 

variance of coefficients and produce rejection rates higher than nominal size was quickly 

recognized by MacKinnon and White (1985).  The natural extension of White’s single 

observation method to correlated group data, the clustered covariance matrix, has also been found 

to produce excessively high rejection rates in simulations by Bertrand, Duflo and Mullainathan 

(2004) and Donald and Lang (2007).  The bootstrap samples of this paper affirm these results in a 

broad practical setting.  Chesher and Jewitt (1987) identified the link between maximum leverage 

and bias bounds for robust covariance matrices, while Chesher (1989) extended the analysis by 

                                                   
6For a description of some of the early social experiments, and the problems they faced, see Burtless (1995) 

and Heckman and Smith (1995). 
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showing how maximal leverage determines bounds on the variance of these matrices and, hence, 

the thickness of the tails of the test statistic distributions.  In this paper I provide systematic 

evidence that leverage, and not sample size, determines the bias and variance of variance 

estimates, and that these in turn determine the size bias of conventional t-tests.  Maximum 

leverage, and not sample size, is the best indicator of potential problems in the use of the robust 

and clustered covariance matrices. 

 The addition of multiple treatment measures and interactions to estimating equations is a 

form of specification search.  The need to find some way to evaluate, in its entirety, the 

information generated by specification searches was first raised by Leamer (1978), who 

addressed the problem using Bayesian methods.  This paper follows Leamer in recognizing that 

specification search is in many respects a natural part of scientific inquiry and should be neither 

condemned nor ignored completely, but instead incorporated in some fashion into our evaluation 

of evidence.  I use joint and multiple testing procedures of treatment coefficients to combine the 

information implicit in multiple tests within equations and across equations.  The omnibus test, in 

particular, combines all the treatment information in all of the regressions run in a paper.  In this, 

the integrity of authors in the presentation of the many specifications they ran allows, through the 

explicit consideration of the covariance of all the coefficients and equations, a null hypothesis test 

that fully incorporates all of the information generated by specification search.  

All of the results of this research are anonymized.  Thus, no information can be provided, 

in the paper, public use files or private discussion, regarding the significance or insignificance of 

the results of particular papers.  The public use data files of the AEA provide the starting point 

for many potential studies of professional methods, but they are often incomplete as authors 

cannot fully anticipate the needs of potential users.  Hence, studies of this sort must rely upon the 

openness and cooperation of current and future authors.   For the sake of transparency, I provide 

code and notes (in preparation) that show how each paper was analysed, but the reader eager to 

know how a particular paper fared will have to execute this code themselves.  Public use data 

files (in preparation) provide the results and principal characteristics of each regression in an 

anonymized fashion, allowing researchers to reproduce the tables in this paper and use the 

randomization and bootstrap data in further analysis.   
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II. The Sample 
 My sample is based upon a search on www.aeaweb.org using the keywords "random" and 

"experiment" restricted to the American Economic Review, American Economic Journal: 

Applied Economics and American Economic Journal: Microeconomics which, at the time of its 

last implementation, yielded papers up through the March 2014 issue of the AER.  I then dropped 

papers that: 

 (a) did not provide public use data files and Stata do-file code7; 
 (b) were not randomized experiments; 

(c) did not have data on participant characteristics; 
 (d) already used randomization inference throughout; 
 (e) had no regressions that could be analyzed using randomization inference.   

Public use data files are necessary to perform any analysis, and I had prior experience with Stata 

and hence could interpret do-files for this programme at relatively low cost.  Stata appears to be 

by far the most popular regression programme in this literature.   

 My definition of a randomized experiment excluded natural experiments (e.g. based upon 

an administrative legal change), but included laboratory experiments (i.e. experiments taking 

place in universities or research centres or recruiting their subjects from such populations).8  The 

sessional treatment of laboratory experiments is not generally explicitly randomized, but when 

queried laboratory experimenters indicated that they believed treatment was implicitly 

randomized through the random arrival of participants to different sessions.  I noted that field 

experiment terminology has gradually crept into laboratory experiments, with a recent paper 

using the phrase "random-assignment" no less than 10 times to describe the random arrival of 

students to different sessions, and hence decided to include all laboratory experiments that met 

the other criteria.9  Laboratory experiments account for 15 of the 53 papers but only 193 of the 

1954 regressions. 

                                                   
7Conditional on a Stata do-file, a non-Stata format data file (e.g. in a spreadsheet or text file) was accepted. 
8A grey area is experiments that take place in field “laboratories”.  If the experimental population is 

recruited from universities, I term these lab experiments (two papers), despite their location off campus.  
9A couple of lab papers tried to randomize explicitly, by assigning students to sessions, but found that they 

had to adjust assignment based upon the wishes of participants.  Thus, these papers are effectively randomizing 
implicitly based upon students’ selection of sessions, and I treat them as such in my analysis. 
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The requirement that the experiment contain data on participant characteristics was 

designed to filter out a sample that would use mainstream multivariate regression techniques with 

estimated coefficients and standard errors.  This removed a number of laboratory experiments, 

which tend to not have data on participant characteristics, use atypical econometric methods and 

whose passive randomization, if they dominated the sample, might raise concerns.  Conditional 

on a paper having public use data on participant characteristics, however, I included all 

regressions in a non-discriminatory fashion, including uncommon methods such as t-tests with 

unequal variances and tests of differences of proportions, as long as they produce a 

coefficient/parameter estimate and standard error.  Subject to the other criteria, only one paper 

used randomization inference throughout, and was dropped.  One other paper used randomization 

inference for some of its regressions, and this paper and its non-randomization regressions were 

retained in the sample. 

 Not every regression presented in papers based on randomized experiments can be 

analyzed using randomization inference.  For randomization inference to be possible the 

regression must contain a common outcome observed under different treatment conditions.  This 

is often not the case.  If participants are randomly given different roles and the potential action 

sets differ for the two roles (e.g. in the dictator-recipient game), then there is no common 

outcome between the two groups that can be examined.  In other cases, participants under 

different treatment regimes do have common outcomes, but authors do not evaluate these in a 

combined regression.  Consider for example an experiment with two treatments, denoted by T 

equal to 0 or 1, and the participant characteristic "age".  Under the null of no treatment effect, the 

regression  

 (1) y = α + βTT + βageage + βT*ageT*age + ε 

can be analysed by re-randomizing treatment T across participants, repeatedly estimating the 

coefficients βT and βT*age, and comparing their distribution to the experimentally estimated 

coefficients.  In many cases, however, authors present this regression as a paired set of "side-by-

side" regressions of the form y = α + βageage + ε for the two treatment regimes.  These regressions 

are compared and discussed, but there is no formal statistical procedure given for testing the 

significance of coefficient differences across regressions.  Within each regression there is no 
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coefficient associated with treatment, and hence no way to implement randomization inference.  

One could, of course, develop appropriate conventional and randomization tests by stacking the 

regressions into the form given by (1), but this implicitly involves an interpretation of the 

authors’ intent in presenting the side-by-side regressions, which could lead to disputes.10  I make 

it a point to always, without exception, adhere to the precise regression presented in tables. 

 Within papers, regressions were selected if, following (e) above, they allow for 

randomization inference and: 

 (f) appear in a table and either involve a coefficient estimate and standard error or a p-
value; 

 (g) pertain to treatment effects and not to an analysis of randomization balance, sample 
attrition, non-experimental cohorts, or first-stage regressions that do not involve treatment 
outcomes analysed elsewhere in the paper; 

while tests were done on the null that: 

 (h) randomized treatment has no effect, but participant characteristics or other non-
randomized treatment conditions might have an influence.  

In many tables means are presented, without standard errors or p-values, i.e. without any attempt 

at statistical inference.  I do not consider these regressions.  Alternative specifications for 

regressions presented in tables are often discussed in surrounding text, but catching all such 

references, and ensuring that I interpret the specification correctly is extremely difficult (see the 

discussion of do-file inaccuracies below).  Consequently, I limited myself to specifications 

presented in tables.  If coefficients appear across multiple columns, but pertain to a single 

statistical procedure, they are treated as one regression.  Papers often include tables devoted to an 

analysis of randomization balance or sample attrition, with the intent of showing that treatment 

was uncorrelated with either.  I do not include any of these in my analysis.  This is of course 

particularly relevant to the omnibus test of overall experimental significance.  To include 

regressions specifically designed to show that randomization successfully led to orthogonality 

between treatment and participant characteristics and attrition in the omnibus test of experimental 

significance would be decidedly inappropriate.  Similarly, I drop regressions projecting the 
                                                   

10Stacking the regressions often raises additional issues.  For example, there might be more clusters than 
regressors in each equation, but fewer clusters than regressors in the combined equation.  Individually, the 
covariance matrix of each side-by-side regression is non-singular, but if one stacks the regressions one ends up with 
a highly singular covariance matrix.  This issue (i.e. more regressors than clusters) is present in many papers which 
use the clustered covariance matrix.  One could argue that it implicitly exists in this side-by-side example as well, but 
only if one assumes that the stacked regression was the authors’ actual intent. 
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behaviour of non-treatment cohorts on treatment measures, which are typically used by authors 

to, again, reinforce the internal validity of the experiment.  In difference in difference equations, I 

only test the treatment coefficients associated with differences during the treatment period.  I also 

drop 14 first-stage regressions (in iv presentations) that relate to dependent variables that are not 

analysed as treatment outcomes elsewhere in the paper.  As discussed in the next section, these 

pertain to cases, such as take-up of an offered opportunity, where the influence of treatment 

cannot, by construction, be in doubt (e.g. one cannot take up an opportunity unless one is offered 

the chance to do so). 

 I, universally, test the null of no randomized treatment effect, while allowing  

non-randomized elements to influence behaviour.  For example, a paper might contain  

a regression of the form  

 εage*Tβage*TβTβαy(2) 1ageT0ageTT 10
  

where T is a 0/1 measure of treatment and T0 and T1 are dummies for the different treatment 

regimes.  The null of no treatment effect is given by re-expressing the regression as (1) earlier 

above and testing βT = βT*age=0, while allowing α and βage to take on any value.11  In more 

complicated situations the paper might contain randomized overall treatments (e.g. the 

environmental information provided to participants) combined with other experimental 

conditions which were not randomized (e.g. whether the participant is offered a convex or linear 

payoff in each round).  As long as the action space is the same under the different randomized 

treatments, I am able to test the null of no randomized treatment effect by re-randomizing this 

aspect across participants, while keeping the non-randomized elements constant.12  Such cases 

are quite rare, however, appearing in only two or three papers.  In most cases all experimental 

terms appearing in the regression were clearly randomized and all remaining regressors are clear 

non-experimental participant characteristics. 

 Having established (a)-(h) as my explicit sample selection guidelines, to avoid any 

implicit (and unknown) sample selection I did not allow myself the luxury of dropping papers or 

                                                   
11In these cases I am "changing" the regression specification, but the change is nominal.  I must also confess 

that in the case of one paper the set of treatments and coefficients was so restrictive that I could not see what the null 
of no treatment effect was (or if it was even allowed), and so dropped that paper from my analysis.   

12Thus, in the example just given, I test the null that the informational conditions had no effect, while 
allowing the payment scheme to have an effect. 
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regressions as it suited me.  This led to uneven levels of effort across papers.  The randomization, 

bootstrap and size analysis for some papers could be performed in less than an hour; for others, 

because of sample sizes and procedures, it took more than a year of dedicated workstation 

computing power.  The do-files for many papers are remarkably clear and produce, exactly, the 

regressions reported in the papers.  Other do-files produce regressions that are utterly different 

from those reported in the published paper, while yet others involve extraordinarily convoluted 

code (aimlessly loading, formatting, dropping, reloading and reformatting data again and again) 

that could never be implemented 10000 times (in randomization).  In between, there are 

gradations of error and complexity.  Rather than allowing myself to choose which papers were 

“too hard” to work through, I adopted the procedure of using the do-files, good or bad, as a 

guideline to developing shortened code and data files that would produce, almost exactly,13 the 

regressions and standard errors reported in the tables of the paper.  There are only a handful of 

regressions, across three papers, that I could not reproduce and include in my sample.14 

Regressions as they appear in the published tables of journals in many cases do not follow 

the explanations in the papers.  To give a few examples: 

(a) a table indicates date fixed effects or location fixed effects were added to the regression, 
when what is actually added is the numerical code for the date or location. 

(b) regressions are stacked, but not all independent variables are duplicated in the stacked 
regression. 

(c) clustering is done on variables other than those mentioned, these variables changing from 
table to table. 
(d) unmentioned treatment and non-treatment variables are added or removed between 
columns of a table. 

(e) cluster fixed effects are added in a regression where aspects of treatment are applied at the 
cluster level, so those treatment coefficients are identified by two observations which 
miscoded treatment for a cluster (I drop those treatment measures from the analysis). 

                                                   
13That is, differing at most in rounding error on some coefficients or standard errors or in the value of only 

one isolated coefficient or another.  Often, in my examination, I found that coefficients had been mistakenly placed 
in incorrect columns or rows.  I also found that authors that took the AEA’s instructions to provide code that 
produced tables too literally, i.e. by having the do-file try to extract the coefficients and put them in a table, 
generated the greatest number of errors.  Code is generally much more accurate when it simply produces a screen 
output that the user can interpret. 

14One additional paper had only one treatment regression, which I could not come anywhere near 
reproducing.  It is dropped from my sample. 
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In addition, as noted earlier, covariance matrices are very often singular, and in many cases Stata 

notes this explicitly, either by telling the user that the estimation procedure did not converge or 

that the covariance matrix is remarkably singular.  Initiating a dialogue with authors about these 

issues, as well as the many cases where the do-file code does not produce the regressions in the 

paper, would have generated needless conflict, created a moving specification target, and added 

yet more time to the three years spent in preparing the estimates of this paper.  The programming 

errors inflicted on authors by their research assistants are enough to drive a perfectionist to 

distraction, but have no relevance for this paper, which concerns itself with statistical inference 

and not the appropriateness of regression specifications.  I mention the above examples to 

forestall criticism that the regressions I analyse are not those described in the papers.  This paper 

analyses statistical inference in regressions as they appear in tables in the journals of the 

profession, recognizing that in some cases these regressions may not reflect the intent of the 

authors. 

 To permute the randomization outcomes of a paper, one needs information on 

stratification (if any was used) and the code and methods that produced complicated treatment 

measures distributed across different data files.  Stratification variables are often not given in 

public use files nor adequately or, upon careful examination, correctly described in the paper.  

Code producing treatment measures is often unavailable, and it is often impossible to link data 

files, as the same sampling units are referenced with different codes or without codes at all.  I 

have called on a large number of authors who have generously answered questions and provided 

code and data files to identify randomization strata, create treatment measures and link data files.  

Knowing no more than that I was working on a paper on experiments, these authors have 

displayed an extraordinary degree of scientific openness and integrity.  Only two papers, and an 

additional segment from another paper, were dropped from my sample because authors could not 

provide the information on randomization strata and units necessary to re-randomize treatment 

outcomes. 

 Table I below summarizes the characteristics of my final sample, after reduction based 

upon the criteria described above.  I examine 53 papers, 15 of which are laboratory experiments 

and 38 of which are field experiments.  A common characteristic of laboratory experiments, 

which recruit their subjects from a narrow academic population, is that treatment is almost always 
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Table I:  Characteristics of the Sample 

                   53 papers         1954 regressions 
location journal Type covariance 

38 
15 

field 
lab 

29 
20 

4 

AER 
AEJ: Applied Economics 
AEJ: Microeconomics 
 

1371  
322  
67  

194 

ordinary least squares 
maximum likelihood 
generalized least squares 
other 

447  
979 
311 
126  

91 

default 
clustered 
robust 
bootstrap 
other 

  Notes:  AER = American Economic Review; AEJ = American Economic Journal. 

 

administered at the sessional level and implicitly randomized, as noted earlier, through the 

random arrival of subjects to sessions.  29 of the papers in my final sample appeared in the 

American Economic Review, 20 in the American Economic Journal: Applied Economics, and 

only 4 in the American Economic Journal: Microeconomics.  Turning to the 1954 regressions, 70 

percent of these are ordinary least squares regressions and an additional 16 percent are maximum 

likelihood estimates (mostly discrete choice models).  Generalized least squares, in the form of 

weighted regressions based upon a pre-existing estimate of heteroskedasticity or random effects 

models, make up another 3 percent of the sample.  The final residual category, "other", accounts 

for 10 percent of regressions and includes handfuls of instrumental variables regressions, 

population weighted regressions, quantile regressions, seemingly unrelated estimates, tests of 

difference of proportions, t-tests with unequal variances, two-step Heckman models, two-step 

ordinary least squares regression estimates, and weighted average treatment effects.15 

 A little under a quarter of the regressions in my sample make use of Stata's default 

covariance matrix calculation.  Half of all regressions, however, avail themselves of the cluster 

estimate of covariance and about another 16 percent use the robust option, a single observation 

version of the clustered matrix.  I discuss and analyse robust covariance estimates separately from 

clustered because the grouping of observations in clusters makes the sampling distribution of the 

test statistic dependent upon a somewhat different measure of maximal leverage, as explained in 

the next section.  Bootstrap and "other" methods (consisting of the jackknife and the hc3 and brl 

bias corrections of the robust and cluster options) make up the remainder of the sample. 

                                                   
15I include t-tests with equal variances, as well as any other Stata command that can be re-expressed as an 

ordinary least squares regression, under the OLS category. 
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III:  Theory 
 In this section I provide a thumbnail sketch of the econometric issues and techniques that 

underlie later empirical results, focusing on statistical inference.  First, I lay out the argument that 

the design of the typical experimental regression invalidates appeals to asymptotic theorems.  In 

particular, I argue that maximal leverage provides a metric of how "asymptotic" the sample is and 

that, on this measure, the typical experimental regression is indeed very far from asymptopia.16  I 

link maximal leverage to variation in the bias and variance of the clustered and robust covariance 

estimates which I show later on explains all of the average empirical coverage bias of 

conventional tests.  The discussion in this part is limited to OLS regressions, which account for 

70 percent of all regressions in my sample.  Extensions to some non-OLS frameworks are 

possible, but involve additional complexity.  

 Second, having established that there are problems with conventional statistical inference 

in my sample papers, I present a thumbnail sketch of the theory and methods underlying 

randomization statistical inference which, given randomization, allows test statistics with 

distributions that are exact (i.e. known) regardless of sample size, regression design or the 

characteristics of the error term.  I establish terminology and describe alternative measures whose 

relative power has been theoretically explored.  Third, as the bootstrap also features in 

experimental papers and provides an alternative sampling-based procedure for inference, I review 

this method as well.  As in the case of randomization inference, the bootstrap can be calculated in 

a number of ways.  I note that the method implemented by Stata and its users is theoretically 

known to be less accurate and, in application, is systematically biased in favour of rejecting null 

hypotheses.  Finally, I review the difference between joint and multiple hypothesis testing 

procedures, explaining why the latter might have greater power to uncover alternatives of 

relevance to authors of experimental papers.  

(a) Leverage and the Road to Asymptopia 

 Consider the regression model y = Xβ + ε, where ε is an n x 1 vector of (possibly non-

normal) disturbances with covariance matrix Σ.17  The hat matrix (Hoaglin and Welsch 1978) is 
                                                   

16With a respectful tip of the hat to Leamer (2010). 
17I follow conventional notation, using bold capital letters to denote matrices, bold lower case letters to 

denote column vectors and lower case letters with subscripts to denote elements of vectors and matrices. 
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given by XX)XX(H 1    and derives its name from the fact that it puts a hat on y as 

HyyXX)XX(βXy 1  ˆˆ . The element hij is the derivative of the predicted value of yi with 

respect to observation yj.  hii, the influence of observation yi on its own predicted value, is known 

as the leverage of observation i.  H is symmetric and idempotent, so we have 

 ,)3( 2222
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ijii

j
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from which it follows that 01  iih .  Average leverage is given by k/n as 
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As the number of observations increases, average leverage falls.  However, the maximum 

leverage in the sample, max
iih , need not.  For example, if the regression contains a dummy variable 

for a particular cluster, the hii in that cluster (and by extension the maximum hii) always remains 

above 1/ng, where ng equals the number of observations in the cluster group.18  Since 

nkhh iiii /max  , maximum leverage cannot go to zero unless n → ∞, but n → ∞ does not 

guarantee max
iih → 0.  As can be seen from (3), when maximum leverage goes to zero all off-

diagonal elements in H go to zero as well. 

 Maximum leverage plays a critical, if largely unseen, role in standard econometric 

theorems.  Textbook proofs of the asymptotic consistency or normality (in the presence of non-

normal disturbances) of β̂ , for example, typically start by assuming that the limit as n → ∞ of 

X´X/n = Q, a positive definite matrix.  As shown in the on-line appendix, a necessary condition 

for this is that max
iih  go to 0.  When this condition does not hold, no alternative proof of 

consistency and normality exists, as Huber (1981) showed that if 0lim max  iin h  then at least 

one element of β̂  is in fact not a consistent estimator of the corresponding element in β and, in 

the presence of non-normal disturbances, is not asymptotically normally distributed.19  The 

intuition for these results is trivial.  With non-negligible maximum leverage, the predicted value 
                                                   

18Removing the dummy variable for cluster g from the list of regressors, let Z denote the residuals of the 
remaining regressors projected on that dummy (in practice, this means that the values within cluster g have their 
cluster mean removed and all other non-g values are unchanged).  Then, using results on partitioned matrices, we 
find that for any i in cluster g hii = 1/ng + zi′(Z′Z)-1zi ≥ 1/ng, where zi′ is the ith observation row of Z. 

19Huber actually showed that that some of the fitted (predicted) values of yi will neither be consistent nor, in 
the event of non-normal disturbances, normal.  Since the fitted values are a fixed linear combination of the 
coefficients, it follows that at least one coefficient must not be consistent or normal. 
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for some observations is moving with the error terms for those observations.  This can only 

happen if some of the estimated parameters in β̂are moving as well.  Consequently, it is not 

possible for the probability that all elements of β̂  deviate from β by more than epsilon to fall to 

zero, as some must always remain dependent upon the stochastic realization of a small number of 

disturbances.  Moreover, the dependence upon a small number of disturbances eliminates the 

averaging implicit in central limit theorems, so some elements of β̂  retain the distributional 

characteristics of non-normal errors. 

Maximum leverage also plays a role in determining the finite sample behaviour of the 

robust and clustered covariance estimates.  With non-stochastic regressors, the estimated 

coefficients of the regression model described above have the well-known covariance matrix 

1111 X)XΣX(XX)X(X)XX(εεXX)X(ββββV   ][)ˆ)(ˆ()5( EE  

The robust and clustered covariance matrices are calculated using the formulas: 
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where c denotes a finite sample adjustment, subscript i an observation and g a cluster, 

i̂ and gε̂ the estimated residuals of observation i and cluster g, respectively, and where I use the 

notation {a} to denote a diagonal or block diagonal matrix with diagonal elements a.  White 

(1980) argued that, under certain assumptions, VR is a consistent estimator of V when Σ is 

diagonal, and VCl is a natural extension of his work to the case where Σ is block diagonal by 

cluster.  White (1980) assumed that the limit as n → ∞ of XX /n = Q, a positive definite matrix, 

so it is perhaps not surprising to find that leverage plays a key role in determining the bias and 

variance of the robust and clustered covariance estimates. 

In Young (2016) I show that when ε is distributed iid normal bounds on the bias of the 

robust and clustered estimates of the variance of any linear combination w of the estimated  

coefficients β̂  are given by: 
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where max
iih and min

iih are the maximum and minimum diagonal elements of the hat matrix 

(leverage) and λmax({Hgg}) and λmin({Hgg}) the maximum and minimum eigenvalues of the block 
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diagonal matrix made up of the sub-matrices of the hat matrix associated with the cluster 

observations.  In referring to clustered covariance estimates, I shall use the term “maximal 

leverage”, somewhat loosely, to denote λmax({Hgg}), as in theoretical results this is the cluster 

counterpart of max
iih . 

Intuition for this bias result can be found by considering the way in which least squares 

fitting results in an uneven downward bias in the size of residuals.  To this end, let the symmetric 

and idempotent matrix M = I – H denote the “residual maker”, as the estimated residuals are 

given by .ˆˆ Mεε)M(XβMyyyε    Consequently, εm iiε̂ , where im  is the ith row of 

M20 and the expected value of the ith squared residual has a downward bias determined by 

leverage as )1(}{)()ˆ( 2222
iiiii hmEεE   iiii mmmεεm , where I have made use of the 

fact that M is idempotent and the assumption that ε is distributed iid.  The conventional OLS 

estimate of variance treats all residuals symmetrically, summing them and dividing by n-k.  This 

yields an unbiased estimate of σ2 as (n-k)-1Σσ2(1-hii) = (n-k)-1σ2(n-k) = σ2.  The robust covariance 

estimate, however, is an unevenly weighted function of the residuals, which allows a bias that is 

determined by the range of the bias of the residuals.  In the case of the clustered covariance 

estimate, which places uneven weight on clusters of residuals, the range of bias is greater as 

λmax({Hgg}) ≥ max
iih and λmin({Hgg}) ≤ min

iih  (as proven in Young 2016).  In practice,  λmin({Hgg}) 

and min
iih vary little, as they must lie between 0 and k/n, while λmax({Hgg}) and max

iih vary a lot, as 

they lie between k/n and 1.  Thus, variation in maximal leverage is the principal determinant of 

the range of potential bias.21 

 Leverage also plays a role in determining the variance of the robust or clustered 

covariance estimate and hence, by extension, the thickness of the tails of the distribution of the 

test statistic.  Consider the linear combination of coefficients given by w = xi, where xi′ is the ith 

observation row of X.  In this case, the robust estimate of the variance of βw ˆ  is given by w′VRw 

= iiiRiiiR cc hhxX)XX(XX)X(x 11 }ˆ{}ˆ{ 22    , where hi′ is the ith row of H.  As hii, the leverage of 

observation i, increases, all the other hij (j ≠ i) elements of hi go to zero, as can be seen in (3) 

                                                   
20

im is the ith column of M, but as M is symmetric, im is also the ith row.  
21Across my sample of 1371 OLS regressions, the standard deviation of hii

min is .027, while that of hii
max is 

.383; similarly, across the 824 OLS regressions which cluster, the standard deviation of λmin({Hgg}) is .001, while 
that of λmax({Hgg}) is .615. 
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above.  Consequently, the covariance estimate places weight on a smaller and smaller subset of 

residuals and, in the limit, depends upon only one residual.  This reduced dimensionality 

increases the variance of the variance estimate, as an estimate made up of a smaller number of 

random variables is more variable.  In Young (2016) I establish the following bounds on the 

“effective degrees of freedom” that characterize the distribution of the t-statistic for any 

hypothesis test based upon a linear combination of the estimated coefficients using the robust and 

clustered covariance estimates when the error disturbances are iid normal: 

)1})({,1max(edf),1min(    ),1)(,1max(edf)8( 1max
Cl

1max
R  

ggHkn-nhkn cii  

where nc is the number of clusters.22  The n-k and nc-1 degrees of freedom typically used to 

evaluate test statistics based upon these covariance matrices are the upper bound on the realized 

distributions, i.e. actual tails can only be thicker than is customarily assumed. 

Equations (7) and (8) describe bounds.  If, however, one thinks of different hypothesis 

tests as producing results that randomly range within these bounds, it is easy to see why high 

maximal leverage leads to biased statistical inference.  As maximal leverage rises, the range of 

bias increases, producing over and under estimates.  With good finite sample corrections cR and 

cCl, the covariance estimates may remain, on average, unbiased.23  However, since they appear in 

the denominator of test statistics, their variation, by Jensen’s inequality, increases the average 

absolute value of test statistics which tends to raise the average rejection rate across hypothesis 

tests.  High maximal leverage also allows effective degrees of freedom to fall, i.e. the higher 

variance of the covariance estimate produces thicker tails than indicated by the n-k or nc-1 

degrees of freedom used to evaluate the test statistics, raising rejection rates above the putative 

nominal size of the test.  This effect tends to produce higher than nominal rejection rates in each 

and every hypothesis test.  Because of a strongly positively biased covariance estimate, it is 
                                                   

22The bounds for robust covariance estimates in (7) and (8) can be found in Chesher and Jewitt (1987) and 
Chesher (1989).  Those for the clustered case are my extension of their results. 

23Since, with iid errors, the ith residual underestimates its own variance by 1-hii, the average residual 
underestimates its own variance by n-1Σ(1-hii) = (n-k)/n.  This suggests an n/(n-k) finite sample correction, which is 
what is typically used for VR.  In the case of VCl, Stata applies an (n-1)nc/(n-k)(nc-1) correction in the case of the reg 
or areg clustered commands, which, for large n and nc, is approximately equal to n/(n-k).  In the case of the xtreg fe 
clustered command, however, Stata uses (n-1)nc/(n-k+kfe)(nc-1), where kfe is the number of fixed effects.  This 
produces systematically lower p-values than the otherwise identical areg command.  Three papers in my sample use 
the xtreg fe clustered command in 100 regressions and I find that the alternative degrees of freedom adjustment 
reduces the variance estimate by .85 on average and .5 in one instance. 
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Table II: Regression Design in the Sample Papers (1371 OLS regressions) 

 mean min .01 .05 .10 .25 .50 .75 .90 .95 .99 max 

Cumulative distribution of y values and normality of residuals 

# of y values 326 2 2 2 2 2 12 135 500 2548 4225 13e3 

Modal share .468 3e-4 .001 .005 .021 .125 .530 .736 .917 .963 .993 .9999 

Normality of ̂  .012 0 0 0 0 0 0 1e-10 6e-4 .011 .422 .848 

Cumulative distribution of leverage 

iih  .051 2e-5 1e-4 1e-3 .002 .008 .026 .058 .148 .207 .330 .533 

max
iih  .384 4e-5 2e-4 .002 .008 .025 .198 .729 1 1 1 1 

VR: max
iih  .493 .001 .001 .002 .014 .170 .404 1 1 1 1 1 

VCl: })({max
ggΗ  .615 9e-4 .016 .038 .053 .207 .701 1 1 1 1 1 

  Notes:  aeb stands for a*10b. Normality = p-value in Stata's sktest of normality of residuals based on skewness 
and kurtosis.  VR & VCl = leverage distribution measures calculated for the 160 and 824 OLS regressions, 
respectively, which use the robust or clustered estimate of covariance. iih and max

iih , average and maximum 
leverage.  λmax({Hgg})= maximum eigenvalue of the block diagonal matrix made up of the elements of the hat 
matrix associated with the cluster groups. 

 

possible that actual size remains less than nominal value in any particular test, but, on average, 

across all hypothesis tests, the variation in bias and excess variation in the covariance estimate 

produce higher than nominal rejection rates. 

The practical relevance of the theoretical issues discussed above is shown in Table II, 

which summarizes key features of OLS regression design in my sample of experimental papers.  

As shown in the top row, the dependent variable typically takes on very few values and in 43 

percent of regressions is, in fact, a 0/1 dichotomous variable.24  The share of the modal y value is 

also typically quite high, exceeding .530 in ½ of regressions and, extraordinarily, .963 in 1/20th of 

the sample.25  Not surprisingly, tests of the normality of residuals reject the null, at the 1 percent 

level, 95 percent of the time.  Using bootstrap samples to simulate the sampling distribution of 
                                                   

24These are linear probability models, not probits or logits. 
25Including two regressions with 33103 observations in which the y variable takes on an alternate value for 

only 4 observations and 7 other regressions, with 217 to 840 observations each, in which the y variable takes on an 
alternate value in 1 observation alone.  The sensitivity of results to a few observations in cases with high modal 
shares is obviously an issue, but in this paper I focus on inference alone, taking samples and regression specifications 
as given. 
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the coefficients (further below) I find that these reject the null of the normal distribution 43 

percent of the time at the .01 level, a consequence of the non-normality of the residuals and high 

leverage.  Practically speaking, however, these non-normal distributions have tails which, 

variance adjusted, are not systematically thicker or thinner than those of the normal distribution, 

so the pervasive non-normality, while highlighting how far the typical regression is from the 

asymptotic ideal, does not lead to systematic bias in test statistics. 

Moving to the independent variables, we see that the typical paper has an average 

leverage of .051, indicating about 20 observations per regressor, with about 5 percent of the 

sample showing an average leverage greater than .2, i.e. less than 5 observations per regressor.  

Despite having an average of 5300 seemingly asymptotic observations per regression, maximal 

leverage tends to be quite high, averaging .383 and exceeding .729 in one quarter of regressions.  

These results have implications for the normality of estimated coefficients.  The third row 

examines the 160 OLS regressions which use the robust estimate of covariance (VR), where 

leverage affects both normality and the accuracy of the covariance estimate.  Here, unfortunately, 

maximal leverage is higher, averaging .493 and equalling 1 in 33 percent of the robust covariance 

estimate sample.  In the 824 OLS regressions which use the clustered estimate of covariance 

(VCl), the situation is, effectively, much worse as the average maximal eigenvalue of the blocks 

of the hat matrix associated with the cluster groups, which is what matters for these matrices, is 

.615, with 39 percent of the sample showing a maximum eigenvalue of 1.  

 Readers familiar with leverage will know that it is possible to make too much of high 

leverage values.  Just as the influence of leverage on estimated coefficients depends upon its 

interaction with residuals,26 so too does its influence on consistency, normality and covariance 

estimation.  Consider the case where regressor x1 takes on the value of 1 for observation #1, and 

0 for all others.  The estimated residual for observation #1 will always be zero and its leverage, 

and the maximum leverage in the regression, equals 1.  The estimated coefficient 1̂  on x1 will be 

inconsistent and, if the disturbance is non-normal, non-normal as well.  However, none of this 

matters at all for the remainder of the regression, where the estimated coefficients, residuals and 

standard errors (robust or otherwise) are completely independent of observation #1, x1 and 1̂ .  

                                                   
26For an intuitive discussion see Fox (2008). 
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Consequently, assuming asymptotically vanishing leverage in the remaining observations, they 

are consistent and normal with a covariance matrix that is asymptotically consistently estimated 

by the unbiased robust or clustered covariance matrix.  This extreme example, while instructive, 

is not of much relevance, as regressions generally do not contain regressors of this type.  In my 

analysis further below I find that regressions with a maximal leverage of 1 suffer a reduction in 

effective degrees of freedom consistent with the influence of the lower bound in other equations 

and a variance estimate downward bias which, while not attaining the potential bias of 100 

percent implied by (7), is nevertheless substantial. 

 Huber (1981, p. 162), in his study of robust statistics, advised  

...large values of hii should serve as warning signals that the ith observation may have a 
decisive, yet hardly checkable, influence.  Values hii ≤ 0.2 appear to be safe, values 
between 0.2 and 0.5 are risky, and if we can control the design at all, we had better avoid 
values above 0.5. 

Huber's concern was the sensitivity of coefficient estimates to particular observations.  In this 

paper I take coefficient estimates as inviolate, and focus on the accuracy of tests of significance.  

The bounds presented above show how badly leverage can bias statistical inference.  With a 

maximal leverage of .5, the downward bias of the covariance estimate can be as high 50 percent 

and the effective degrees of freedom reduced to 1, i.e. distributional tails with a thickness equal to 

that reached when n-k = 1.  In this context, Huber's cautionary advice is perhaps worth 

considering. 

 (b) Randomization Statistical Inference 

Randomization statistical inference provides exact tests of sharp (i.e. precise) hypotheses  

no matter what the sample size, regression design or characteristics of the disturbance term.  The 

typical experimental regression can be described as yi = ti′βt + xi′βx + εi, where ti is a vector of 

treatment variables27 and xi a vector of other causal determinants of yi, the dependent variable of 

interest.  Conventional econometrics describes the statistical distribution of the estimated βs as 

coming from the stochastic draw of the disturbance term εi, and possibly the regressors, from a 

population distribution.  In contrast, in randomization inference the motivating thought 

experiment is that, given the sample of experimental participants, the only stochastic element 
                                                   

27Which may contain interactions with non-treatment characteristics, as in the case of βT*ageT*age in (1) 
earlier above. 
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determining the realization of outcomes is the randomized allocation of treatment.  For each 

participant, yi is conceived as a determinate function of treatment yi(ti) following the equation 

given above and the stochastic realization of ti determines the statistical distribution of the 

estimated βs.  As such, it allows the testing of sharp hypotheses which specify the treatment 

effect for each participant, because sharp hypotheses of this sort allow the calculation of the 

realization of the estimated βs for any potential random allocation of treatment. The Fisherian 

null hypothesis of no treatment effect is that yi(ti) = yi(0) for all i and all treatment vectors ti, i.e. 

the experiment has absolutely no effect on any participant.  This is not a null of zero average 

treatment effect, it is a null of no effect whatsoever on any participant. 

An exact test of the Fisherian null can be constructed by calculating all of the possible 

realizations of a test statistic and rejecting if the observed realization in the experiment itself is 

extreme enough.  Specifically, let the matrix TE composed of the row vectors ti′ denote the 

treatment allocation in the experiment.  In the typical experiment this matrix has a finite universe 

Ω of potential realizations.  Say there are S elements in Ω, with Tn denoting a particular element.  

Let f(Tn) be a statistic calculated by inserting matrix Tn into the estimating equation given earlier 

above, and let f(TE) denote the same statistic calculated using the actual treatment applied in the 

experiment.  Under the null of no treatment effect, yi = xi′βx + εi is the same no matter which 

treatment is applied, i.e. experimental outcomes would have been exactly the same regardless of 

the specific randomized draw of TE from Ω, so f(Tn) can be calculated by regressing the fixed 

observed values of yi on the fixed regressors xi and randomly varied treatment vector ti.  The p-

value of the experiment’s test statistic is given by: 
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where In(>TE) and In(=TE) are indicator functions for f(Tn) > f(TE) and f(Tn) = f(TE), respectively, 

and U is a random variable drawn from the uniform distribution.  In words, the p-value of the 

randomization test equals the fraction of potential outcomes that have a more extreme test 

statistic added to the fraction that have an equal test statistic times a uniformly distributed random 

number.  In the on-line appendix I prove that this p-value is always uniformly distributed, i.e. the 

test is exact, regardless of the sample size or the characteristics of yi, xi and εi. 
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Calculating (9), evaluating f(Tn) for all possible treatment realizations in Ω, is generally 

impractical.  However, under the null random sampling with replacement from Ω allows the 

calculation of an equally exact p-value provided the original treatment result is automatically 

counted as a tie with itself.  Specifically, with N additional draws (beyond the original treatment) 

from Ω, the p-value of the experimental result is given by: 
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In the on-line I appendix I show that this p-value is uniformly distributed regardless of the 

number of draws N used to evaluate the test statistic. 28 This establishes that size always equals 

its nominal value.  Power, however, as shown by Jockel (1986), is increasing in N.29  Intuitively, 

as the number of draws increases the procedure is better able to identify what constitutes an 

outlier outcome in the distribution of the test statistic f().  In my analysis of the experimental 

papers I use 10000 draws to evaluate (10).  When compared with results calculated with fewer 

draws, I find no appreciable change in rejection probabilities beyond 2000 draws, suggesting that 

increasing N beyond 10000 would have no effect on the results. 

 In the analysis below, for theoretical reasons associated with both randomization 

inference and the bootstrap, I make use of two randomization based test statistics.  The first is 

based upon the comparison of the Wald statistics of the conventional econometric two-sided test 

of the null hypothesis of no treatment effect.  The Wald statistic for the conventional test is given 

by )(ˆ)(ˆ)(ˆ
nt

1
ntnt Tβ)TβV(Tβ  , where )βV(β tt

ˆ and ˆ  are the regression’s treatment coefficients and 

the estimated variance of those coefficients, so this method in effect calculates the probability 

 )ˆˆ(ˆ)(ˆ)(ˆ)(ˆ)11( Et
1

EtEtnt
1

ntnt (Tβ))(Tβ)V(TβTβ)TβV(Tβ   . 

I use the notation (Tn) to emphasize that both the coefficients and covariance matrix are 

calculated for each realization of the randomized draw Tn from Ω.  In the univariate case the 

statistic reduces to a comparison of the squared values of the t-statistics, and consequently I dub 

this test the randomization-t. 

                                                   
28The proof is a straightforward generalization of Jockel’s (1986) result for nominal size equal to an integer 

multiple of 1/(N+1).   
29Provided power itself is a concave in the nominal size of the test. 
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 An alternative test of no treatment effects, similar to some bootstrap techniques, is to 

compare the relative values of )(ˆ)(ˆ)(ˆ
nt

1
tnt Tβ)ΩβV(Tβ  , where )ΩβV( t )(ˆ  is the covariance of tβ̂  

across the universe of potential treatment draws in Ω.  In this case, a fixed covariance matrix is 

used to evaluate the coefficients produced by each randomized draw Tn from Ω, calculating the 

probability 

 )(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)12( Et
1

tEtnt
1

tnt Tβ)ΩβV(TβTβ)ΩβV(Tβ   . 

In the univariate case, this reduces to the square of the coefficients divided by a common variance 

and hence, after eliminating the common denominator of both sides, is basically a comparison of 

squared coefficients.  Hence, I refer to this comparison as the randomization-c.  I use the 

coefficient covariance across the 10000 randomization draws to approximate )ΩβV( t )(ˆ .30 

I use the two versions of the randomization test, the -t and -c, to provide counterparts to 

commonly used bootstrap tests. Lehmann (1959) showed that in the simple test of mean 

differences between treatment and control with iid errors the randomization-t is uniformly most 

powerful and asymptotically identical to the conventional t-test of no treatment effect.  Despite 

this result, I find that in practical application, with the type of errors and treatment effects present 

in my experimental sample, the randomization-c is, if anything, actually more powerful than the 

randomization-t.  Across most tables, however, the two methods produce very similar results.  

The same cannot be said, however, for analogous bootstrap tests, which produce systematically 

different results for reasons that are explained below. 

The randomization-c allows for an easy omnibus test of the overall statistical significance 

of all of the regressions in an experimental paper.  One simply stacks all the treatment 

coefficients from all of the regression equations, draws repeated randomization treatments Tn 

from Ω, and calculates (12) above, with tβ̂  denoting all treatment coefficients in the paper.  The 

estimated covariance of these coefficients in the universe Ω is simply calculated from their joint 

realizations.  An omnibus version of the randomization-t is much more difficult, as it requires an 

iteration by iteration estimate of )TβV( nt )(ˆ , including the covariance of coefficients across 
                                                   

30Strictly speaking, in multi-coefficient tests the test statistics f(Tn) are now a function of the joint 
realization of the randomization draw, so the proof of exactness for a finite number of draws in the on-line appendix 
is no longer valid.  My intent, however is to provide a counterpart to a common bootstrap technique; with 10000 
draws I should have a fairly close approximation of the true coefficient covariance matrix; and in tests of an 
individual coefficient the variance cancels from both sides of (12), so the proof of exactness remains valid. 
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equations.31  In a single equation setting, as already noted, I find very little difference in the 

simulated power and test outcomes of the randomization-t and -c.  

 I conclude this presentation by noting some of the details of my methods.  First, in 

calculating the Tn specific coefficient covariance matrix, I defer to the decisions made by authors 

and use their covariance estimation methods no matter how complex, computationally intensive 

or, to my eye, flawed they may be.32  This maintains my rule of following author methods as 

closely as possible in assessing their results.  Second, in producing the randomization distribution 

I do not calculate one equation at a time, but rather apply the randomized experimental treatment 

draw Tn to the entire experimental data set, and then calculate all equations together.  This allows 

the calculation of the cross-equation covariance of all regression coefficients that allows me to 

calculate the omnibus randomization test described above.  As I apply the randomized treatment 

outcome to the sample, I recalculate all variables that are contingent upon that realization, e.g. 

participant characteristics interacted with treatment outcomes.  I also reproduce any coding errors 

in the original do-files that affect treatment measures, e.g. a line of code that unintentionally 

drops half the sample or another piece that intends to recode individuals of a limited type to have 

a zero x-variable but unintentionally recodes all individuals in broader groups to have that zero x-

variable.  All of this follows the Fisherian null:  all procedures and outcomes in the experiment 

are invariant with respect to who received what treatment. 

                                                   
31White (1982) showed that an asymptotically valid estimate of the covariance matrix for all of the 

coefficients estimated in multiple equations is given by yet another sandwich covariance matrix, with the block 
diagonal default covariance matrix of the individual equations as the bread and the outer product of the equation 
level scores as the filling (see also Weesie 1999).  The practical barriers to its implementation, however, are 
staggering.  Many estimation procedures do not produce scores.  Many papers present the relevant data in multiple, 
differently organized, data files, so the cross-product of scores is extraordinarily difficult to form.  When scores can 
be calculated within a single data file, the resulting covariance matrices, calculated across all of the equations and 
their coefficients, often exceed the 11k x 11k limitations of Stata and, when they do not, are often hopelessly 
singular, even within the sub-matrices defined only by treatment variables.  Finally, I find that the use of this multi-
equation covariance estimate to test joint hypotheses on treatment measures in just 10 to 14 equations (let alone 
dozens) in one of my sample papers, using Stata’s suest command, produces some of the most extraordinary size 
distortions, with an average rejection probability of .25 at the .01 level.  This suggests that White’s multi-equation 
covariance estimation procedure, where it can be implemented, is not very accurate in finite samples. 

32Thus, in the three papers where authors bootstrap 100s of iterations for their estimate of covariance, I do 
the same for each of the 10000 iterations of the randomization-t.  In another case, the authors use an incorrect code 
for calculating the biased-reduced linearization (brl) estimate of covariance which unfortunately also executes 
extraordinarily slowly.  Rather than substitute my own faster brl code (which I wrote to confirm the errors) I 
implement their code time and again.  Producing the randomization estimates for each of these papers takes 6 months 
of workstation time. 
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Third, in executing randomization iterations33 I accept an iteration, even if the covariance 

matrix is singular, as long as Stata produces a coefficient estimate and standard error for the 

treatment variable.  I state this to avoid criticism that I use inappropriate coefficient estimates.  In 

my sample no less than one-fifth of the original regressions have singular covariance matrices.  

This generally arises because of maximal leverage of 1 in robust and clustered covariance 

matrices, but it also regularly occurs because maximum likelihood procedures do not converge 

and/or authors estimate equations that are guaranteed to have singular covariance matrices.  Stata 

usually warns the user that the procedure did not converge, or when the covariance matrix is 

highly singular and suspect.  Coefficients and standard errors produced by these methods are 

accepted and reported in journal tables.  In order to be able to analyse the sample, and in the spirit 

of the Fisherian null that all procedures and outcomes are invariant with respect to randomization, 

I follow authors’ procedures and accept results if Stata is able to deliver them, no matter how 

badly conditioned the covariance matrix is.34 

 Fourth, in making randomization draws from the universe of potential treatments Ω I 

restrict my draws to the subset Ω that has the same treatment balance as TE, the experimental 

draw.  This subtle distinction, irrelevant from the point of view of the exactness of the 

randomization test statistic, avoids my making unnecessary, and potentially inaccurate, inferences 

about the alternative balance of treatments that might have arisen.  For example, a number of 

experiments applied treatment by taking random draws from a distribution (e.g. drawing a chit 

from a bag).  Rather than trying to replicate the underlying distribution, I take the realized 

outcomes and randomly reallocate them across participants.  I adopted this procedure after 

observing that in some papers the distribution of outcomes does not actually follow the 

description of the underlying process given in the paper.  A few papers note problems in 

implementation, and some authors, in correspondence, noted that even after they selected a 

particular randomized allocation of treatment, field agents did not always implement it 

                                                   
33Or bootstrap iterations or size and power simulations of the bootstrap and randomization statistics. 
34Throughout this paper, in noting the number of bootstrap or randomization “iterations” I refer to the 

number of attempted iterations.  It is occasionally the case that Stata cannot manage its customary miracle of 
producing Wald tests from hopelessly singular matrices.  These iterations are dropped.  This is why (in the on-line 
appendix) I generalize Jockel’s (1986) proof of the exactness of the randomization test statistic (10) for α equal to an 
integer multiple of 1/N+1 to any number α, because it is not possible to guarantee the same number of successful 
iterations N for all equations and papers. 
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accurately.  I follow the papers in taking all of these errors in implementation as part of the 

random allocation of treatment.  Under the randomization hypothesis, strongly maintained in 

every paper, treatment quantities, even if not in the proportions intended by the authors, could in 

principle have been applied to any participant.  Thus, subject only to the stratification scheme, 

clarified by detailed examination of the data and correspondence with the authors, I shuffle 

realized treatment outcomes across participants.  This shuffling amounts to drawing the treatment 

vectors Tn in Ω that share the same treatment balance as TE.35 

 Finally, I should note that I test instrumental variables regressions using the implied intent 

to treat regressions.  In these regressions treatment variables are used as instruments, most of the 

time representing an opportunity that is offered to a participant that is then taken up or not.  The 

null here cannot be that the treatment instrument has no effect on the instrumented variable, as 

this is obviously false (e.g. one can only take up an opportunity if one is offered the chance to do 

so).  Consequently, one cannot shuffle treatment and rerun the first stage regression.  However, a 

reasonable null, and the relationship being tested in the second-stage regression, is that the 

instrumented variable has no effect on final outcomes of interest.  Combined with the exogeneity 

assumption used to identify the regression, in an iv setting this implies that there exists no linear 

relationship between the outcome variable and the treatment variables themselves, i.e. no 

significant relation in the intent to treat regression.  Consequently, I test the significance of 

instrumental variables regressions by running the implied intention to treat regression for the 

experiment and then comparing its coefficients and p-values to those produced through the 

randomization distribution under the null that final outcomes are invariant with respect to the 

actual realization of treatment.36 

                                                   
35All of this is done, of course, in units of treatment, e.g. field villages or lab sessions.  To keep the 

presentation familiar, I have described randomization tests as sampling from a population of potential outcomes. A 
more general presentation (e.g. Romano 1989) argues that under the null outcomes are invariant with respect to all 
transformations G that map from Ω to Ω.  The shuffling or rearranging of outcomes across participants is precisely 
such a mapping. 

36In using the bootstrap, and reporting original authors’ results, I continue to use the second stage iv 
regression itself.  To keep the number of iv and intent to treat coefficients equal across methods, I only examine 
exactly identified iv regressions (i.e. exclude a small number of overidentified two stage least squares).  I should also 
note that I have found that many of the intent to treat regressions implied by iv regressions duplicate regressions 
found elsewhere in the paper.  I drop these duplicates from the analysis.  This, plus eliminating other duplicate 
regressions within papers, explains the reduction in the number of regressions analysed in this draft relative to earlier 
versions of this paper.  Sometimes authors present first-stage regressions along with iv results.  I skip these if they 
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(c) Bootstrap Statistical Inference 

 While randomization statistical inference is based on thought experiments concerning the 

stochastic allocation of treatment to a fixed experimental population, conventional statistical 

inference revolves around the notion of stochastic variation brought about by random sampling 

from a larger population.  To forestall the mistaken conclusion that the results of this paper stem 

from this philosophical difference, I complement the randomization analysis below with results 

based on the bootstrap.  Conventional econometrics uses assumptions and asymptotic theorems to 

infer the distribution of a statistic f calculated from a sample with empirical distribution F1 drawn 

from an infinite parent population with distribution F0, which can be described as f(F1|F0).  In 

contrast, the bootstrap estimates the distribution of f(F1|F0) by drawing random samples F2 from 

the population distribution F1 and observing the distribution of f(F2|F1) (Hall 1992).  If f is a 

smooth function of the sample, then asymptotically the bootstrapped distribution converges to the 

true distribution (Lehmann and Romano 2005), as, intuitively, the outcomes observed when 

sampling F2 from an infinite sample F1 approach those arrived at from sampling F1 from the 

actual population F0.  The bootstrap is another asymptotically accurate method which in finite 

samples has problems of its own, but I make use of it because it allows me to provide supporting 

evidence, based on sampling rather than randomization methods, regarding statistical significance 

and the cross-equation correlation of results.  Moreover, I use bootstrapped samples from the 

experimental population to examine issues of power and size, thereby contrasting conventional 

and randomization methods using simulated populations that contain the specific characteristics, 

such as correlated or heteroskedastic errors and heterogeneous treatment effects, that exist in the 

actual experimental populations themselves. 

 As in the case of randomization tests, there are many possible ways of calculating the 

bootstrap.   I use two which, parallel to the randomization tests described above, can be called the 

bootstrap-t and -c.  Let Bn denote the bootstrap sample randomly drawn from the experimental 

population F1, )βV(β )B(ˆ and )(Bˆ
nn the coefficient and coefficient covariance estimates for that 

                                                                                                                                                                     
involve a dependent variable that is never used as a treatment outcome elsewhere in the paper.  In total, this leads me 
to drop 14 first stage regressions in three papers, which are all of form described above, where the dependent 
variable is trivially determined by treatment.  On the other hand, I retain first stage regressions where the authors, 
having used the dependent variable as a treatment outcome elsewhere in the paper, now use it as an instrumented 
variable in determining some other treatment outcome. 

 



32 

sample, and Ω1 the universe of potential sample draws from F1.  We are interested in a two-sided 

test of the null hypothesis 0β )F( 0 , i.e. in evaluating the distribution of the Wald test statistic 

)BˆBˆ)Bˆ
EEE (β))(βV((β 1 , where BE = F1 is the experimental sample.  We know that 

)B(ˆ)F( E1 ββ  , i.e. the average treatment effect in population F1 is that given by the 

experimentally estimated coefficients, so we evaluate the distribution of the experimental Wald 

statistic f(F1|F0) under the null 0β )F( 0  by examining the distribution of the bootstrapped Wald 

statistics f(F2|F1) around the null that we know to be true for F1, calculating the probability  

 )BˆBˆ)Bˆ)]Bˆ)Bˆ[Bˆ])Bˆ)Bˆ[)13( EEEEnnEn (β))(βV((β(β(β))(βV((β(β 11    

In the univariate case this reduces to a comparison of squared t-statistics, so I refer to it as the 

bootstrap-t.  An alternative measure involves using a common covariance estimate on both sides, 

calculating the probability  

)Bˆˆ)Bˆ]Bˆ)Bˆ[ˆ]Bˆ)Bˆ[)14( E1EEn1En (β))(βV((β)(β(β))(βV()(β(β 11   . 

where ))(ˆ( 1βV is the covariance of )B(ˆ
nβ across the entire universe of draws from F1.  Again, in 

the univariate case one can cancel the common denominator on both sides of the equation and see 

that this reduces to a comparison of squared coefficient deviations from the null, so I refer to this 

as the bootstrap-c.  As in the case of randomization tests above, I use the coefficients of the 

10000 bootstrap samples to approximate ))(ˆ( 1βV . 

As explained by Hall (1992), while the coverage error in a one-sided hypothesis test of a 

single coefficient of the bootstrap-t converges to its nominal size at a rate O(n-1), the coverage 

error of the bootstrap-c converges at a rate of only O(n-½), i.e. no better than the standard root-n 

convergence of asymptotic normal approximations.  The reason for this is that the distribution of 

the studentized coefficient (the t-statistic) is asymptotically pivotal, i.e. does not depend upon 

unknowns.  In contrast, the distribution of the coefficient itself is not pivotal, as it depends upon 

the estimation of its variance, which imparts additional inaccuracy.  In the finite sample, this 

translates into a rejection bias borne of the unaccounted for sampling variation of ))(ˆ( 1βV , as 

can be seen more clearly by considering Stata’s default bootstrap.  

 In the three papers where authors use the bootstrap in my sample, they defer to Stata's 

default approach, which is a form of the bootstrap-c with the addition of a normality assumption.  

Stata draws random samples from the regression sample, calculates the covariance matrix of the 

bootstrapped coefficients and uses it to report the standard errors and, based on the normal 
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distribution, p-values of individual and joint coefficient tests.  If the bootstrapped coefficients are 

actually normally distributed, these p-values amount to calculating the probability  

)(Bβ))(βV()(Bβ)(β(Bβ))(βV()(β(Bβ E
1

En
1

n
ˆˆˆ)]Fˆ()ˆ[ˆ])Fˆ()ˆ[)15( 1111

  EE  

which is essentially the bootstrap-c.37  As I show in the size analysis of authors’ methods further 

below, this leads to systematic over-rejection of the null.  The problem is not the normality 

assumption, but the fact that just as β̂ based on F1 drawn from F0 has sampling variation, so too 

does ))(ˆ( 1βV  based on F1 drawn from F0. 38  In essence, if one wishes to use the bootstrap-c, a 

degrees of freedom adjustment is necessary, which can be arrived at by (the rather costly) 

bootstrapping of the bootstrap to determine the sampling variation of ))(ˆ( 1βV .  This problem 

does not exist in the randomization-c, because the distribution of the test statistic is not motivated 

by a sampling framework:  Ω (the universe of potential randomization outcomes) and 

))(ˆ( βV are fixed in the thought experiment that generates the distribution of the test statistic.  

Given its default popularity, I make use the bootstrap-c in this paper and show that it generates 

systematically higher rejection rates than the bootstrap-t.  It still, however, registers fewer 

rejections of the null than authors’ methods. 

Regarding practical methods, I implement the bootstrap in a manner that follows the error 

structure indicated by authors’ methods.  Thus, if authors’ cluster, I draw in clusters, but if they 

do not, I sample individual observations.  In evaluating the results of individual equations, the 

bootstrap is limited to the observations and clusters present in that equation alone, so that each 

iteration has the same number of observations and clusters.  However, to implement an omnibus 

version of the bootstrap-c, to complement that done with the randomization-c, I bootstrap the 

entire experimental sample to allow the estimation of the empirical covariance of all coefficients 

in the paper.  In this case the number of observations or clusters used in each equation varies as 

sampling results in variation in the number of “not-available” entries for the covariates used in 

different equations.  As in the case of the randomization-c, iteration specific covariance estimates 

                                                   
37The only difference being the centering of the distribution around its mean rather than the parameter of the 

parent population, but in practice I find the difference is usually negligible. 
38It is important to emphasize that the problem here is not the number of bootstrap draws used to calculate 

))(ˆ( 1βV .  More draws provide a more accurate measure of ))(ˆ( 1βV , but do not change the fact that it varies with F1, 
i.e. has a sampling distribution. 
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for the bootstrap-t are calculated using authors’ methods.39  P-values are evaluated using the 

experimental test statistic and the bootstrapped draws by applying equation (10) earlier.  This 

provides p-values that are uniformly distributed, subject to the maintained (but only 

asymptotically accurate) assumption that the bootstrap distribution is the true distribution of the 

test statistic under the null. 

(d) Joint vs Multiple Hypothesis Testing 

 I use Wald statistics to test the joint hypothesis that all of the treatment coefficients in an 

equation or paper are equal to zero.  This test either cannot reject the null, allowing the 

conclusion that all coefficients are zero, or rejects the null, allowing the conclusion that some 

unspecified subset of the coefficients is not equal to zero.  An alternative approach is to 

simultaneously test whether each coefficient is equal to zero, allowing for the rejection or 

acceptance of the null for each coefficient individually, but taking into account the growing 

possibility of Type I errors created by the repeated drawing of test statistics.  Since multiple 

testing of this sort increases power in the identification of alternatives that might be of greater 

interest to authors, I use it as a complement to joint tests in the analysis below. 

Figure I illustrates the case where one is interested in testing the significance of two 

coefficients whose distribution is known to be normal and independent of each other.  The oval 

drawn in the figure is the Wald acceptance region for the joint significance of the two 

coefficients, while the rectangle is the acceptance region for the two coefficients tested 

individually.  In the multiple testing framework, to keep the probability of one or more Type I 

errors across the two tests at level α, one could select a size η for each test such that 1-(1-η)2 = α.  

The probability of no rejections, under the null, given by the integral of the probability density 

inside the rectangle, then equals 1-α.  The integral of the probability density inside the Wald 

ellipse is also 1-α.  The Wald ellipse, however, has the property that it is the minimum area in the 

two dimensional space such that the probability of falling in the acceptance region is 1-α.  It 

achieves this, relative to the multiple testing rectangle, by dropping corners, where the probability 

of two extreme outcomes is low, and increasing the acceptance region along the axes.  If one 

                                                   
39Thus, in the particular case where the authors use the bootstrap, I bootstrap the bootstrap.  This ends up 

revealing the shortcomings of the bootstrap-c, as shown further below. 



35 

thinks of alternatives as randomly falling anywhere in the two-dimensional space, the ability 

(power) of the joint testing framework to achieve a rejection when the joint null is false is higher, 

because of its smaller overall acceptance region.  If one thinks of alternatives as falling along the 

axes, i.e. some nulls are true while others are false, the ability of the multiple testing framework 

to achieve a rejection when the joint null is false is higher, because of the smaller length of the 

acceptance region along the axes.  As shown shortly, multiple testing frameworks may possess 

less or more power than suggested by this stylized example, but the basic intuition provided by 

the diagram, that Wald joint tests try to maximize power for general alternatives and multiple 

testing frameworks try to maximize power for alternatives that lie along the axes, both while 

controlling the probability of a Type I error under the null, carries through.  

Multiple testing is an evolving literature.  The classical Bonferroni method keeps the 

probability of any Type I error in N tests at or below α by evaluating each test at the α/N level.  

Holm’s (1979) refinement increases power while maintaining the upper bound on size by sorting 

the p-values of the tests in ascending order p1 ≤ p2 ... ≤ pN and rejecting all hypotheses s for 

which pj ≤ α/(N-j+1) for all j ≤ s, i.e. moving down the list, evaluating each pj against α/(N+j-1), 

and stopping on the first failure to reject.  Neither the Bonferroni nor the Holm method makes use 

of information on the covariance of the test statistics, and hence both are conservative, i.e. the 

probability of a Type I error is generally below the nominal size of the test.  Romano and Wolf 

β1 

β2 

Figure I:  Acceptance Regions for Joint 
and Multiple Testing with Independent Estimates 

Joint 
Multiple 
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(2005a, 2005b), extending earlier work of White (2000), have recently introduced a method that 

attempts to increase power by using covariance information to control the probability of a Type I 

error at exactly α.  The method involves the following steps: 

(1) Order the absolute value of the individual t-statistics in descending order. 

(2) Use bootstrap or randomization inference to calculate the distribution of the maximum 
t-statistic of the individual tests. 

(3) Reject the hypothesis with the maximum t-statistic if its t-statistic exceeds the αth 
percentile of the upper tail of the maximum distribution. 

(4) If (3) involves a rejection, repeat (1)-(3) using the remaining test statistics; if not, stop. 

Since the method evaluates the realized experimental maximum or minimum of a test statistic 

against the distribution of that maximum or minimum under the null, it has size α at each step.40  

Cumulated across all steps the probability of a Type I error is still α because at each step either 

the null was true and the procedure generated a Type I error with probability α, or the null was 

false and a Type I error has not occurred. 

While attempting to improve on other multiple testing methods by using covariance 

information, in practice the power of Romano-Wolf’s approach may be no better or even inferior.  

The reason for this is that in practical application the distribution of t-statistics varies 

dramatically across estimating equations and within estimating equations.41  If one coefficient in 

the test has a particularly extreme distribution, then it will determine the maximum distribution.  

If that coefficient, however, has a modest realized t-statistic within its own distribution, it will fail 

to reject and the testing procedure will stop there, even if the other t-statistics attain critical values 

                                                   
40In finite samples in the case of randomization inference, and asymptotically in the case of bootstrap 

inference.  An additional distinction is that bootstrap inference has strong control of the error rate, i.e. the probability 
of a Type I error is α even if some of the nulls are false, while randomization inference generally has weak control of 
the error rate, i.e. the calculated distribution of the test statistics and hence probability of a Type I error depends upon 
all nulls being true.  Romano and Wolf (2005a) discuss conditions under which randomization inference allows for 
strong control, but these generally do not apply in my sample papers.  These distinctions aside, in my sample 
bootstrap and randomization inference produce very similar results. 

41While in the ideal OLS case the degrees of freedom associated with any individual coefficient test within 
an equation is the same, this is not generally true. As discussed above, and shown more fully in Young (2016), the 
effective degrees of freedom of hypothesis tests using the robust or clustered covariance matrix varies with the test.  
Hence, the distribution of the t-statistic varies across coefficients within equations.  Not using the robust or clustered 
covariance matrices in situations where the disturbances are not ideal does not improve matters either.  For example, 
if there are unaccounted for cluster level random effects, the default OLS standard error estimate will understate the 
standard error more for regressors that are more correlated at the cluster level.  Consequently, the actual (bootstrap or 
randomization inferred) distribution of t-statistics will vary at the coefficient level. 
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within their own individual (less extreme) distributions.  In contrast, if the Bonferroni method 

had been used each t-statistic would have been evaluated on its own merits and more rejections 

might have occurred.   

In order to avoid this problem, and give individual experimental results the best chance of 

rejecting the null of no effects, in this paper I develop and use a modification of the Romano-

Wolf method which solves the problem of varying distributions.  The procedure is as follows: 

(1) Use bootstrap or randomization inference to evaluate the p-value of each coefficient t-
statistic.  Similarly, evaluate the p-value of the t-statistics for each randomization or 
bootstrap draw using their randomized or bootstrapped distribution producing, by 
construction, uniformly distributed p-values.   

(2) Order the p-values of the estimated coefficients in ascending order. 

(3) Calculate the distribution of the minimum p-value of the individual tests based upon 
the joint distribution of p-values indicated by the randomization and bootstrap draws. 

(4) Reject the hypothesis with the minimum p-value if its p-value is less than the αth 
percentile of the lower tail of the minimum distribution. 

(5) If (4) involves a rejection, repeat (2)-(4) using the remaining test statistics; if not, stop. 

In this framework, each test statistic (calculated p-value) has a uniform distribution, so the 

procedure is not dominated by the extreme distributions of individual coefficients.  It is critical, 

in implementing this procedure, to calculate the p-values using the bootstrapped or randomized 

distribution and not simply by evaluating the estimated t-statistics using their assumed asymptotic 

distribution since, as shown throughout this paper, this produces decidedly non-uniform p-values 

with distorted tail probabilities, i.e. retains the problem of extreme distributions that can affect the 

Romano-Wolf procedure. 

It is instructive to apply the uniform p-value version of the Romano-Wolf method to the 

problem examined in Figure I.  Since the coefficient estimates are independent, the uniform 

distributions of the calculated p-values will be independent.  The probability their minimum is 

less than or equal to η is thus given by 1-(1-η)2.  To attain size α, one must select an η such that 

1-(1-η)2 = α.  This is precisely the cutoff used in the analysis described earlier in Figure I.  If, 

however, the first step rejects, then in the second step the acceptance region (on the remaining 

axis) is tightened, because, following the distribution of the minimum of a single p-value, a cutoff 

level η such that 1-(1-η) = η = α is used.  Thus, this multi-step testing procedure actually has 

greater power than the single step multiple testing procedure described by the rectangle in Figure 
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I.  I use this method in tables below, where in some cases it produces higher rejection rates than 

other multiple testing methods, although these, in the context of all of the seemingly significant 

coefficients reported in papers, remain remarkably low. 

IV:  Results 
This section reports the empirical results of the paper.  I begin by laying out the relative 

number of significant results found using conventional, randomization and bootstrap methods in 

tests of individual coefficients and joint tests of treatment significance at the regression and paper 

level.  Although the baseline results test all treatment outcomes and coefficients present in the 

paper, I use a variety of alternative samples and procedures to sift out measures that are clearly of 

primary interest to authors to show that the substantially reduced significance rates found in joint 

tests reflect the large amount of multiple testing implicitly taking place in experimental papers, 

and not some mistaken focus on testing irrelevant outcomes and experimental details.  I then use 

bootstrap samples drawn from the experimental samples to explore the size and power 

characteristics of conventional and randomization tests.  The size bias of conventional tests is 

linked to the bias and variance of the coefficient variance estimates, which in turn is linked to 

bounds determined by maximum leverage, confirming the theory sketched earlier above.  The 

relative power of conventional and randomization tests is shown to be determined by the size bias 

of the former and differences between the clustering decisions of authors and the groupings in 

which treatment is actually applied in experiments.  Power is virtually equalized when 

adjustments are made to clustering or the level at which randomization is putatively carried out. 

Such adjustments, however, have little effect on the results for the papers themselves, suggesting 

that power is not the key issue. 

(a) Significance Rates 

Table III summarizes the statistical significance of treatment effects using different 

criteria.  In the upper left-hand panel we see that of the 5880 treatment coefficients appearing in 

the 53 papers, using authors’ methods 751 and 1459 are found to be significant at the .01 and .05 

levels, respectively.  When randomization tests are applied, the number of significant coefficients 
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Table III:  Statistical Significance of Treatment Effects at Different Levels 

 coefficients multi-treatment 
regressions papers 

 .01 .05 .01 .05 .01 .05 

Full Sample: 5880 coefficients, 1009 multi-treatment regressions, 53 papers 
significant coefficient 
standard Wald test 
randomization-t 
randomization-c 
bootstrap-t 
bootstrap-c 

751 
 

.78 

.82 

.85 

.90 

1459 
 

.88 

.87 

.89 

.95 

355 
.88 
.64 
.67 
.65 
.83 

586 
.75 
.60 
.60 
.59 
.69 

50 
 
 

.38 
 

.52 

52 
 
 

.46 
 

.69 

Primary Treatment: 1701 coefficients, 245 multi-treatment regressions, 36 papers 

significant coefficient 
standard Wald test 
randomization-t 
randomization-c 
bootstrap-t 
bootstrap-c 

340 
 

.80 

.84 

.79 

.85 

581 
 

.88 

.89 

.89 

.93 

98 
.90 
.73 
.73 
.79 
.83 

144 
.76 
.68 
.73 
.69 
.70 

31 
 
 

.39 
 

.61 

34 
 
 

.50 
 

.76 
   Notes:  .01/.05 = level of the test.  Top rows report number of significant results evaluated using authors’ 
methods; values in lower rows are number of significant results evaluated using indicated method divided by 
the top rows.  For multi-treatment regressions and papers top rows indicates number with at least one 
significant treatment coefficient at the level specified.  Standard Wald test = p-value evaluated using 
authors’ chosen covariance estimate and distribution (F or Chi2); randomization and bootstrap-t = 
significance evaluated using studentized measures based upon authors’ covariance estimation methods; 
randomization and bootstrap -c = significance evaluated using distribution of coefficients.  Bootstrap and 
randomization-t cannot be calculated at the paper level as it is generally not possible to calculate an iteration 
specific cross-equation covariance matrix.  See Section III above for a full description of randomization and 
bootstrap methods.  

 

falls to .78 to .82 and .87 to .88 of the numbers found using authors methods at the two levels.42  

The middle panel examines the 1009 regressions in the papers with multiple treatment effects.  

Of these, 355 and 586 have at least one significant treatment coefficient at the .01 and .05 levels, 

which, given the almost universal absence of F-tests, might lead readers to conclude that 

treatment was having significant effects.  When conventional F/Wald tests using the authors’ 

covariance calculation methods are applied, the number of regressions that can reject the null of 

                                                   
42The results in lower rows are not proper subsets of the significant results reported in the top row, but are 

close to being so.  Thus, for example, of the 586 coefficients the randomization-t finds to be significant at the .01 
level, all but 35 are found to be significant at that level using authors’ methods. 



40 

zero treatment effects falls to .88 and .75 of original authors’ reports at the two levels.  

Randomization tests reduce the relative number of significant results further, to .64 to .67 at the 

.01 level and .60 at .05.  The upper right hand panel of the table reports tests of the joint 

significance of all treatment coefficients in each paper.  As shown, 50 papers have at least one .01 

significant coefficient and 52 papers have at least one .05 significant coefficient, leading readers, 

in the absence of joint tests, to conclude that treatment was having statistically significant effects.  

When randomization tests are used to evaluate the joint null of no effect whatsoever anywhere in 

the experiment, the number of rejections falls to .38 and .46 of reported results at the .01 and .05 

levels, respectively.  As can be seen by the ranges just described, there is generally little variation 

in results across the -t and -c versions of the randomization tests, which produce similar rejection 

rates. 

Table III also presents bootstrap counterparts of the randomization tests.  Among these, 

the bootstrap-c tends to show the highest rejection rates.  As shown further below in the size 

analysis of authors’ methods, this approach is biased in favour of rejection, as it does not account 

for the sampling variation of the variance estimate.  Even the bootstrap-c, however, shows 

substantially fewer significant results than indicated by conventional tests using authors’ 

methods.  The studentized refinement, the bootstrap-t, goes further, producing rejection rates that 

are very similar to those of the randomization tests.  The bootstrap-t represents the best practical 

attempt to evaluate the actual finite sampling distribution of the test statistics given the 

population characteristics of the experimental sample, i.e. the non-normality, heteroskedasticity 

and cross-correlation (if any) of errors and the heterogeneity (if any) of treatment effects.  It 

indicates that virtually all of the gap between conventional and randomization results can be 

attributed to the misspecification of the sampling distribution of the t and Wald statistics of 

conventional tests. 

The lower panel of Table III focuses on a subset of “primary treatment” coefficients and 

regressions in the sample papers.  In the full sample I comprehensively analyse all treatment 

measures that were randomized and whose coefficients can be tested using randomization 

inference.  Authors might object that this includes trivial experimental details of little interest to 

them, such as, in the extreme, the “puzzle type” received by participants.  The primary treatment 

sample addresses this objection by only looking at regressions where treatment measures divide  
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Table IV:  Regression Equations by Joint Statistical Significance of Treatment Effects 
(all regressions with more than 1 treatment variable) 

 at .01 level at .05 level 
 Wald test with diagonalized covariance matrix 

Standard 
Wald test 

 No Yes Total  No Yes Total 
No 629 66 695 No 496 76 572 
Yes 74 240 314 Yes 47 390 437 

Total 703 306 1009 Total 543 466 1009 
   Note:  Yes/No = significant or not at the level specified; diagonalized covariance matrix = off 
diagonal terms set to zero.  All tests are conventional Wald tests, using authors’ covariance calculation 
methods and evaluated using the F or Chi2 distribution following authors’ methods. 

 

the experimental population into mutually exclusive treatment groups,43 and only cases where 

such regressions account for at least 1/3 of all treatment regressions in the paper.  Given the 

prominence they are being given in presentation and analysis, such treatment measures cannot be 

trivial in the minds of the authors.  As shown in the table, relative rejection rates for the primary 

treatment sample are very much the same as in the full sample, particularly at the coefficient and 

full paper level.  The only apparent difference is at the equation level, where relative rejection 

rates are perhaps .1 higher in the randomization and studentized bootstrap tests.  As explained in 

the Introduction, throughout this paper I follow transparent rules rather opaque discretion.  It is 

certainly true that this leads in some cases to the testing of trivial experimental details.  These 

trivial details, however, are as often as not just as significant as primary treatment effects, so the 

main results reported above cannot be attributed to a failure to apply discretionary judgment. 

Table IV provides some insight into the reduction in significance levels found in joint 

tests at the equation level.  For the conventional Wald test, I recalculate p-values using 

diagonalized versions of the estimated covariance matrices, i.e. matrices where the off-diagonal  

                                                   
43Thus, if there are two binary treatment variables (T1,T2), and one group receives (1,0), another (0,1) and a 

control (0,0), the regression is a primary treatment regression as each group receives one and only one treatment.  If a 
fourth population group receives (1,1), the regression is no longer a primary treatment regression, as it is not clear if 
there is any intended hierarchy of effects in the minds of authors (e.g. T1 is the primary treatment and T2 something 
they consider comparatively trivial).  However, if authors code receiving both T1 and T2 as T3 = 1,  the regression is a 
primary treatment regression as the four groups in the regression are coded (1,0,0), (0,1,0), (0,0,0) and (0,0,1).  In 
this, as elsewhere in this paper, I follow rules and defer to the judgement of authors:  when do they decide to present 
treatment effects in a manner that divides the sample into mutually exclusive groups, each with a separately 
identified treatment regime represented by a separate coefficient. 
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Table V:  Joint Statistical Significance at the Paper Level 
(significant papers as a fraction of those reporting a significant treatment effect) 

 using .05 significant  
dependent variables only 

using equation (block) 
diagonalized covariance matrix 

 full sample primary sample full sample primary sample 
 .01 .05 .01 .05 .01 .05 .01 .05 

randomization-c 
bootstrap-c 

.42 

.54 
.54 
.71 

.42 

.65 
.62 
.76 

.62 

.76 
.73 
.85 

.58 

.74 
.71 
.85 

   Notes:  Unless otherwise noted, as in Table III.  Reported figures are significant results as a fraction of the 
papers with at least one significant coefficient at the specified level (top rows, right hand panel, Table III). 

 

covariance terms are set to zero. As shown, there is a remarkable similarity between the 

acceptance and rejection of the null hypothesis using these artificial covariance matrices and 

those calculated using the estimated covariance matrix.  In 1009 regressions with more than one 

treatment variable, statistical significance only differs in 140 cases at the .01 level and overall 

rejection rates are roughly the same.  The mean p-value using the estimated covariance matrix is 

.228, using the diagonalized covariance matrix it is .238, and the correlation between the two is 

.917.  This tells us that the typical treatment covariance matrix is close to being diagonal, that is, 

the typical regression treatment design basically involves a series of (conditional on covariates) 

mutually orthogonal regressors producing a series of uncorrelated test statistics. In regressions 

with more than one treatment variable there are on average 4.9 treatment measures, with a 

median of 3 and with 25 percent of these regressions having 6 or more and 5 percent having 16 or 

more treatment measures. Table IV shows that, under the null the .01 and .05 coefficient 

significance levels reported in these papers represent multiple independent rolls of 100-sided and 

20-sided dice, and should be discounted accordingly.  The F/Wald test of joint significance does 

so with a minimum volume ellipse that maximizes power against a general null.  I show below 

that multiple testing methods designed to maximize power along the axes produce similar results. 

 Table V provides insight into the large reduction in significance levels found in joint tests 

at the paper level using two variations.  I begin, in the left hand panel, by only including 

regressions with a dependent variable that generates a .05 significant treatment coefficient in 

some regression in the paper.  This addresses the critique that the omnibus paper level test 

produces low significance rates by including irrelevant outcomes that authors never believed  
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Table VI:  Average Cross-Equation Wald P-Value Correlation 

 all equations with .01 significant 
treatment coefficients 

without .01 significant 
treatment coefficients 

randomization 
bootstrap 

.208 

.223 
.390 
.360 

.159 

.163 
Notes:  Off-diagonal elements of the correlation matrix for equation level conventional Wald p-values calculated 
across 10000 randomization or bootstrap draws, averaged at the paper level and then averaged across papers and 
reported in the table.  All 53 papers used in the first column, but only 46 and 44 papers in the second and third 
columns as some papers do not have more than one equation with the listed characteristic. 

 

would be affected by experimental treatment.  Despite the pre-selection on significance, relative 

significance rates generally only rise a few percentage points relative to those reported earlier in 

the right-hand panel of Table III.  The low rates of rejection in the omnibus tests are not the result 

of mixing dependent variables that never generate a significant coefficient with variables that 

consistently generate significant results.  Rather, it is the case that dependent variables that 

produce significant treatment coefficients in some regressions do not generate significant 

treatment effects in others.  Once again, this shows that it is not my application of indiscriminate 

rules, testing all reported treatment outcomes, that generates the results of this paper. 

  The right hand panel of Table V recalculates the paper-level Wald statistics using 

equation (block) diagonalized covariance matrices, i.e. acting as if each equation contains 

independent information.  As shown, this has a much larger effect on significance rates, raising 

them .19 to .27 percentage points above those reported in Table III in the case of the 

randomization-c.  Table VI explains why this happens by calculating the cross-equation 

correlation of the equation level bootstrap or randomization draw conventional Wald p-value.44  

As shown, the average randomization correlation of p-values is .208, but between equations 

which have a .01 significant treatment coefficient it is .390, while between equations that have no 

.01 significant treatment coefficients it is .159.  The bootstrap draws show a similar pattern.  As 

noted earlier, the average paper has 10 equations with a .01 significant treatment effect and 27 

equations without any .01 significant treatment effects.  Unrecognized by readers, and probably 

authors as well, the small number of equations with significant results are highly correlated,  

                                                   
44The randomization p-value is the test of the null in each randomized sample that all treatment coefficients 

in the equation are equal to zero, the bootstrap p-value is the test of the null in each bootstrapped sample that they are 
equal to the originally estimated values (which is the true null for the population represented by the original data). 
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Table VII:  Statistical Significance at the Coefficient Level 
with Multiple Testing Type I Error Control 

 
(1) Full sample: 

5880 coefficients 
in 53 papers 

(2) Primary Sample: 
1701 coefficients 

in 36 papers 

(3) Papers’ 
significant 

coefficients only 
 .01 .05 .01 .05 .01 .05 

significant coefficients 751 1459 340 581 751 1459 

Holm: 
  paper’s p-value 
  randomization-t p-value 
  randomization-c p-value 
  bootstrap-t p-value 
  bootstrap-c p-value 
Romano-Wolf t-stat: 
  randomization t-stat 
  bootstrap t-stat 
Romano-Wolf uniform p 
  randomization p-value 
  bootstrap p-value 

 
.34 
.15 
.18 
.18 
.24 

 
.22 
.19 

 
.17 
.18 

 
.23 
.16 
.19 
.18 
.21 

 
.18 
.16 

 
.19 
.18 

 
.43 
.17 
.23 
.18 
.25 

 
.31 
.28 

 
.22 
.19 

 
.35 
.24 
.30 
.25 
.29 

 
.30 
.27 

 
.30 
.25 

 
.52 
.34 
.38 
.38 
.46 

 
.38 
.35 

 
.43 
.41 

 
.33 
.24 
.27 
.26 
.29 

 
.28 
.26 

 
.30 
.28 

   Notes:  .01/.05 = probability of a Type I error.  Top row reports number of significant coefficients 
evaluated individually using paper’s methods at the .01 and .05 levels.  Values in lower rows are number 
of significant coefficients found using the indicated multiple testing procedure with the probability of a 
Type I error controlled at the .01 and .05 levels. Holm, Romano-Wolf t-stat and Romano-Wolf uniform p 
as described earlier in Section III.  Samples as described in text above.  

 

indicating the repetition of a limited amount of information, while the much larger number of 

insignificant equations are relatively uncorrelated, presenting a broad mass of independent 

information.  The low rejection rates found in the omnibus paper-level test of overall 

experimental significance reflect this evidence. 

Table VII tests significance at the coefficient level using multiple testing procedures that 

control the overall probability of one or more Type I errors.   I report results using the full sample  

and primary sample of Table III, and also a third sample composed only of treatment coefficients 

that were found to be significant at the .01 or .05 levels in the papers themselves.  In this last I do 

my very best to narrow the focus to results that authors, almost surely, felt were relevant.  In the 

top row I report the number of significant coefficients found in the paper at the level specified, 

while the lower rows report the relative number of significant coefficients found using a multiple 

testing procedure that controls the overall probability of a Type I error at the same level.  I use 
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Holm’s (1979) procedure, Romano-Wolf’s t-statistic procedure and my modification of Romano-

Wolf using uniform p-values, as described earlier above. 

As shown in the table, taking into account the number of times the p-value dice are rolled 

dramatically reduces the statistical significance of reported results.  Although the results vary 

slightly by method, with the bootstrap-c again showing the highest rejection rates, the overall 

pattern is fairly clear.  Only about .20 of treatment effects are found to be significant in the full 

sample, between .20 and .30 in the primary sample and between .25 and .40 in the significant 

sample.  The last result is particularly remarkable because the tests are pre-selected on the basis 

of having an individually significant result in the first place.  Table VII highlights the importance 

of using randomization methods in evaluating p-values.  If papers’ p-values are used in the Holm 

procedure, rejection rates are about .2 to .25 higher at the .01 level than those found using 

randomization methods.45 

 Table VIII reports the relative number of multi-treatment equations or papers in which at 

least one significant coefficient is found, in effect rejecting the null of no effect anywhere, after 

Table VII’s adjustment for multiple testing.  Multiple testing finds a significant coefficient in 

only about 50 to 60 percent as many equations as report a conventionally significant coefficient 

in the full sample and 60 to 70 percent as many equations in the primary sample.  This is 

comparable to the relative rejection rate found in joint tests in Table III earlier.  At the paper 

level, multiple testing finds some significant effect somewhere somewhat more often than joint 

testing, but the relative rejections rates are still very low (40 to 50 percent as often at the .01 level 

and 60 to 70 percent as often at the .05 level).  These results, as well as others in this section, 

show that the low relative significance rates I find using randomization and bootstrap tests do not 

come from testing trivial hypotheses of no interest to authors.  I have used multiple testing 

procedures to increase power on the axes, examined only primary treatment measures that are 

emphasized in presentation, limited myself only to dependent variables that generate significant 

results somewhere in the paper, and even focused (in multiple testing) only on individually 

significant coefficients.  There simply is a vast amount of multiple testing in the typical 

                                                   
45The Romano-Wolf procedure requires estimates of the covariance of t-statistics and p-values for 

individual coefficients drawn from multiple equations and hence is not directly implementable using conventional 
methods. 
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Table VIII:  Significant Multi-Treatment Regressions and Papers 

 multi-treatment equations 
(1009 full, 245 primary) 

papers 
(53 full, 36 primary) 

 full sample primary sample full sample primary sample 

 .01 .05 .01 .05 .01 .05 .01 .05 

significant coefficient 355 586 98 144 50 52 31 34 

Holm: 
  paper’s p-value 
  randomization-t p-value 
  randomization-c p-value 
  bootstrap-t p-value 
  bootstrap-c p-value 
Romano-Wolf t-stat: 
  randomization t-stat 
  bootstrap t-stat 
Romano-Wolf uniform p: 
  randomization p-value 
  bootstrap p-value 

 
.68 
.54 
.58 
.61 
.66 

 
.52 
.56 

 
.53 
.59 

 
.65 
.54 
.55 
.59 
.63 

 
.55 
.58 

 
.57 
.62 

 
.82 
.61 
.70 
.71 
.74 

 
.62 
.70 

 
.61 
.70 

 
.74 
.67 
.69 
.71 
.72 

 
.66 
.72 

 
.69 
.73 

 
.64 
.36 
.42 
.46 
.52 

 
.42 
.36 

 
.36 
.44 

 
.81 
.58 
.56 
.60 
.67 

 
.63 
.54 

 
.67 
.69 

 
.61 
.42 
.39 
.48 
.52 

 
.45 
.42 

 
.48 
.52 

 
.74 
.56 
.53 
.59 
.62 

 
.62 
.56 

 
.65 
.62 

   Notes:  .01/.05 = probability of a Type I error.  Top row reports number of equations or papers with at least 
one significant coefficient (evaluated individually) using paper’s methods at the .01 and .05 levels.  Values in 
lower rows are number of equations or papers in which a significant coefficient is found using the indicated 
multiple testing procedure with the probability of a Type I error controlled at the .01 and .05 levels.  

 

experimental paper, without any information, in the form of joint or multiple tests, given to 

readers to help them interpret and evaluate the multiple p-value die rolls presented to them in 

tables. 

(b) Size and Power 

 Table IX reports the average rejection rates at the .01 and .05 levels of conventional tests, 

using authors’ methods, applied to bootstrapped samples drawn from the original experimental 

sample.  In each case, the calculated p-value is for the test that the bootstrapped coefficient 

estimates equal that of the parent sample, i.e. a test of a null that is known to be true.  The t and 

F/Wald statistics produced by these draws were used to provide the studentized bootstrap-t 

evaluation of the distribution of the test statistics of the original papers in the preceding section.46   

                                                   
46As noted earlier, the bootstrap seeks to evaluate the distribution of test statistics for F1 drawn from F0 , 

t(F1|F0), by drawing samples F2 from F1 and calculating the distribution of t(F2|F1).  The experimental samples 
consist of F1 drawn from parent populations F0.  In t(F1|F0) we are interested in testing whether β equals zero for F0.  
In F1 we know the parameter β equals the originally estimated coefficient, so on each bootstrapped iteration our 
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Table IX:  Size: Rejection Rates of the Null When True Using Authors’ Methods 
(distribution estimated using 10000 bootstraps) 

covariance 
estimate 

used 

coefficients (t-tests) regressions (F/Wald tests) 

# 
.01 level .05 level 

# 
.01 level .05 level 

mean sd mean sd mean sd mean sd 

all 
  default 
  clustered 
  robust 
  bootstrap 
  other 

5088 
1228 
2675 
1477 
407 
93 

.020 

.015 

.025 

.017 

.017 

.047 

.035 

.019 

.042 

.028 

.019 

.080 

.066 

.058 

.073 

.060 

.059 

.101 

.044 

.030 

.051 

.034 

.036 

.094 

1009 
201 
499 
181 
126 

2 

.054 

.022 

.073 

.056 

.028 

.009 

.098 

.030 

.122 

.091 

.021 

.003 

.112 

.069 

.137 

.114 

.080 

.044 

.115 

.047 

.139 

.112 

.038 

.009 
   Notes: # = number of coefficients or multi-treatment regressions.  Other data reported are the mean and 
standard deviation (sd) of the rejection probability at the stated level. 

 

I now use authors’ methods to calculate the reported p-value of these test statistics on each draw, 

arriving at an estimate of their size distortion. 

 As shown, given the data generating process behind their data, as incarnated in their data 

itself, the methods used by authors generate biased and highly inaccurate coverage.  At the .01 

level the average treatment coefficient t-test has a rejection probability of .020.  Moreover, with 

rejection rates for individual coefficients varying from 0 to .886, the standard deviation of size is 

.035, which is 35 times greater than the predicted .001 of an exact statistic given the 10000 draws 

used in each regression simulation in the table.47  Bias is substantial using the default covariance 

estimate, which is not surprising as errors are often far from the iid ideal, but also in papers using 

clustered and robust methods.  The authors’ bootstrap, the non-studentized bootstrap-c with the 

addition of a normality assumption, does no better on average, and “other” methods, principally 

attempts at correcting the bias but not the variance of the clustered and robust methods, do 

spectacularly poorly, although these are concentrated in one paper which is unlikely to be 

representative.48   

                                                                                                                                                                     
t(F2|F1) is the test of whether the bootstrapped coefficient equals that value.  From this we infer the distribution of 
t(F1|F0) when it is re-centered around a true null of β=0 for F0.  

47As the standard deviation of the average realization of n 0/1 draws, each with a probability p, is sqrt(p(1-
p)/n) = .001 for p = .01 and n = 10000.  

48In Young (2016) I find that bias adjustment methods generally improve the performance of the clustered 
and robust covariance estimation methods, but not by enough to produce accurate or unbiased coverage.  Accurate 
coverage requires making an adjustment for degrees of freedom, i.e. for the variance of the variance estimate. 
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Bias and inaccuracy compound with the dimensionality of the test, as in joint F/Wald tests 

in multi-treatment equations average coverage is .054 at the .01 level with a standard deviation 98 

times that of the exact ideal.  This is shown further by noting that in equations with 5 or more 

treatment coefficients the average rejection probability at the .01 level is .077 with a standard 

deviation of .123, while in equations with 10 or more coefficients the average rejection 

probability is .122 with a standard deviation of .161.  After the transformation afforded by the 

inverse of the coefficient covariance matrix, the Wald test statistic is interpreted as being the sum 

of independently distributed squared random variables.  As the number of such variables 

increases, the critical value for rejection is naturally increased.  This requires, however, an 

accurate assessment of the probability each squared random variable can, by itself, attain 

increasingly extreme values.  Proportionate bias in the estimation of probabilities for individual 

coefficients is, however, greater at the more extreme tails.  At the .01 level, as already noted, the 

average rejection probability at the coefficient level is 2 times nominal size.  At the .001 and 

.0001 levels, however, I find it is 6.3 and 32 times nominal size, respectively.  Greater 

proportionate bias in the estimation of increasingly extreme tail probabilities translates into 

greater bias for given nominal size as more coefficients are jointly evaluated. 

 Non-normality plays virtually no role in producing the results recorded above.  To show 

this, I take the bootstrapped coefficients, remove their mean and divide by their standard error, 

square the resulting “test” statistic, and evaluate it using the chi-squared distribution.  If the 

coefficients are distributed normally, this test statistic will have a tail probability equal to nominal 

size.  Across the 5880 treatment coefficients I find average “rejection” rates at the .25, .1, .05 and 

.01 levels of .245, .098, .050 and .011, respectively.  The standard deviation of tail size at the .01 

level is .003, only three times the level predicted in 10000 simulations per coefficient for a 

normally distributed variable.  Stata’s test of normality based upon skewness and kurtosis rejects 

the null at the .01 level for 43 percent of the 5880 treatment coefficients, so most coefficients are 

definitely not normally distributed.  Practically speaking, however, the deviation from the normal 

distribution is unimportant. 

 According to the theory underlying the t-statistic, the variance estimate of the coefficient 

has a mean m and variance v equal to 2m2/dof, where dof equals degrees of freedom.  Multiply by 

2m/v and it is a chi-squared variable with dof degrees of freedom, mean dof and variance 2*dof.   
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Table X:  Bias in Conventional Variance and Degrees of Freedom Estimates 
by Distribution used in Stata to Evaluate the Test Statistic 

 evaluated using t-distribution evaluated using χ2 distribution 

  









2

2

)ˆ(
])ˆ(ˆ[ln


m  









n

a

dof
dofln   










2

2

)ˆ(
])ˆ(ˆ[ln


m  








obs
dofaln  

 # mean sd mean sd # mean sd mean sd 

all 
  default 
  clustered 
  robust 
  bootstrap 
  other 

4191 
875 

1905 
1318 

 
93 

-.021 
.027 

-.071 
-.012 

 
.435 

.421 

.432 

.159 

.095 
 

2.32 

-1.70 
-1.02 
-1.84 
-1.70 

 
-5.06 

1.55 
1.68 
1.31 
1.29 

 
2.69 

1689 
353 
770 
159 
407 

 

.423 
1.84 

-.010 
-.047 
.194 

 

3.49 
7.32 
.972 
.083 
.248 

 

-2.13 
-3.09 
-1.08 
-1.13 
-3.70 

 

2.18 
2.82 
1.12 
1.72 
1.90 

 

   Notes: # = number of coefficients; 2)ˆ( = bootstrapped (actual) variance of coefficient estimates; ])ˆ(ˆ[ 2m  = 
bootstrapped mean of coefficient variance estimate; dofn, dofa = degrees of freedom, nominal (used by Stata) and 
actual (equal to 2(m2/v), where m and v denote the mean and variance of the bootstrapped variance estimates); obs 
= observations or number of clusters where clustered. 

 

So, one can take the estimates of variance, calculate their moments, multiply by 2m/v and 

evaluate the tail probabilities of the transformed variables using the chi-squared distribution with 

dof degrees of freedom.  At the .25, .1, .05 and .01 level I find average “rejection” rates of .248, 

.102, .054 and .015, respectively.  Although there is much more variation, with for example a 

standard deviation of “size” at the .01 level of .053, with the exception of the .01 tail probability 

these are not substantial deviations from the hypothesized distribution.  Again, these calculations 

suggest that the assumption of normally based distributions is not the principal source of 

coverage bias in conventional test statistics.  The problem, instead, lies in the parameters used to 

characterize these distributions. 

 Table X compares the estimated coefficient variance and degrees of freedom implied by 

the moments of the bootstrapped variance estimates to the actual bootstrapped coefficient 

variance and the conventionally assumed degrees of freedom used in the evaluation of the test 

statistics.  I present results separately for coefficients which Stata evaluates using the t-

distribution and those evaluated using the chi-squared distribution, and by the form of the 

covariance estimate used by authors.  As shown, variance estimates are extraordinarily but not 

systematically biased, while actual degrees of freedom are systematically and substantially lower 
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than nominally assumed.49  The average bias of the variance estimate is substantially positive in 

particular subsamples, but the very large standard deviations suggest that it is often negative as 

well.  For example, despite a mean bias of .423 in 1689 coefficients evaluated using the chi-

squared distribution, the bias is actually negative in 1051 of these cases.  Degrees of freedom, 

however, are almost always lower than nominally assumed or, in the case of coefficients 

evaluated using the asymptotic chi-squared distribution, lower than might be suggested by sample 

size.  Actual degrees of freedom are only greater than nominally assumed in 274 of 4191 

coefficients evaluated using the t-distribution50 and greater than the number of observations in 88 

of 1689 coefficients evaluated using the chi-squared distribution.  Since degrees of freedom, 

estimated from the moments of each variance estimate, equal 2m2/v, or 2 times the squared 

inverse of the coefficient of variation, low degrees of freedom shows that variance estimates are 

much more volatile than nominally assumed.   

Of particular interest in Table X are the averages for Stata’s bootstrap where Stata, as 

discussed earlier, uses the bootstrap to calculate an estimate of coefficient variance and then 

evaluates the resulting test statistic using the asymptotic chi-squared distribution.  The sampling 

variance of these variance estimates, revealed by bootstrapping these bootstraps, is so high that 

average degrees of freedom are only 26, despite an average of 690 observations per coefficient 

estimate.  This reveals the danger of using non-pivotal bootstrap statistics: the test statistic 

depends fundamentally upon a calculated measure whose sampling distribution is unknown, 

making it impossible to accurately evaluate the test statistic without further refinement of the 

procedure (such as a bootstrap of the bootstrap).  In contrast, in bootstrapping the distribution of a 

pivotal statistic, such as the t-statistic, there is no parameter whose distribution remains unknown 

at the end of the initial bootstrap.  This is the finite sample manifestation of Hall’s (1992) 

asymptotic convergence result noted earlier. 
                                                   

49Nominal degrees of freedom are those selected by Stata at the regression level and applied to each 
coefficient.  Actual degrees of freedom can, however, vary at the coefficient level through the interaction between 
hypothesis tests and the structure of the covariance matrix as discussed, with examples, in Young (2016).  
Consequently, I calculate them at that level using the moments of the variance estimate for each coefficient. 

50About 70 percent of these occur for the default covariance estimate or in non-OLS settings.  As noted 
earlier in (8), actual degrees of freedom with ideal OLS iid errors are always lower than nominally assumed for the 
clustered and robust covariance estimates, but the measures in Table X are point estimates based upon the moments 
of distributions in environments with less than ideal errors.  Even so, actual degrees of freedom are found to be 
greater than nominal for only 87 of 2652 OLS coefficients with clustered or robust covariance estimates. 
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Table XI:  Ln Coverage Divided by Nominal Size for Coefficients 
as Determined by Variance and Degrees of Freedom Biases 

 test statistics evaluated 
using t-distribution 

test statistics evaluated 
 using Chi2 distribution 

 .01 level .05 level .01 level .05 level 











2

2

)ˆ(
])ˆ(ˆ[ln


m  -.440 

(.024) 
-.270 
(.015) 

-.051 
(.007) 

-.050 
(.004) 










n

a

dof
dof

ln  -.210 
(.006) 

-.107 
(.004)   

 adofln    -.098 
(.008) 

-.046 
(.005) 

constant .017 
(.014) 

.004 
(.009) 

.758 
(.039) 

.353 
(.027) 

N 
R2 

μy 

4178 
.247 
.384 

4181 
.194 
.192 

1680 
.088 
.314 

1686 
.081 
.135 

Notes:  Unless otherwise noted, as in Table X.  μy = mean of dependent variable. 

 

 Table XI shows that coverage bias is determined by the variance and degrees of freedom 

biases recorded above.  In the left panel I regress the ln coverage (rejection rate), as estimated and 

reported earlier in Table IX, divided by nominal size on the ln variance estimate bias and ln 

degrees of freedom bias for test statistics evaluated using the t-distribution.  When the variance 

estimate is unbiased and actual degrees of freedom equal nominal, these two regressors equal 

zero.  Thus, the constant term in the regression indicates how much ln proportionate coverage 

bias remains when there is no bias in these two elements.  As shown in the table, the answer is 

close to zero at both the .01 and .05 levels.  The R2s of .247 and .194 are also substantial.  Thus, 

these two biases explain all of the mean and much of the variation of coverage bias in test 

statistics evaluated using the t-distribution.  For test-statistics evaluated using the chi-squared 

distribution, in the right hand panel, there are no nominal degrees of freedom, so one cannot 

speak of what would constitute “unbiased” degrees of freedom.  The constant term divided by the 

coefficient on ln actual degrees of freedom entered as the regressor indicates at what degrees of 

freedom coverage bias goes to zero.  In all four specifications shown in the table this is attained 

when ln actual degrees of freedom is approximately 8, or at about 3000 effective observations, 
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Table XII:  Degrees of Freedom and Covariance Biases in Robust and Clustered OLS 
Regressions as Determined by Leverage and Sample Size 

 dependent variables 

regressors 








n

a

dof
dof

ln  










2

2

)ˆ(
])ˆ(ˆ[ln


m  










ndof
dof minln  .366 

(.018)  .349 
(.020) 

.357 
(.019)    

ln(observations)  -.248 
(.026) 

-.046 
(.026)   .028 

(.003) 
.035 

(.003) 

ln(σ2
biasmin)     .117 

(.008)  .105 
(.008) 

ln(σ2
biasmax)     .396 

(.068)  .672 
(.070) 

I(λmax=0)    -.080 
(.057) 

-.035 
(.009)  -.025 

(.009) 

constant .080 
(.080) 

-.196 
(.135) 

.243 
(.121) 

.073 
(.080) 

-.024 
(.006) 

-.204 
(.018) 

-.218 
(.020) 

N 
R2 

μy 

984 
.294 
-1.54 

984 
.084 
-1.54 

984 
.296 
-1.54 

984 
.295 
-.154 

984 
.212 
-.059 

984 
.062 
-.059 

984 
.288 
-.059 

   Notes:  Unless otherwise noted, as in Tables X and XI.  dofmin = lower bound on actual degrees of freedom, 
σ2

biasmin and σ2
biasmax = minimum and maximum bounds on variance estimate bias; I(λmax=0) = indicator for 

maximum leverage of 1.  Following (7) and (8) earlier, allowing λmin and λmax to denote the minimum and 
maximum eigenvalues of the block diagonal matrix made up of the cluster sub-matrices of the hat matrix 
(equivalently, the minimum and maximum leverage values (hii) in the case of the robust covariance estimate), and 
c Stata’s finite sample adjustment, we have dofmin = max(1,1/λmax-1), σ2

biasmin = c(1- λmax), and σ2
biasmax = c(1- λmin).  

Where λmax=1, ln σ2
biasmin is entered as 0 and the effect is captured by I(λmax=0). 

 

where the squared t (i.e. F) distribution is very close to the chi-squared.   

 Table XII shows that the theory outlined earlier above explains the degrees of freedom 

and variance estimate biases of the clustered and robust covariance estimates.  Based upon (8), 

we see that, depending upon the particular hypothesis test, actual degrees of freedom relative to 

the nominal n-k or nc-1 chosen by Stata will vary between 1 and a lower bound determined by 

maximal leverage in the regression.  Based upon (7), we see that the covariance estimate bias will 

vary between upper and lower bounds determined by minimum and maximum leverage.  Since 

these bounds are characteristics of regressions not coefficients, all of the right-hand side variables 

are constant within regressions, so I compute regression averages of the ln coefficient degrees of 
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freedom and covariance biases and run them on ln regression characteristics, weighting by the 

inverse of the square root of the number of treatment coefficients (unweighted regressions are 

very similar).   

 As shown in the first column of the table, the theoretical lower bound on degrees of 

freedom is an important determinant of degrees of freedom bias, with an R2 of .294.  As maximal 

leverage goes to zero and the lower bound equals nominal degrees of freedom, the degrees of 

freedom bias goes to zero, as can be seen by comparing the minimal and insignificant constant 

term (.080, se .080) to the mean of the dependent variable (-1.54).  In the second and third 

column we see that the actual number of observations or clusters is a poor predictor of degrees of 

freedom bias, with a lower R2 when entered by itself (where it has a perverse sign!), and 

statistically insignificant when entered along with the lower bound implied by leverage.  In the 

fourth column we see, using an indicator for a maximal leverage of 1, that these regressions have, 

if anything, slightly worse effects on degrees of freedom than predicted by the lower bound.  This 

shows that regressions with a maximum leverage of 1 are not of the innocuous sort described by 

the extreme example given in the preceding section.  To summarize, high leverage creates the 

possibility, depending upon the hypothesis test, of a reduction in effective degrees of freedom.  

As leverage rises, on average, across the treatment coefficients tested in the sample papers, 

effective degrees of freedom follow the lower bound down.   

 By the theory described in (7) earlier above, the bias of the robust and clustered 

covariance estimate varies between upper and lower bounds determined by maximal and minimal 

leverage.  Column (5) of Table XII shows that, empirically, the ln bias follows the lower bound 

down and the upper bound up.  An indicator for regressions with a maximal leverage of 1, where 

the ln lower bound is undefined and entered as zero in the regression, when compared with the 

coefficient on ln lower bounds which are not undefined, shows that these operate as if they had a 

lower bound of  bias of  -.300.  As leverage goes to zero, the ln lower and upper bias bounds 

converge to 0, and the bias in the variance estimate, as indicated by the constant term (-.024) is 

close to zero.  The ln number of observations, as before, is a poorer predictor of variance bias 

than minimum and maximum leverage, with an R2 of .062 versus the .212 achieved using 

leverage based theory.  In sum, leverage determines the degrees of freedom and variance biases 

of robust and clustered covariance estimates, which in turn determine the size distortions of 
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conventional techniques, as shown earlier above.  The actual degrees of freedom and variance 

bias can be calculated and predicted for any specific hypothesis test (Young 2016), but knowing 

the maximal leverage of the regression and the bounds it implies provides a quick and more 

accurate guide than sample size as to how bad things might, and in fact do, become. 

 Turning to power, Table XIII uses bootstrapped samples from each experimental paper to 

compare the power of conventional and randomization techniques to reject the null of no 

treatment effects when it is false.  Since the samples are drawn from the actual experimental 

population, it measures the power of different techniques when the alternative of average 

treatment effects in the amounts estimated by the authors is true.  Because of the computational 

cost of randomization tests, I am only able to perform 50-100 bootstrap samples per paper,51  and 

use only 2000 randomization iterations (1000 for the more computationally costly equations) to 

calculate the randomization p-values.  Bootstrap samples are drawn at the observation or cluster 

level, depending upon the covariance calculation method used in the paper.52 

As shown in panels (a) of Table XIII, randomization tests have less power than the 

conventional methods used by authors with average rejection rates that are .03 to .04 lower at the 

coefficient level and .08 to .11 lower at the multi-treatment equation level.  This difference in 

power is, however, concentrated in a particular subset of papers.  In 12 of 15 laboratory 

experiments and 5 of 38 field experiments authors cluster all or some of the covariance matrices 

at a level of aggregation below that at which treatment is applied (e.g. clustering at the subject 

level, when treatment is applied to subjects in laboratory sessions or field districts).53  In these 

regressions, as shown in the table, the difference in power is staggering.  In contrast, in equations 

in which authors cluster at a level of aggregation above that at which treatment is applied, the 

                                                   
51As time goes by, and calculations complete, I hope to raise the number of bootstrap samples to 250 per 

paper.  The results should not change substantially. 
52When drawing bootstrap samples to evaluate conventional techniques alone (i.e. all tables up to this 

point), I draw bootstrap samples at the equation level, for the sample of the equation alone, sampling based upon the 
covariance methods used in each equation.  When using bootstrap samples to evaluate the power and efficacy of 
randomization tests, I draw combined bootstrap samples at the paper level, so that I can implement my 
randomization code jointly and consistently on the new experimental data.  Thus, if the paper clusters some 
equations but not others, I draw an experimental sample at the cluster level for all equations, although the covariance 
matrices of unclustered equations are still evaluated in the unclustered fashion used by authors. 

53For the purposes of brevity, in the discussion which follows a paper that uses the robust covariance 
estimate or does not cluster at all is said to be “clustering” at the observation level.  If treatment is applied at the 
observation level, they are clustering at the treatment level, otherwise they are clustering below treatment level. 



55 

Table XIII:  Power:  Average Rejection Rates of the Null on No Effect  
When False by Nominal Size of Test using Authors’ and Randomization Methods 

(estimated using 50-100 bootstrapped samples of each experiment) 
 .01 .05 .01 .05 .01 .05 .01 .05 

      coefficients:                                             (a)  authors’ clustering 

 all (N=5880) below (N=497) above (N=803) neither (N=4580) 
 authors’ methods 
 randomization-t 
 randomization-c 

.193 

.156 

.168 

.314 

.274 

.287 

.226 

.083 

.073 

.358 

.182 

.168 

.241 

.232 

.234 

.361 

.353 

.354 

.181 

.150 

.166 

.301 

.270 

.288 

 (b) adjusting authors’ clustering (c) adjusting 
randomization 

 below (N=497) above (N=803) neither (N=4580) below (N=497) 
authors’ methods 
randomization-t 
randomization-c 

.257 

.130 

.126 

.392 

.253 

.243 

.237 

.238 

.246 

.352 

.350 

.361 

.181 

.152 

.168 

.301 

.271 

.289 

.207 

.171 

.181 

.336 

.293 

.303 
        multi-treatment regressions:                 (a)   authors’ clustering 

 all (N=1009) below (N=88) above (N=148) neither (N=773) 
authors’ methods 
randomization-t 
randomization-c 

.467 

.358 

.375 

.602 

.512 

.523 

.497 

.216 

.231 

.594 

.337 

.337 

.543 

.515 

.524 

.637 

.621 

.621 

.449 

.344 

.363 

.596 

.511 

.525 

 (b) adjusting authors’ clustering (c) adjusting 
randomization 

 below (N = 88) above (N=148) neither (N=773) below (N = 88) 
authors’ methods 
randomization-t 
randomization-c 

.657 

.387 

.388 

.756 

.520 

.496 

.534 

.522 

.553 

.625 

.624 

.658 

.449 

.350 

.366 

.596 

.515 

.528 

.497 

.436 

.464 

.596 

.539 

.545 
   Notes:  above/below/neither = authors cluster at a level of aggregation below, above or across/equal to that at 
which treatment is applied.  Panels: (a) bootstrap and covariance calculation is done at authors’ selected level of 
clustering; (b) bootstrap and covariance calculation is done at treatment level; (c) where authors consistently 
cluster below treatment level, treatment randomization done at author’s level, otherwise as in panel (b); N = 
number of coefficients or equations across which averages are calculated. 

 

difference in power is negligible, while in equations where they neither cluster above nor below 

the treatment level it is relatively small, particularly for the randomization-c.54  The level at 

which clustering is applied has two implications for power:  first, with more aggregation the 

statistical procedure acts as if there is less independent information in the sample, which should 

                                                   
54This includes two papers where the authors, apparently as a result of coding errors, cluster across 

treatment groups (in one case because they don’t realize the cluster identifier is not unique and in the other because 
they mistakenly switch the cluster variable in half of their results). 
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reduce power, but with greater aggregation maximal leverage rises55 increasing the small sample 

size distortions of asymptotic methods, which raises power; second, since the samples are 

bootstrapped at the cluster level, if clustering is done at a level other than treatment, then there is 

an inconsistency between the data generating process as described by the clustering and treatment 

procedures. 

In panels (b) and (c) of Table XIII I adjust the clustering, sampling and treatment levels.  

First, in panels (b) I cluster covariance matrices and bootstrap sample at the treatment level 

wherever this is possible.56  Comparing with panels (a), we see that the power of randomization 

tests rises substantially when the data generating process in the bootstrap is consistent with the 

treatment process. In particular, in regressions where authors’ originally clustered, and bootstrap 

data was generated, at a level of aggregation below that of treatment, the power of randomization 

techniques almost doubles at the .01 level.  The power of conventional techniques systematically 

moves with the level of aggregation, falling where authors formerly clustered at a higher level of 

aggregation and rising where authors formerly clustered at a lower level of aggregation.  These 

counterintuitive changes come from the changing size distortions of these methods.  For example, 

for coefficients where authors cluster at a level of aggregation below that of treatment, the 

average rejection probability at the .01 level is .022 using authors’ methods but rises to .082 when 

clustering is done at the treatment level.57  In many laboratory experiments, in particular, there 

are less than 10 (and sometimes as few as 4) sessions and clustering at the session level, 

appealing to asymptotic theorems, is problematic.   

Clustering at the treatment level seems natural and prudent.  Treatment groups, whether in 

sessions in a lab or geographic groups in the field, may share common characteristics or, at the 

very least, interact with each other in ways that will generate correlations between errors.  

                                                   
55As noted earlier, Young (2016) shows that λmax({Hgg}) ≥ hii

max.  The proof can be generalized, as off-
diagonal elements are added to the cluster sub-matrix of the hat matrix, the maximum eigenvalue rises.  In the 
extreme, when there is only one cluster, its eigenvalues are those of the hat matrix itself, i.e. all zeros and ones. 

56For 92 of the 497 coefficients and 37 of the 88 multi-treatment regressions Stata does not have a cluster 
option or there are so many treatment variables and so few treatment clusters that it is impossible to calculate a Wald 
statistic (e.g. 20 treatment measures in a regression which has 8 treatment clusters).  In these cases, the bootstrap 
samples are drawn at the treatment level, but covariance matrices continue to be calculated assuming independent 
observations (i.e. below treatment level). 

57Calculated by running 10000 bootstrap simulations at the equation level for each conventional technique. 
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However, if authors maintain that observations are independent at a lower level of aggregation, 

then one can argue that treatment was effectively randomized at that level of aggregation.  For 

example, if all observations within sessions are independent, then randomization can be seen as 

being executed at the observation level, as the presence of an observation in one session or 

another has, contingent on treatment, no significance.  To this end, in panels (c) of Table XIII I 

adjust the randomization scheme to mimic authors’ methods in the 10 experiments (284 

coefficients and 65 multi-treatment equations) where authors consistently clustered at a level 

below treatment.58  As can be seen in panel (c), this reduces the gap between the power of 

conventional and randomization techniques at the coefficient level in these equations, originally 

ranging from .15 to .19 in panel (a), to .03 to .04 percentage points. 

Table XIV uses regressions to show how all of the difference between randomization and 

conventional power comes from the size distortions of conventional tests and differing 

assumptions regarding the data generating process.  I run the ln relative rejection rate of 

randomization to conventional methods on the ln excess coverage of authors’ methods.  As this 

regressor has a value of zero when conventional size is unbiased, the constant term indicates the 

predicted difference when conventional and randomization methods are both exact.  Panels (a), 

(b) and (c) use the power data shown in the corresponding panels of Table XIII.59  As shown in 

panel (a), when clustering and bootstrap sampling (i.e. the data generating process) is done at a 

level that is consistent with authors’ methods but often inconsistent with the treatment process, 

the constant term indicates 7 to 16 percent lower relative randomization power.  When clustering 

and data generation is done at the treatment level (panel b) and randomization analysis is done  

                                                   
58In the remaining 213 coefficients and 23 multi-treatment equations where authors clustered below 

treatment level, they cluster at the treatment level elsewhere in the paper.  The non-clustered equations arise because 
of coding errors or because Stata does not support that option for their chosen command.  For these coefficients and 
equations, I follow panel (b), clustering at treatment level (if possible) and bootstrap sampling at the treatment level.  
For the case where authors clustered at a higher level of aggregation, it is not possible to adjust the randomization 
scheme up because the groups are of unequal size and treatment is mixed within them, so there is no way to 
reallocate the treatment received by one larger aggregation to another.  Hence there is no version of panel (c) for 
“above” clustering. 

59While the dependent variable, relative power, is calculated using 50 to 100 bootstrap samples, the 
regressor, the size distortion of conventional techniques, is calculated at the equation level using 10000 bootstrap 
samples to minimize measurement error.  While randomization inference requires 1000 to 2000 iterations for each 
bootstrap sample, conventional inference requires only one regression per regression sample, and hence can be 
simulated extensively at relatively low cost. 
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Table XIV:  Ln Randomization Power Relative to Authors’ Methods  
Adjusted for Coverage Bias and Clustering/Randomization Methods 

 5880 coefficients 1009 multi-treatment regressions 
 randomization-t randomization-c randomization-t randomization-c 
 .01 .05 .01 .05 .01 .05 .01 .05 

 (a) authors’ clustering & treatment randomization 









size nominal
coverageln  -.237 

(.014) 
-.290 
(.018) 

-.115 
(.017) 

-.211 
(.022) 

-.179 
(.024) 

-.166 
(.032) 

-.131 
(.029) 

-.140 
(.039) 

constant -.143 
(.011) 

-.130 
(.008) 

-.067 
(.014) 

-.069 
(.010) 

-.159 
(.034) 

-.133 
(.028) 

-.106 
(.041) 

-.101 
(.034) 

N 
R2 

μy 

4862 
.053 

-.236 

5727 
.044 

-.183 

4792 
.009 

-.112 

5645 
.016 

-.107 

927 
.058 

-.329 

982 
.027 

-.221 

923 
.022 

-.230 

978 
.012 

-.175 

 (b) adjusting clustering to treatment level 









size nominal
coverageln  -.366 

(.011) 
-.408 

(.013) 
-.311 

(.014) 
-.366 

(.017) 
-.287 

(.018) 
-.312 

(.024) 
-.283 

(.025) 
-.345 

(.034) 

constant -.030 
(.010) 

-.049 
(.007) 

.073 
(.013) 

.023 
(.009) 

-.002 
(.029) 

.013 
(.023) 

.097 
(.040) 

.081 
(.032) 

N 
R2 

μy 

4957 
.192 

-.205 

5738 
.144 

-.143 

4898 
.093 

-.074 

5671 
.078 

-.061 

955 
.205 

-.303 

998 
.140 

-.175 

946 
.116 

-.196 

993 
.096 

-.125 

 (c) adjusting randomization to authors’ level 









size nominal
coverageln  -.291 

(.011) 
-.320 

(.014) 
-.192 

(.015) 
-.250 

(.017) 
-.249 

(.020) 
-.257 

(.026) 
-.213 

(.026) 
-.253 

(.035) 

constant -.048 
(.009) 

-.059 
(.007) 

.052 
(.012) 

.015 
(.008) 

-.031 
(.028) 

-.013 
(.022) 

.061 
(.037) 

.040 
(.030) 

N 
R2 

μy 

5001 
.115 

-.166 

5765 
.087 

-.118 

4939 
.034 

-.025 

5705 
.036 

-.031 

951 
.144 

-.251 

999 
.090 

-.142 

942 
.064 

-.127 

994 
.049 

-.086 

   Notes:  Panels: (a) covariance estimates are clustered and samples bootstrapped at authors level of aggregation, 
treatment is randomized using experimental procedure; (b) covariance estimates are clustered and samples 
bootstrapped at treatment randomization level; (c) where authors consistently cluster below treatment level, 
treatment randomization adjusted to authors’ level, otherwise clustering adjusted to treatment level as in panel (b). 
The dependent variable in each column is the ln ratio of the randomization rejection rate to the conventional 
rejection rate, for individual coefficients or multi-treatment joint tests, at the significance level (.01 or .05) 
specified. Because only 50 to 100 bootstrap samples are used per equation, both conventional and randomization 
rejection rates at the .01 level are often zero, and these observations are dropped from the sample (hence N falls 
below the total number of coefficients and equations).  As can be seen from the regressions at the .05 level, where 
this happens rarely, this does not drive the results.  Later drafts will include more bootstrap samples, so this will be 
less of an issue. 
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assuming independence at the lower levels of aggregation specified by authors (panel c), the gap 

between randomization and conventional techniques disappears.  The randomization-t has similar 

power to conventional techniques at the equation level and perhaps 3 to 6 percent less power at 

the coefficient level.  The randomization-c actually consistently shows higher power than 

conventional techniques, with the constant term as high as .097.  These results are based upon 

estimates that suggest that a 1 percent ln size distortion of conventional methods translates into .2 

to .4 percent greater ln power.  Even without this adjustment, randomization methods can 

approach the power of biased conventional techniques.  Examining the means of the dependent 

variable reported in the table (μy), we see that when authors’ clustering is done at the treatment 

level and/or randomization analysis is implemented at a level consistent with authors’ clustering 

decisions, the randomization-c has only ln .025 to .074 less power than biased conventional 

techniques at the coefficient level, despite the size distortions of the latter. 

Having discovered how clustering and randomization levels determine the relative power 

of conventional and randomization techniques, it is natural to explore their implications for the 

base results in the papers themselves.  This is done in Table XV.  As in other significance tables, 

the top row indicates the number of significant coefficients or multi-treatment equations with at 

least one significant coefficient, the lower rows indicate the relative number of significant results 

in single coefficient and multi-treatment joint coefficient tests, with the letters (a)-(c) denoting 

the application of the methods used in the corresponding panels of Tables XIII and XIV.  As 

shown, when conventional tests are clustered at treatment level, there is a small drop in the 

number of significant coefficients and small rise in the number of jointly significant results.  

When randomization is implemented following the treatment regime, but with covariance 

estimates clustered at treatment, significance rates in the randomization-t (which depends upon 

the covariance estimate) rise slightly in multi-treatment joint tests.  When, further, randomization 

is implemented at the authors’ clustering level in the 10 papers which consistently cluster at a 

lower level of aggregation, the relative number of significant results rises by two to five 

percentage points.  With methods (b) and (c), we are looking at randomization tests whose power 

is close to that of conventional tests, adjusted for their size distortions, but the number of 

significant results remains well below that reported in the experimental papers.  With method (c)  
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Table XV:  Statistical Significance of Treatment Effects 
using Different Clustering and Randomization Levels 

 5880 coefficients 1009 multi-treatment 
regressions 

 .01 .05 .01 .05 

significant coefficient 751 1459 355 586 

conventional test: 
(a) authors’ methods 
(b) clustering at treatment 

randomization-t 
(a) following treatment, authors covariance 
(b) following treatment, cluster at treatment 
(c) following authors’ clustering  

randomization-c 
(a) following treatment, authors covariance 
(b) following treatment, cluster at treatment 
(c) following authors’ clustering  

 
1.00 
.97 

 
.78 
.77 
.81 

 
.82 
.82 
.86 

 
1.00 
1.00 

 
.88 
.88 
.90 

 
.87 
.87 
.89 

 
.88 
.90 

 
.64 
.67 
.68 

 
.67 
.67 
.72 

 
.75 
.76 

 
.60 
.62 
.61 

 
.60 
.60 
.61 

   Notes:  .01/.05 = level of the test.  Top row reports number of significant results evaluated using authors’ 
methods; values in lower rows are number of significant results evaluated using indicated method divided by 
the top rows.  For multi-treatment regressions top row indicates number with at least one significant treatment 
coefficient at the level specified (suggesting non-zero effects), lower rows indicate relative number of rejections 
in the joint test of all coefficients in the regression. 

 

in the randomization-c, we are looking at a technique whose relative power at the coefficient 

level is within 3 percent of conventional methods without adjustment for their excess size (see μy 

in panel (c) of Table XIV).  And yet here the relative number of significant coefficient results at 

the .01 and .05 levels is still only .86 and .89, respectively. 

The preceding results can seem contradictory, as experimental data is used to establish 

that the power of different techniques (adjusted if necessary) is not all that different, while in the 

very same experimental data they produce (even when adjusted) different results.  A simple 

example, reviewing the methodology, can explain the apparent inconsistency.  Consider a 

population F0, with a mean μ0 = 0.  As samples F1 are drawn from this population, each has a 

mean μ1 ≠ 0.  If we repeatedly test the null μ1 = 0 using an exact test on each of these samples, we 

will reject with a frequency equal to the size of the test because in the parent population F0 μ0 = 0.  

If, however, we draw bootstrap samples F2 from each F1, each time testing μ2 = 0, we will reject 

the null more frequently than nominal size, because in the parent population F1 μ1 ≠ 0.  Thus, we 

can learn about power without necessarily implying that μ0 = μ1 ≠ 0, i.e. that what is true for F1 is 
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true for F0.  Similarly, by drawing bootstrap samples F2 and testing μ2 = μ1, i.e. recentering 

around what we know to be true for F1, we learn about the size distortions of tests based on F1 of 

μ1 = μ0 = 0, without it necessarily having to be true that μ0 = 0. 

In Table III’s analysis of relative significance rates, earlier above, the bootstrap-t results 

are very close to those produced by randomization inference.  This shows that an adjustment for 

the actual distribution of the conventional t and Wald statistics under the null, i.e. an adjustment 

for size, can explain the discrepancy between conventional and randomization results in the 

experimental sample.  In Table XV we see that adjustments for the degree of aggregation in 

clustering and randomization inference, which levels the relative power of conventional and 

randomization techniques, cannot explain the difference between conventional and randomization 

results in the experimental sample.  This suggests that the size distortions of conventional 

techniques are the key problem.  A shift to exact randomization inference, implemented, if 

authors’ must insist, using assumptions about sub-treatment level independence, can provide 

power equal to unbiased conventional techniques in samples that are very far from the asymptotic 

ideal used to justify conventional methods.  There seems to be little reason for randomized 

experiments not to do this. 
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V.  Conclusion 
The discrepancy between randomization and conventional results in my sample of 

experimental papers is a natural consequence of how economists, as a profession, perform 

research.  Armed with an idea and a data set, we search for statistically significant relations, 

examining the relationship between dependent and independent variables that are of interest to 

us.  Having found a significant relation, we then work energetically to convince seminar 

participants, referees and editors that it is robust, adding more and more right-hand side variables 

and employing universal “corrections” to deal with unknown problems with the error disturbance.  

This paper suggests that this dialogue between our roles as authors and our roles as sceptical 

readers may be misdirected.  Correlations between dependent and independent variables may 

reflect the role of omitted variables, but they may also be the result of completely random 

correlation.  This is unlikely to be revealed by adding additional non-random right-hand side 

variables.  Moreover, the high maximal leverage produced by these conditioning relations, 

combined with the use of leverage dependent asymptotic standard error corrections, produces a 

systematic bias in favour of finding significant results in finite samples.  A much better indication 

of random correlation is the number of attempted insignificant specifications that accompanied 

the finding of a significant result.  A large number of statistically independent insignificant 

results contain much more information than a sequence of correlated variations on a limited 

number of significant specifications.  This fact is lost in our professional dialogue, with its focus 

on testing the robustness of significant relations.   

The lack of omnibus tests that link equations in my sample of published papers is not 

surprising, as these tests are near nigh impossible to implement using conventional methods.  The 

almost complete lack of F-tests within equations, however, is much more revealing of 

professional practice.  Regressions with an individually .01 level significant coefficient have an 

average of 5.9 treatment measures, representing multiple treatments and the interaction of 

treatment with participant characteristics, of which on average 4.2 are insignificant.  The fact that 

the multiple tests implicit in these regressions are almost never jointly evaluated cannot be 

blamed on authors, because these papers have all gone through the scrutiny of seminar 

participants, referees and editors.  Instead, it must be seen as reflecting a professional focus on 
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disproving significant results and inability to see all the information embodied in the insignificant 

results that are laid out in front of us.  

Only one paper in my sample emphasizes the lack of statistically significant treatment 

effects.  The present paper suggests that this is much more widespread than the results of 

individual regressions might lead one to believe, i.e. many experimental treatments appear to be 

having no effect on participants.  I arrive at this conclusion not by modifying equations and 

testing the robustness of coefficients, but by combining the evidence presented honestly and 

forthrightly by the authors of these papers.  A lack of statistically significant results is typically 

seen as a barrier to publication, but, as the aforementioned paper indicates, this need not be the 

case.  To an economist reading these papers it seems prima facie obvious that the manipulations 

and treatments presented therein should have a substantial effect on participants.  The fact that in 

so many cases there do not appear to be any (at least) statistically significant effects is, in many 

respects, much more stimulating than the confirmation of pre-existing beliefs.  A greater 

emphasis on statistically insignificant results, both in the evaluation of evidence and in the 

consideration of the value of papers, might be beneficial.  To quote R.A. Fisher (1935): 

The liberation of the human intellect must, however, remain incomplete so long as it 
is free only to work out the consequences of a prescribed body of dogmatic data, and is 
denied the access to unsuspected truths, which only direct observation can give.  

Randomized experiments, with their potential for accurate and unbiased finite sample statistical 

inference, may reveal such truths.
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