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Abstract

The existing literature on sub-game perfect risk-sharing suffers from a basic inconsistency.
While a group of size n is able to coordinate on a risk-sharing outcome, it is assumed that devi-
ating subgroups cannot. We relax this assumption and characterize the optimal contract among
all coalition-proof history-dependent contracts. This alters the predictions of the standard dy-
namic limited commitment model. We show that the consumption of constrained agents depends
on both the history of shocks and its interaction with the current income of other constrained
agents. From this, we derive a formal test for the presence of endogenous group formation under
limited commitment.

1 Introduction

With complete financial markets, the neo-classical model of consumption predicts that all idiosyn-

cratic risk will be insured so that the only fluctuations in consumption are due to aggregate shocks.

While complete financial markets are notably absent in developing countries, economists have argued

that the close-knit structure of communities in developing countries may enable them to successfully

replicate full insurance by insuring all idiosyncratic risk at least at the community level. Empirically,

however, the full insurance hypothesis is rejected. Individual consumption varies with idiosyncratic

shocks to income and the relative return to bearing risk is several orders of magnitudes larger

than estimates derived from Arrow-Debreu complete market models (Mace (1991), Deaton (1992),

Townsend (1994), Udry (1994), Dercon and Krishnan (2000), Ogaki and Zhang (2001), Ligon et al.

(2002), Mehra and Prescott (1985)). Moreover, in developing country contexts, diversification is not

only incomplete, but the sharing of idiosyncratic risk is also limited to small groups – such as the

extended family and informal reciprocal networks – and does not extend to the entire community –

be that the village or larger economic units (Grimard (1997), Morduch (1991), Fafchamps and Lund

(2003), De Weerdt and Dercon (2006), Murgai et al. (2002)).

The empirical failure of the complete markets model has inspired a host of theoretical attempts

to explain the observed covariation between consumption and income. In the main the literature
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has proposed two explanations for incomplete markets: imperfect information and imperfect enforce-

ability – usually with an emphasis on modelling risk-sharing as the sub-game perfect equilibrium

of a 2-player game (Wang (1995), Phelan and Townsend (1991), Kehoe and Perri (2002), Kocher-

lakota (1996), Ligon et al. (2002)). While these models have been extremely successful in explaining

some of the qualitative properties of the relationship between consumption and income, a number

of important caveats remain: the prevalence of small risk-sharing groups cannot be explained by

the above literature as it predicts that in the absence of exogenously imposed barriers, risk-sharing

should always take place at the level of the community. Moreover, attempts to calibrate these models

to explain the quantitative properties of consumption and income series have failed to generate the

large fluctuations and equity premia observed in reality.

This is where this paper hopes to make a contribution. By modelling risk-sharing under imperfect

enforceability as the coalition-proof equilibrium of a repeated dynamic stochastic game, we can

explain both why the size of the risk pool and consequently the extent of risk-sharing is much

smaller than the predictions derived from existing models.1 In this paper, we derive the theoretical

properties of the coalition-proof dynamic risk-sharing contract and derive testable implications on the

reduced form that enable us to establish whether coalitional deviations pose a threat to the viability

of risk-sharing arrangements and by implication whether the requirement of coalition-proofness can

be considered a valid restriction on risk-sharing arrangements that improves the fit of theory and

empirics.

Under imperfect enforceability, risk-sharing is limited because contracts are not legally enforce-

able ex-ante. Therefore, risk-sharing arrangements have to take into account that individuals will

renege on the contract ex-post if the benefits from doing so outweigh the costs. In the majority of

the extant literature, dynamic risk-sharing under imperfect enforceability is modelled as the equi-

librium of an infinitely repeated n-player game, in which cooperation is sustained by assuming that

players punish a deviation by permanently reverting to autarky (Kocherlakota (1996), Ligon et al.

(2002)). The theoretical properties of the equilibrium lead to relevant predictions on consumption

patterns, namely that consumption is positively correlated with current and past income and that

consumption allocations depend on the history of the game when enforcement constraints are slack,

but display ’amnesia’ when enforcement constraints bind. While enormously influential in sharp-

ening our understanding of the limits to risk-sharing imposed by imperfect enforceability, several

unresolved issues remain. Empirically, the dynamic limited commitment tends to overpredict the
1As pointed out by Udry (1994), communities in developing countries can be characterized as high information

environments but plagued with a lack of formal enforcement mechanisms. From a theoretical perspective, Seppala
(1999) argues that limited commitment allows for richer models of incomplete risk-sharing.
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extent of risk-sharing observed in practise (Ligon et al. (2002), Alvarez and Jermann (2001)) while

some of its ’sharper’ predictions, notably that of ’amnesia’ following a binding constraint, are re-

jected by the data (Kinnan (2008)). Theoretically, one could argue that modelling risk-sharing as

the sub-game perfect equilibrium of a repeated game suffers from a conceptual inconsistency. The

threat supporting the sub-game perfect equilibrium is not credible because it requires that players

consume their own income in each period following a deviation, and therefore mutual benefits from

insurance are forgone. Consequently, agents have an incentive to abandon the punishment path

and instead renegotiate to an equilibrium that makes all of them better off (see Farrell and Maskin

(1989)). While renegotiation-proof punishments that are not subject to this critique are available in

a bilateral risk-sharing model (see Asheim and Strand (1991) and Kletzer and Wright (2000)), the

problem is not so easily resolved in a multilateral environment and becomes more acute the larger

the number of players. This is the case because the punishment path of permanent reversion to

autarky is not just vulnerable to collective renegotiation by the grand coalition of all n players, but

also to renegotiation by any subset of players, making suspect the viability of the sub-game perfect

equilibrium and the predictions on consumption derived from it.

Given these caveats, we argue in this paper that the ‘correct’ equilibrium concept for an n-

player risk-sharing game is that of coalition-proofness – a refinement of sub-game perfection. This

means that no subcoalition can ever be required to play a Pareto dominated equilibrium in any sub-

game (Bernheim et al. (1987)). By implication, only those risk-sharing arrangements are deemed

self-enforcing that are sustained by punishments which are themselves coalition-proof equilibria.

Defining and characterizing the coalition-proof equilibria of dynamic risk-sharing games and resultant

predictions on consumption is the purpose of this paper. While this paper has a theoretical focus,

we will see that the chosen modelling approach can address both some of the conceptual as well as

empirical shortcomings of existing models of dynamic risk-sharing under limited commitment.

Genicot and Ray (2003) were the first to point out that sub-game perfection, which requires risk-

sharing arrangements to be stable with robust to individual deviations only, is not a satisfactory

solution concept for games involving more than two players. It places no bound on group size and

predicts that risk-sharing will take place at the level of the community, which is clearly at odds

with empirical reality. Genicot and Ray endogenize the group formation process by requiring risk-

sharing arrangements to be coalition-proof and prove that coalition-proofness implies an important

restriction on the equilibrium set, namely that all – possibly history-dependent and asymmetric –

risk-sharing agreements are bounded in group size if they are required to be robust with respect to

coalitional deviations.
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This paper goes considerably beyond Genicot and Ray (2003) by solving for the efficient dynamic

risk-sharing contract in the set of coalition-proof equilibria, characterizing its properties and deriving

testable implications that can be used to empirically distinguish exogenous from endogenous group

formation in risk-sharing arrangements. In the model presented here, agents play an infinite-horizon

game, have identical preferences and discount the future by a common factor. All agents are risk-

averse and receive a stochastic endowment stream. Income realizations in each period are i.i.d. and

publicly observable.2 There is no opportunity for saving. Since agents are risk-averse, there are

gains from mutual insurance and ex-ante all agents are willing to engage in risk-sharing. We assume

that insurance contracts cannot be legally enforced and participation is voluntary. Hence, the only

incentive for making a transfer to another agent is the surplus the giver receives from the ongoing

risk-sharing arrangement in the future.

To define the coalition-proof equilibrium contract, we must first specify what punishments will

be meted out for deviating from the initial equilibrium path. In constructing optimal coalition-proof

punishment paths, we take the coalitional minmax payoffs Genicot and Ray define in their paper as

a starting point and show how to identify payoffs in these sets that are optimal penal codes in the

spirit of Abreu (1988). That is, they completely characterize the set of coalition-proof equilibria.

Crucially, we demonstrate that the optimal penal code can deter coalitional deviations to any of the

potentially infinite number of strategies and associated payoffs in the minmax set of the deviating

coalition by switching to a single element in this set that gives each coalition exactly an allocation on

its Pareto frontier. By definition, no further deviations that make all players better off are possible

from such an allocation.

The construction of these optimal punishment paths is key to obtaining an analytical characteri-

zation of the constrained-efficient dynamic risk-sharing arrangement. As is standard in the literature,

we formulate a recursive dynamic programme subject to a set of enforcement constraints that em-

body the coalition-proof punishment paths (Abreu et al. (1990), Ligon et al. (2002)). Conceptually,

the problem of finding the constrained-efficient contract for n players can now be decomposed into

two steps. In a first step we find the allocation in the minmax set of each subcoalition for which

all members of the subcoalition are made indifferent between cooperation and defection. Having

pinned down the punishment payoffs, which form the right-hand side of the enforcement constraints,

in this way, the second step solves for consumption and continuation payoffs that can be supported

by these punishments. We then characterize the solution and its dynamics and find that many of

the attributes that have come to be associated with dynamic risk-sharing under limited commitment
2As pointed out by Udry (1994), imperfect enforceability rather than limited information appears to be the binding

constraint in village economies and we therefore assume perfect information.
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are in fact a consequence of modelling risk-sharing as the sub-game perfect equilibrium of a repeated

game. That is to say, they are not robust when equilibria are refined to be coalition-proof.

We show that a coalition-proof contract is history-dependent both when enforcement constraints

are slack and when they are binding. As long as enforcement constraints are slack, consumption

is characterized by Borch’s rule. This requires that marginal utility ratios, which are a sufficient

statistic for the history of the game, are equalized across all states of the world and time periods.

More importantly, a coalition-proof risk-sharing contract – unlike its sub-game perfect counterpart

– exhibits history dependence even for those agents who are constrained. The intuition for this

result is as follows. When enforcement constraints first bind, consumption and continuation payoffs

of constrained agents should be adjusted in a manner that involves the least change in the ratio of

marginal utilities relative to the previous period. This implies the smallest departure from first-best

risk-sharing according to Borch’s rule. In the sub-game perfect contract, minimal departures from

first-best are always achieved by equating continuation payoffs with the static autarky payoff regard-

less of the history of the game. However, in the coalition-proof contract the autarky punishment

is not credible. Instead, deterring a deviation of several players requires considering the minmax

payoff sets of all the coalitions they could form. Different allocations on the Pareto frontier defined

by these sets involve trade offs in the marginal utilities of the players. The constrained optimum

will therefore choose the allocation on the frontier that minimizes the movement in the marginal

utility ratios and by implication the departure from first-best. Roughly speaking, an individual’s

payoff in this allocation will be larger the higher his consumption in the previous period. Hence,

consumption and continuation payoffs in the coalition-proof contract retain some memory of the

past even when enforcement constraints are binding – potentially shedding some light on some of

the empirical results listed above.

The fact that the coalition-proof contract no longer displays amnesia when enforcement con-

straints are binding implies reduced form restrictions on the consumption series generated by the

coalition-proof contract. The current consumption of constrained agents depends on the history

of shocks, as summarized by the marginal utility ratios in the previous period, of the entire set of

constrained agents both directly and interacted with their current income realization. Neither of

these properties is exhibited by the consumption series generated by a sub-game perfect risk-sharing

contract and this allows us to formulate an empirical test for the presence of endogenous group for-

mation based on comparing agents’ relative consumption shares. Dubois (2005) derives a test for the

likelihood of endogenous insurance group sizes with heterogenous preferences under the assumption

of stationary symmetric risk-sharing. Chaudhuri et al. (2005) and Ahn et al. (2006) present tests in
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an experimental setting. In contrast, the test presented here is valid in a non-experimental dynamic

setting. It relies on being able to identify constrained individuals and their consumption shares in a

risk-sharing arrangement in each period and is thus similar in spirit to Mazzocco (2007) and Krueger

et al. (2008). To investigate the performance of the test, we use simulated model solutions to derive

the size and power of the test. For low levels of measurement error, the test performs extremely

well in distinguishing exogenous and endogenous group formation in a risk-sharing arrangement.

As measurement error increases, the test becomes somewhat less reliable, however the version that

tests for significance of the current income realization of other constrained agents interacted with

their past history still fares reasonably well. Taken together, the results give us confidence that the

test is indeed able to identify whether coalitional deviations pose a threat to informal risk-sharing

arrangements at least when consumption and income data are well measured.

The paper proceeds as follows: Section 2 outlines the model, its assumptions and defines the

coalition-proof equilibrium set. Section 3 presents the analytical results and characterizes the

coalition-proof risk-sharing contract and its dynamics. Section 4 derives empirical results and

presents a test for the endogeneity of group formation, which is implemented using simulated data

based on computed model solutions. Section 5 concludes.

2 The Model

Consider a set of N = {1, ..., n} households in a community. Each period t = 0, 1, ...∞, household i

receives an income yi(st), where s = 1, ..., S is the independently and identically distributed state

of nature, which occurs with probability πs. All households have an identical twice continuously

differentiable utility function u(ci(st)) where ci(st) is consumption. Households are risk-averse,

infinitely lived and discount the future with common discount factor β. Perfect information is

assumed and there are no opportunities for storage. Risk-sharing contracts must be self-enforcing,

which requires that at any point in time the benefit from complying with the contract must outweigh

the gain from reneging.

The only equilibrium in a static one-shot game in this environment is the autarky solution, in

which each individual consumes his own income, ci(st) = yi(st). In a repeated game, it is possible to

sustain insurance contracts that entail some smoothing of consumption by varying future payoffs with

current play. In order to characterize these contracts, we must formally describe the game played

by the n agents following Asheim and Strand (1991). For each stage t of the infinitely repeated

game G, an insurance contract for a group of size n specifies a set of net transfers (τ i(st))ni=1. If

all players make the stipulated transfers, consumption is ci(st) = yi(st) − τ i(st) for i = 1, .., n.
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If not, ci(st) = yi(st) for all agents. At stage t, the history of the game consisting of previous

transfers and previous states and the current state are common knowledge. At every date t ≥ 0, G

is characterized by a set of t-histories Ht, given by Ht = {Ht−1, st} and H0 = {s0, (τ i(s0))ni=1}, and

an n-tuple of stage t strategies, (ωit)
n
i=1 : Ht ⇒ Rn, which are mappings from the set of histories to

the set of actions. A strategy for player i, ωi, is a sequence of stage t maps, ωit, t = 0, 1, ...∞, and we

require that strategies are symmetric in the sense that permuting the past history permutes current

actions. Player’s payoffs are derived from the consumption streams generated by the strategy profile

ω = {ω1, ω2, ..., ωn}, which consists of the n-tuple of players’ strategies. For any history ht ∈ Ht,

contract ω and group size m, the lifetime utility of an individual from time t onwards is

U i(ω, ht,m) = u(ci(st)) + E

∞∑
ν=t+1

βν−tu(ci(sν)). (1)

As shown in Abreu et al. (1990), perfect equilibria of repeated games can be formulated re-

cursively using dynamic programming principles, and therefore the problem of finding an infinite

sequence of transfers is equivalent to finding current period actions and next period continuation

values such that

U i(ω, ht,m) = u(ci(st)) + β

S∑
s=1

πsU
i(ω, ht, st+1,m) (2)

for each player i, where the promised values U i(ω, ht,m) summarise the relevant information about

each player’s history.

To solve for the constrained efficient contract that is self-enforcing, we need to determine which

credible threats players can make and what punishments are available to deter deviation from coop-

eration. In what follows, we briefly revisit the result that reversion to autarky is an optimal penal

code (see Abreu (1988)) that can be used to support all efficient sub-game perfect equilibria. We

then argue that this punishment strategy is too weak because it does not account for the behaviour

of coalitions. For an agreement to be truly self-enforcing, it must be immune to deviations of all

coalitions, not just single players. We show how to construct a punishment strategy that is coalition-

proof in the sense that neither the grand coalition of n players nor any subcoalition would want to

deviate with the added consistency requirement that threatening to deviate is only credible if the

deviating coalition is itself robust to further deviations. Since the punishment strategy – if it exists –

is an optimal penal code in the spirit of Abreu, it follows that any coalition-proof insurance contract

can be supported by it and we will make use of this fact when characterising the constrained-efficient

insurance contract and its dynamics in the next section.

Let ωaut denote the strategy in G that for any t and ht stipulates τ(ht) = 0. Denote the expected
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value of playing the static autarky strategy from period t onwards as

V it = E

∞∑
t=0

βtu(yi(st)) (3)

for all players i = 1, ..., n. This is the only self-enforcing payoff for an individual and hence the set

of stable payoffs for a singleton contains just one element V∗(1) = {V }.

Since the autarky payoff can be enforced unilaterally by any player i, it follows that V it is

the minmax payoff for player i. Moreover, the n-tuple ωaut = {ω1,aut, ..., ωn,aut} is a sub-game

perfect equilibrium after any history ht. Together, this implies that threatening each player with

ωaut following a deviation constitutes an optimal penal code that can hence be used to support all

cooperative sub-game perfect equilibria.

Such a contract is not renegotiation-proof, however. While there is no unique definition of

renegotiation-proofness, the literature takes as its starting point the notion of Pareto perfection,

which requires that players will always negotiate to an equilibrium on the Pareto frontier of the

efficient set (see Farrell and Maskin (1989) and Pearce (1988)). Hence, a punishment path of

reversion to autarky following a deviation is not credible because it requires that mutual gains from

insurance are forgone during the punishment phase. In the context of 2-player games, Asheim and

Strand (1991) and Kletzer and Wright (2000) have shown that the punishment path of reversion to

permanent autarky can be replaced by a renegotiation-proof punishment path. This path supports

exactly the same set of equilibria as the autarky punishment but instead allocates the maximum

surplus to the non-deviating player. In what follows, we will use a strategy similar to theirs in the

construction of optimal penal codes that are coalition-proof.

Moving from the 2-player to the n-player environment, the concept of renegotiation proofness

is not entirely satisfactory, because it only considers the possibility of renegotiation by the grand

coalition of n players, but does not allow for renegotiation by any proper subset of N. To resolve this

inconsistency, Bernheim et al. (1987) introduce the notion of coalition-proofness, which requires that

no coalition ever plays a Pareto dominated strategy in any sub-game. In the context of this paper,

this implies that any subcoalition of players can achieve a Pareto improvement by abandoning the

original punishment of autarky and instead continuing risk-sharing. Therefore an insurance scheme is

defined as stable if no history of states exists, for which a stable subgroup could credibly deviate from

the arrangement, consume autarky income in the period of deviation and then continue insurance

within the subgroup.3 Credibility means that a deviating subgroup must itself be immune to further
3The assumption that a deviating sub-group consumes autarky income during the period of deviation deserves some

further discussion. It may be more plausible to assume that agents who deviate continue insurance in the deviating
subgroup during the period of deviation. Qualitatively, this makes little difference. It will, however, increase the
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deviations (see Bernheim et al. (1987) and Bernheim and Ray (1989)).

To define the set of self-enforcing or stable contracts, we follow Genicot and Ray (2003) and

assess stability of a risk-sharing group of size n recursively by first examining the stability of groups

of size 1, ..., n−1 and then checking whether a risk-sharing contract exists for a group of size n that is

robust with respect to deviations by stable subgroups. Suppose that we have defined coalition-proof

sets of expected payoffs V∗(m) for all m = 1, ..., n−1, where each element in V∗(m) is a vector of size

m with components V = {V 1, V 2, ..., V m} and the requirement of coalition-proofness implies that

the vectors in V∗(m) must be Pareto efficient in the set of coalitionally self-enforcing agreements.

Stability of a risk-sharing arrangement of size n is then expressed in the following two conditions

stated in Genicot and Ray (2003):

Definition 1 V is a stable payoff vector for n, if the following two conditions are met:

[PARTICIPATION] For no history ht is there a sub-group of individuals m ≤ n and a stable payoff

vector V ∈ V∗(m) such that V i(n) < V i(m) for all i = 1, ...,m.

[ENFORCEMENT] For no history ht is there a subset M of individuals of size m ≤ n and a stable

payoff vector V ∈ V∗(m) such that for all i ∈ m

u(yi(st)) + βV i > u(ci(st)) + βV i(ht+1, n). (4)

Definition 1 states that in any stable risk-sharing contract for n players, no coalition of size m can

be forced to accept a payoff V 1(n), ..., V m(n), such that there exists a vector in V∗(m) that makes all

of its members better off. In essence, this describes the set of minmax payoffs for each subcoalition

of N. While these minmax payoffs are essential ingredients in the definition of the equilibrium set,

the participation and enforcement constraints listed above are somewhat too complex to be useful

in an analytical characterization of the coalition-proof equilibrium contract – not least because they

state conditions that must NOT be true for the equilibrium set and because at each stage t, the

minmax threat of a coalition consists of a potentially infinite set rather than a single payoff vector

as is the case for the individually rational contract.

We now show how to construct coalition-proof punishment strategies that deter all coalitional

deviations to any point in the minmax set by switching play to a single point in this set following

a deviation. We need the following notation. Let J denote the set of proper subsets of 1, ..., n

threat of coalitional deviations meaning that even less risk-sharing can be sustained in equilibrium. Assuming that
deviating agents do not engage in risk-sharing during deviation can perhaps be interpreted as pessimism on the part
of the deviating sub-group. In any case, the majority of results in this paper do not hinge on this assumption.
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and denote an element of J, which is a coalition, as J ∈ J. Label the members of a coalition J

with cardinality k by j1, ..., jk. Finally, let m(k) denote the largest stable group size not exceeding

k.4 Consider any combination of n − 1 agents with members j1, ..., jn−1. We will now construct a

punishment path that is coalition-proof and deters an individual deviation by agent j1, a deviation

by a coalition consisting of agents j1 and j2, a deviation by a coalition consisting of agents j1, j2

and j3 and so on up to a joint deviation of j1, ..., jn−1. Suppose that after any of the deviations

listed above, play switches to a punishment path with payoffs V that allocates V 1 = V 1 to agent

j1, V 2 = V 2(V 1) to agent j2, V 3 = V m(3)(V 1, ..., V m(3)−1) to agent j3, and so on up to jn−1 with

the remaining agent receiving V n = V n(V 1, ..., V n−1). We will now apply the arguments found in

Asheim and Strand (1991) and Kletzer and Wright (2000) to show that a punishment path with

payoffs V is an optimal penal code in the spirit of Abreu. That is, it is a coalition-proof equilibrium

in the set of minmax payoffs.

By the recursive definition of stability, it follows that V 1 ≤ V 2 ≤ ... ≤ V n−1. Furthermore,

assume that V n ≥ V n−1, which is a necessary condition for the existence of a coalition-proof

punishment path. First, it is easily seen that the constructed payoffs satisfy the stability conditions

in Definition 1. Specifically, V 1 is the minmax payoff for an individual agent. Collectively, any pair

of players can negotiate to any point on the frontier of a group of size 2, which is given by the set

[V 1, V̄ 1] and [V 2(V 1), V 2(V̄ 1)]. Hence, this is the set of minmax payoffs for a group of size 2. Any

group of three agents can collectively renegotiate to an outcome in the set V∗(3), which consists of all

combinations of V 1, V 2, V 3 on the Pareto frontier of a 3-agent group (if such a group is itself stable

with respect to further deviations). By the same argument, it can be shown that the payoff vectors

are elements of the minmax set for any coalition consisting of agents j1, ..., jk for k = 1, ..., n−1. By

construction, there is no permutation of agents such that their joint payoff is dominated by a payoff

in their minmax set.

Second, the punishment path is coalition-proof. The punishment path lies on the Pareto frontier

of N, and so it is renegotiation-proof in the sense that the grand coalition would not want to abandon

it collectively. Moreover, by construction, the payoffs also lie on the Pareto frontier of any stable

group that is smaller than n, and there is therefore no subcoalition that would find it profitable to

collectively abandon the punishment path. Hence, the punishment path satisfies the requirements

of coalition-proofness.

Taken together this implies that V is an optimal penal code and by symmetry, an analogous
4This notation is necessary, because a cooperative coalition-proof equilibrium does not necessarily exist for all

group sizes k = 3, ..., n−1 (see Genicot and Ray (2003)). Of course a cooperative equilibrium for groups of size 2 may
not exist either if the discount factor is too small. This is, however, not a consequence of the coalitional deviations
modelled in this paper, and so we assume that the discount factor is always large enough to support some cooperative
play for two agents.
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punishment path can be constructed for any combination of agents in N. It follows that all coalition-

proof equilibria can be sustained by such punishment paths – when they exist. Moreover, V is simple

in the sense that it can be used after any history to deter the deviations described above. Most

importantly, V can deter a coalitional deviation to any of the potentially infinite number of elements

in the minmax set of this coalition by using a punishment path that switches to a single element in

this set. This greatly simplifies the analysis of the constrained-efficient equilibrium contract.

To appreciate these points, it is useful to consider a group of size 3 and suppose that ex-post

continuation payoffs in period t both on and off the equilibrium path are

U1
st

= u(y1(st)) + βV 1 (5)

U2
st

= u(y2(st)) + βV 2(V 1) (6)

U3
st

= u(y3(st)) + βV 3(V 1, V 2(V 1)). (7)

Given this, there can be no deviation to a different Ṽ = {Ṽ 1, Ṽ 2(Ṽ 1), V 3(Ṽ 1, V 2)} in V∗(3) that

would render V unstable, as this would imply

u(y1(st)) + βṼ 1 > u(y1(st)) + βV 1 (8)

u(y2(st)) + βṼ 2 Q u(y2(st)) + βV 2(V 1) (9)

u(y3(st)) + βṼ 3(Ṽ 1, Ṽ 2) R u(y3(st)) + βV 3(V 1, V 2(V 1)) (10)

by the definition of Pareto efficiency. Since payoffs will only be renegotiated if all members of a devi-

ating subgroup are better off following a joint deviation, threatening to renege and continue with Ṽ

is not credible once continuation payoffs have been set equal to V = {V 1, V 2(V 1), V 3(V 1, V 2(V 1))}.

Similarly, agent 1 and 2 will not deviate jointly to any other payoff vector Ṽ in their minmax set

V∗(2), since this would imply

U1
st
≥ u(y1(st)) + βṼ 1 (11)

U2
st
≤ u(y2(st)) + βV 2(Ṽ 1). (12)

This point is illustrated in Figure 1, which plots the ex-ante Pareto frontier for V∗(2). Of course,

we could equally well have chosen Ṽ as the punishment payoffs to deter a joint deviation by agent

1 and 2. By construction Ṽ is coalition-proof and an element of the minmax set of coalitions of

size 2. It is hence an optimal penal code to deter pairwise deviations (but not individual ones),

11



6
V 2

-
V 1

(V 1, V̄ 2)
��@@
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Figure 1: Ex-ante Pareto frontier in a group of size 2.

even though Ṽ 1 is not an element of the minmax set for singletons. This illustrates the fact that

an optimal penal code to punish deviations of a coalition of size k does not necessarily have to be

constructed such that V 1, ..., V k−1 are elements of the minmax sets for coalitions of size 1, ..., k− 1.

Finally, note that both V and Ṽ are optimal simple penal codes because they can be used to support

cooperation after any history. Moreover, with continuation payoffs given by U1
st

, U2
st

and U3
st

, there

is no other 2-player coalition that could credibly deviate. Hence to deter all coalitional deviations, it

is sufficient to satisfy the enforcement constraints for a single point on the Pareto frontier of V∗(3).

The results on the optimal punishment paths are summarized in Proposition 1.

Proposition 1

1. In a sub-game perfect efficient contract, the optimal punishment path consists of permanent

reversion to autarky.

2. In a coalition-proof efficient contract, the optimal punishment path V lies on the Pareto frontier

of V∗(m) for every stable subcoalition of size m ≤ n. This punishment path can support all
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equilibrium payoffs for which ∃Ṽ ∈ V∗(m) such that

U1
st
≥ u(y1(st)) + βṼ 1

U2
st
≥ u(y2(st)) + βṼ 2

... ≥
...

Umst
≥ u(ym(st)) + βṼ m.

3 Efficient Contracts

Having described behaviour off the equilibrium path, we can now characterize the symmetric coalition-

proof equilibrium contract and its dynamics. The constrained-efficient contract is found by solving

a dynamic programming problem. In each state and for each date, coalition-proof punishments are

used to enforce cooperation. The constrained dynamic programme solves for the Pareto frontier

in an insurance group of size n denoted by Uns , treating the promised utilities of agent 1, ..., n − 1

as state variables, which summarise the relevant information about each player’s history.5 This

problem can be thought of as a social planner having promised agent 1, ..., n−1 utility U1
s , ..., U

n−1
s ,

which the planner delivers by choosing current consumption and continuation utilities in a way that

maximises agent n’s payoff and satisfies the self-enforcing constraints.

As a first step toward formulating the constrained dynamic programme, we show how to write

the self-enforcing constraints as a set of inequality constraints that embody the optimal penal codes

constructed in the previous section. We have shown in Proposition 1 that any point on the Pareto

frontier of a stable subgroup of size m can be used as a punishment to deter deviations of a sub-

coalition of this size. While this is sufficient to describe the set of coalition-proof equilibria, we must

be more precise in order to characterize the properties of the equilibrium analytically. To see this,

revisit the example depicted in Figure 1 and suppose that following history ht,

U1
r ≥ u(y1

r) + βṼ 1 (13)

U2
r ≥ u(y2

r) + βV 2(Ṽ 1) (14)

are in fact the constrained-efficient payoffs for agent 1 and 2 on the equilibrium path in a group of

size n, i.e. those that maximize Unr (U1
r , U

2
r , ..., U

n−1
r ). If these equilibrium payoffs were supported

5Since the physical environment is the same in every period, we can drop the explicit dependence on time t.
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by Ṽ , then we can write down a standard Kuhn-Tucker Lagrangean where the multipliers on the

enforcement constraints have the usual interpretation. If we use {V , V̄ } to support these payoffs

then such a formulation is not possible because (14) may be violated even though all deviations

by a pair are deterred. Hence, Ṽ is preferable in terms of analytical tractability. It should be

emphasized, however, that this substitution is purely a matter of convenience. It does not affect any

of the properties of the solution, it merely helps to characterize it.

Conceptually, we therefore decompose the problem of finding the constrained-efficient contract

into two steps. In the first step, the planner solves for the optimal penal code Ṽ after history ht

that maximises the dynamic programme given that each agent’s continuation payoff on the equilib-

rium path will be equal to the discounted punishment payoffs augmented by one period of autarky

consumption if enforcement constraints are binding. In the sub-game perfect contract, Ṽ trivially

corresponds to the autarky payoff for each agent. In the coalition-proof contract, the planner must

choose 2n − 2 coalition-proof payoff vectors following each state of the world r: one for each combi-

nation of agents of size k = 1, ..., n − 1. In the second step, the planner chooses consumption and

continuation payoffs that can be supported by the punishment paths determined in the first step.

This discussion gives rise to the following dynamic programme

Uns (U1
s , U

2
s , ..., U

n−1
s ) = max

((Ui
r)S

r=1)
n−1
i=1 ,(c

i
s)n

i=1,(((Ṽ
jg,J

r )
m(k)
g=1 )J∈J)S

r=1∈V∗(m(k))

u(cns )+β
S∑
r=1

πrU
n
r

(
U1
r , ..., U

n−1
r

)
(15)

subject to a set of promise-keeping constraints

u(cis) + β

S∑
r=1

πrU
i
r ≥ U is ∀i 6= n, (16)

an aggregate resource constraint
n∑
i=1

yis ≥
n∑
i=1

cis

and a set of enforcement constraints for each coalition J ∈ J and each state r = 1, ..., S in the next
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period

U j1r ≥ u(yj1r ) + βṼ 1,J
r , (17)

U j2r ≥ u(yj2r ) + βṼ 2,J
r , (18)

... ≥ ... (19)

U
jm(k)
r ≥ u(yjm(k)

r ) + βṼ m(k),J
r (20)

... ≥ ... (21)

U jkr ≥ u(yjkr ) + βṼ k,Jr , (22)

where the elements of coalition J are labelled such that Ṽ = {Ṽ 1
r , ..., Ṽ

k
r } is arranged in increasing

order of payoffs and the subscript r indicates that V gr is the expected punishment payoff chosen after

state r has been realized. Furthermore, U jgr = U
jg
r (U1

r , ..., U
n−1
r ) if jg = n, and it is understood that

V
m(k),J
r , ..., V k,Jr are set equal to V m(k)(V 1,J , ...., V m(k)−1).6

In order to characterize the solution to this dynamic programming problem analytically, we need

to establish differentiability of the value function. For the multilateral sub-game perfect contract

which is stable with respect to individual deviations, the results established in Lemma 1 in Thomas

and Worrall (1988) apply mutatis mutandis. Since the set of sustainable contracts is not convex in

the coalition-proof contract we cannot rely on this property to establish the concavity and differen-

tiability of the value function. Instead, we follow Pavoni (2006) and apply Theorem 1 in Milgrom

and Segal (2002) to establish that the value function is differentiable at all optimal points. As a re-

sult, the solution of the dynamic programme can be characterized by the usual first-order conditions
6A possible ambiguity in the above formulation is that the punishment payoffs may specify that a player receives

different payoffs depending on which set of coalitional enforcement constraints is considered. This ambiguity is resolved
(somewhat informally) in the following manner. Again, consider an example of a 3-player group and suppose we have
found punishment payoffs for all possible 2-player coalitions. Further, suppose that following history ht, player 1 and

2 have a profitable deviation in state r if first-best allocations U1,fb
r and U2,fb

r following this history were actually
implemented. That is, ∃{V 1, V 2} ∈ V∗(2) such that

U1,fb
r < u(y1r) + βV 1

U2,fb
r < u(y2r) + βV 2

.

Then, we satisfy the enforcement constraints for the 2-player coalition consisting of agent 1 and 2 with equality. That
is, we adjust payoffs so that

U1
r = u(y1r) + βṼ

1,{12}
r (23)

U2
r = u(y2r) + βṼ

1,{12}
r (24)

Following from the discussion in Section 2, a 3-player group is stable if and only there are no other profitable 2-player
deviations for these payoffs. If that is the case, we can ignore the enforcement constraints and punishment payoffs
for {13} and {23} when solving for the constrained-efficient allocations. Doing this guarantees that any player can
have at most one enforcement constraint that binds with equality in each state r and the enforcement constraints in
(17)-(22) are to be interpreted in this way. That is, different sets of coalitional enforcement constraints are applied
depending on which subcoalition of players can threaten a profitable deviation if first-best payoffs following ht were
actually implemented.
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and the envelope theorem holds. These technical results are summarized in Lemma 1:

Lemma 1

1. The Pareto frontier Uns (U1
s , ..., U

n−1
s ) is differentiable for any (U is)

n−1
i=1 on the range of the

optimal policy correspondence.

2. At any point of differentiability, if U i
′

s > U is, then ∂Un
s

∂Ui
s
>

∂Un
s

∂Ui′
s

.

3. The enforcement constraints (17)-(22) satisfy the constraint qualification.

Proof of Lemma 1

See Appendix.

Having shown that the value function is differentiable at the optimum and that the enforcement

constraints satisfy the constraint qualification, we can apply the Kuhn-Tucker theorem. This im-

plies that there exist non-negative multipliers associated with the promise-keeping and enforcement

constraints, denoted respectively (γi)n−1
i=1 and (βπrγjgφ

jg,J
r )kg=1 for every coalition J ∈ J and each

r = 1, ..., S. The first-order conditions of the dynamic programming problem are

u′(cns )
u′(cis)

= γi ∀i 6= n (25)

and

−∂U
n
r

∂U ir
= γi

1 + φir
1 + φnr

∀r ∈ S, ∀i 6= n (26)

where it is understood that each agent i can have a constraint that binds with equality for at most

one deviating subcoalition. The n− 1 envelope conditions are given by

γi = −∂U
n
s

∂U is
∀i 6= n. (27)

Advancing the envelope condition forward by one period, we have

γir = −∂U
n
r

∂U ir
= γi

1 + φir
1 + φnr

=
u′(cnr )
u′(cir)

∀r ∈ S, ∀i 6= n. (28)

That is, γi measures the trade-off between agent n’s and agent i’s discounted lifetime utility in the

current period, and γir measures the trade-off in the future period when the state of the world is r.

More generally, the first order conditions show that a constrained-efficient contract can be char-

acterized in terms of the evolution of the vector γ= {γ1,γ2,....,γn−1}. From the first order condition,
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each γi measures the ratio of marginal utilities between agent i and n and from the envelope condi-

tion, each γi measures the rate at which the discounted utility of agent i can be traded off against

the discounted utility of agent n keeping everybody else’s utility constant. Once the state of nature

r is known, the new value for each γir is determined from equations (26) and (28).

The first-order conditions have a very intuitive interpretation. First, consider a first-best risk-

sharing contract. This must satisfy Borch’s rule, which states that the ratio of marginal utilities of

income is constant across all states and time periods. Hence, the initial division of aggregate income

is implemented forever after regardless of how the history of the game unfolds from period t = 0

onwards. Now consider the constrained-efficient contract and suppose that enforcement constraints

have been slack up to some period t, so that all (φiν)ni=1 are zero for ν = 0, ..., t − 1. Then, (28)

says that the ratio of marginal utilities remains constant and from the envelope condition so does

the rate at which continuation utilities are traded off. Moreover, the marginal utility ratio is equal

to its initial value, which implies that aggregate resources are divided among agents in the same

way in each period ν = 0, ..., t − 1. In other words, the first-best risk-sharing contract and the

constrained-efficient contract are equivalent until enforcement constraints bind for the first time.

Suppose this occurs in period t. To fix ideas, assume that agents have identical bargaining

power. In this case, it seems plausible that the risk-sharing arrangement has implemented an equal-

sharing rule. Further, suppose that agent n experiences a negative shock in period t, while agent

i does not. Implementing first-best risk-sharing would require that consumption between the two

agents is equalized. However, insisting on first-best transfers may have the consequence that agent

i finds it in his interest to defect from the arrangement. Suppose that this is indeed the case. That

is, agent i has a binding enforcement constraint in period t and φit > 0. Then (28) states that

γit > γit−1 and consequently u′(cn
t )

u′(ci
t)
>

u′(cn
t−1)

u′(ci
t−1)

. By the concavity of the utility function, this implies

that consumption growth for agent i is greater than for agent n. Equally, the envelope condition

tells us that ∂Un
t

∂Ui
t
<

∂Un
t−1

∂Ui
t−1

and from Lemma 1, this requires that agent i’s continuation payoff is

increased at the expense of agent n in the face of a binding constraint. Together, this implies firstly,

that the transfer from agent i to agent n does not suffice to equalize consumption between the two

agents, and secondly, that the division of aggregate resources is shifted in favour of agent i.

The most interesting property of a dynamic risk-sharing contract – and the one that distinguishes

it from a static limited commitment contract – arises in the period after enforcement constraints

have been binding. Suppose that all enforcement constraints are slack in period t + 1, so that all

φit+1 = 0. Under these circumstances, a static contract would revert to the initial sharing rule (see

Coate and Ravallion (1993) and Ligon et al. (2002)). In the dynamic contract, (28) states that the
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ratio of marginal utilities is to be kept constant even when the previous period has been a constrained

optimum. This implies that the increase in agent i’s surplus from the risk-sharing arrangement is

to be maintained until some period t + ν in the future when someone else experiences a binding

constraint. In other words, the constrained-efficient contract is history-dependent in the sense that

what is considered ‘first-best’ changes as the history of the game unfolds.

How can we understand this result? In contrast to the static contract, the dynamic contract

allows agents to trade future claims to consumption in exchange for consumption today. More

specifically, agent i is induced to make a payment to agent n in period t in exchange for receiving

a larger surplus from the arrangement, not just in the current period but also in the future. This

promise of at least partial repayment in the future means that agent i’s current consumption can

be lower and his transfer to agent n higher than it would be in a stationary setting. In other

words, more risk-sharing can be sustained because the dynamic risk-sharing contract allows shocks

that cannot be smoothed across states because of limited commitment to be smoothed over time.

The fact that this intertemporal smoothing is potentially spread over several periods should not

come as a surprise. Of course, it would be possible to reduce agent n’s consumption in period

t + 1 further by forcing him to make a higher repayment to agent i and compensate him with a

larger surplus in period t + 2. However, this would increase the variability of consumption over

time and can therefore not be optimal from the point of view of a risk-averse agent. Intuitively,

the constrained-efficient contract introduces an element of quasi-credit (see Fafchamps (1999)): risk-

sharing is achieved through informal transfers and loans and future repayment schedules depend on

shocks affecting lender and borrower.

Having reviewed the general rationale behind the constrained-efficient contract, we now show

what distinguishes the sub-game perfect from the coalition-proof risk-sharing contract. The main

difference between the two contracts arises when enforcement constraints are binding. In a sub-game

perfect contract, the current income realization of a constrained agent in state r fully determines his

utility from period t onwards. The history of income realizations up to time t is therefore irrelevant in

determining the payoffs of constrained agents. In contrast, this is not the case in the coalition-proof

contract. The current income realizations and history of shocks of all constrained agents together

determine their payoffs when enforcement constraints are binding. These results are summarized in

the following proposition and proved in the Appendix.

Proposition 2

1. In a sub-game perfect efficient contract, continuation payoffs, U ir, are not history-dependent
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for agents with binding enforcement constraints.

2. In a coalition-proof contract, continuation payoffs U ir are history-dependent for agents with

binding enforcement constraints.

3. In a sub-game perfect efficient contract, the continuation payoff U ir of a constrained agent

depends only on his own current income realization.

4. In a coalition-proof contract, the payoff U ir of a constrained agent depends on his own current

income realization as well as that of other constrained agents. The effect of yjr on U ir is greater

the smaller |γi − γj |.

Proof of Proposition 2: See Appendix.

The ideas behind Proposition 2 can be explained using an example of a 3-player game with

just two possible income realizations for each player, denoted by yl and yh. Suppose agents have

implemented an equal-sharing rule prior to period t. In period t, agent 2 and 3 are called upon to help

agent 1, who is the only one to experience a low income realization. If the equal-sharing allocation

is not self-enforcing, then second-best requires that agent 2 and 3’s consumption and continuation

payoffs are adjusted so that they are just indifferent between cooperation and defection. The sub-

game perfect contract assumes that players will cooperate as long as their payoff under cooperation is

at least as large as what they can achieve in isolation. Hence, it is sufficient – and optimal – to equate

player 2 and 3’s continuation payoffs with their autarky payoffs. That is, U2
t = U3

t = u(yh) + βV .

Since a player’s autarky payoff depends only on his current income realization and not on the history

of the game, the same will be true for his continuation payoff when he is constrained in the sub-game

perfect contract. In other words, what is considered ‘second-best’ does not change as the history of

the game unfolds in a sub-game perfect contract.

Now consider a coalition-proof contract. Suppose that up to and including period t, the history

in the coalition-proof contract has been identical to the one described in the previous paragraph.

Then we know from the first-order conditions that the marginal utility ratio between agent 1 and

2 has decreased in period t and agent 1 receives a smaller share of resources than agent 2, so

that u′(c2t )

u′(c1t )
<

u′(c2t−1)

u′(c1t−1)
= 1. This will remain the case as long as enforcement constraints are slack,

because agent 2 has been induced to help agent 1 in period t by being offered a reward in the form

of partial repayment in the future. Now suppose agent 1 and 2 both experience a high income

realization in period t + 1 and are called upon to help agent 3. Moreover, assume that the first-

best allocation following this history is not enforceable. The coalition-proof contract allows for the
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fact that following a joint deviation, agent 1 and 2 can continue to share risk rather than remain

in autarky. Hence, agent 1 and 2’s consumption must be adjusted so that they are just indifferent

between cooperation and jointly defecting to a point on the Pareto frontier of a pair, V∗(2). Consider

the point {V , V } ∈ V∗(2) depicted in Figure 1 in Section 2 and suppose that this allocation minimizes

the total consumption of agent 1 and 2, c1r + c2r. This implies that the insurance transfer to agent 3

is maximised for this allocation. By symmetry, the same is true for the allocation in which agent 1

receives V and agent 2 receives V . As a result, the extent of risk-sharing that can be sustained in

the current period will not be affected by which allocation is chosen. Looking backwards however,

allocating the larger continuation payoff to agent 2 and the smaller continuation payoff to agent 1,

so that U2
t+1 = u(yh)+βV > U1

t+1 = u(yh)+βV , has a positive effect on welfare because it increases

the scope for positive transfers from agent 2 to agent 1 in period t by promising a higher reward to

agent 2 in the future. Hence, following any histories in which agent 2 has been a net giver to agent

1, it is optimal to deter a joint deviation by giving agent 2 a relatively higher payoff than agent

1. Consequently, the coalition-proof contract exhibits history-dependence even when enforcement

constraints are binding.7

To understand the intuition behind claim 4. in Proposition 1, consider again the three player

game described above. We know from the argument made in the previous paragraph that agent

2’s continuation payoff exceeds agent 1’s continuation payoff in t + 1 if agent 1 and 2 both have a

high income realization and u′(c2t )

u′(c1t )
< 1. Instead, suppose that agent 1 has a low income realization

in period t + 1. We now argue that the allocation in which agent 1 receives U1
t+1 = u(yl) + βV

and agent 2 receives U2
t+1 = u(yh) + βV is no longer optimal when they are jointly constrained and

u′(c2t )

u′(c1t )
is close to 1. To see this, assume that the difference between the income realizations is large

enough that u(yl) + βV < u(yh) + βV .8 Then it follows from part 2. in Lemma 1 that switching

to the allocation in which agent 1 receives the highest payoff from risk-sharing in a group of size 2,

V , and agent 2 receives the lowest payoff, V , increases the payoff of the unconstrained agent. This

is the case, because the fall in U3
t that results from increasing U1

t by β(V − V ) is smaller than the

corresponding increase from reducing U2
t by the same amount – a result that is essentially akin to

concavity. By the envelope condition in (27), this also applies to agent 3’s consumption. Therefore,

changing agent 2’s allocation in response to a fall in agent 1’s income realization allows more risk-

sharing to be sustained in the current period. Of course, there is some cost to this in terms of the
7The argument made here applies to any allocation in which V 2 ≥ V 1. In the Appendix, we prove that this

inequality will always be strict, so that V 2 > V 1 when agent 2 has been a net giver to agent 1.
8The proof of part 4. Proposition 1 does not depend on this assumption. It is merely introduced here for the

purpose of illustration. The proof does, however, use the assumption that agents consume their own income in the
period of deviation.
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extent of risk-sharing that can be sustained between agent 1 and 2 in period t. However, when u′(c2t )

u′(c1t )

is close to one, which implies that neither agent has had to rely much on the other in the past, the

gain in period t+ 1 far outweighs the cost. Taken together, this implies that the continuation payoff

of a constrained agent depends on the current income realization of other constrained agents in the

coalition-proof contract. Moreover, the size of this effect will depend on the previous risk-sharing

history of the constrained agents.

Combining Proposition 2 and the first order conditions (25)-(28), we can see how consumption of

a constrained agent is linked to the continuation payoffs and income realizations of other constrained

agents. Denote by Ct the set of constrained agents and UCt the set of unconstrained agents in period

t. Define U ir as the payoff of agent i – not necessarily the autarky payoff – when his enforcement

constraint is binding. In a sub-game perfect contract, this payoff depends only on his own income

realization. In the coalition-proof contract, it depends on the income realization of other constrained

agents as well as the previous history of the contract. This implies that consumption cir of a

constrained agent is determined by

u′(cnr )
u′(cir)

= −∂U
n
r

∂U ir

∣∣∣
Ui

r=Ui
r(yi

r),U
j∈Ct
r =Uj

r(yj
r),U

k∈UCt
r =Uk

r (ht)
(29)

in the sub-game perfect contract. In contrast, in the case of the coalition-proof contract, consumption

of a constrained agent cir is given by

u′(cnr )
u′(cir)

= −∂U
n
r

∂U ir

∣∣∣
Ui

r=Ui
r(yi

r,{y
j
r}j∈Ct ,ht),U

j∈Ct
r =Uj

r(yi
r,{y

j
r}j∈Ct ,ht),U

k∈UCt
r =Uk

r (ht)
. (30)

As a consequence, consumption depends on the previous history of constrained agents only in the

coalition-proof contract. The income realization of other constrained agents enters both in the sub-

game perfect and in the coalition-proof contract. However, in the former it enters only indirectly

via its effect on U jr and since U jr does not depend on the previous history of shocks, there is no

interaction between the effect of yjr and ht.9 In the latter, the income realization of constrained

agents directly affects U ir and the magnitude of this effect depends on the previous history of shocks

as outlined in Proposition 2.

The final step is to write (29) and (30) in terms of the marginal utility ratios in the previous

period. This is valid, because from the first-order and envelope conditions, the continuation values

are completely determined by the previous history of the game as summarized by the previous
9Note that (29) conditions on the set C and therefore the number of constrained agents at time t, which will depend

on the previous history of the game. Therefore the effect of yj
r in the sub-game perfect contract is independent of the

previous history of marginal utility ratios only for a given number of constrained agents.
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period’s marginal utility ratios and the current income realizations. Therefore, the evolution of the

ratio of marginal utilities over time is characterized by the following Euler equation

u′(cnt )
u′(cit)

= (γit)i∈Ct = g((γmt−1)m∈UCt , (y
k
t )k 6=i∈Ct , y

i
t, Yt) (31)

where Yt denotes aggregate income.

In the coalition-proof contract, the marginal utility ratio of constrained agents as well as their

current incomes determine the joint payoff in case of deviation. The implication is that today’s

marginal utility ratio of agents, who are constrained, will depend on the previous period’s marginal

utility ratios and current incomes of all agents k ∈ Ct. In particular, the effect of income is larger if

the marginal utility ratios of two constrained agents in period t− 1 are of similar magnitude:

(γit)i∈Ct = g((γmt−1)m∈UCt
, (γkt−1)k∈Ct

, (yjt , (
γit−1

γjt−1

− 1)2 × yjt )j 6=i∈Ct , y
i
t, Yt). (32)

Taken together, this implies that the results derived in Proposition 2 are related to the marginal

utility ratios as follows.

1. In a sub-game perfect efficient (coalition-proof) contract, the marginal utility ratio of a con-

strained agent, γit , is independent of (depends on) the previous history of shocks of other

constrained agents as summarized by (γkt−1)k∈Ct
.

2. In a sub-game perfect efficient (coalition-proof) contract, the effect of any constrained agent

j′s income realization, (yjt )j 6=i∈Ct
, on the marginal utility ratio of a constrained agent i, γit , is

independent of (depends on) the previous history of shocks.

To sum up, the analytical properties of the constrained-efficient coalition-proof contract fit well

with some of the empirical findings left unexplained by the existing models. For any stable group

size, the set of coalition-proof equilibria is contained in the set of sub-game perfect equilibria and

the extent of risk-sharing in the former can therefore never be larger than in the latter. Moreover,

the set of stable sizes is finite as shown in Genicot and Ray (2003) and this will limit the extent of

risk-sharing even further relative to sub-game perfection when the set of stable sizes are compared.

Finally, the model shows that ’amnesia’ is not actually a direct implication of limited commitment,

but rather follows from solving for the set of sub-game perfect equilibria of the dynamic risk-sharing

game. Refining equilibria to be coalition-proof can explain the empirical rejection of amnesia while

maintaining the assumption of limited commitment.
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4 Testing and Simulations

In this section, we exploit the property that history enters both directly and interacted with current

income realizations into the first-order condition for consumption of a constrained agent in the

coalition-proof contract to derive a test for the endogeneity of insurance group size in an environment

of perfect information. We then apply the test to simulated data that is generated by numerically

solving a parameterized version of the model derived in Section 3 and summarise the properties of

the test.

To implement the test, we must derive an estimable equation from (29) and (30). Since g is

an unknown non-linear function, we expand it in order to transform (32) into a linear regression.

Define x = {(γmt−1)m∈UCt
, (γkt−1)k∈Ct

, (yjt , (
γi

t−1

γj
t−1
− 1)2 × yjt )j 6=i∈Ct

, yit, Yt}. This gives the k′th order

Taylor expansion around x∗:

(γit)i∈Ct = g(x) = g(x∗) +Dg(x∗)(x̂) +
1
2!
D2g(x∗)(x̂, x̂) + ...+

1
k!
Dkg(x∗)(x̂, x̂, ..., x̂) +Rk(x̂,x∗),

(33)

where x̂ = x − x∗. Based on this, we can write the following linear estimable equations for a

constrained agent i:

γit = β0 +
∑
k∈Ct

β1,kγ
k
t−1 +

∑
k∈Ct

β2,ky
k
t + β3Yt + higher order terms (34)

γit = β0 +
∑
k∈Ct

β1,kγ
k
t−1 +

∑
k∈Ct

β2,ky
k
t + β3Yt

+
∑

j 6=i∈Ct

β4,j(
γit−1

γjt−1

− 1)2 × yjt + higher order terms (35)

There are two more issues that need to be addressed before estimating (34) and (35). The tests

above regress marginal utility ratios on their own past and rely on being able to identify constrained

and unconstrained agents correctly. Both of these issues pose similar challenges. As proposed in

Kocherlakota (1996), constrained and unconstrained agents can be identified by comparing the ratios

of marginal utilities for different agents, but of course the shape of the utility function is in general

not known. If we are willing to impose a logarithmic or constant relative risk aversion (CRRA) utility

function, then constrained and unconstrained agents can be identified by comparing consumption

shares, which are readily observable. Similarly, the tests can be implemented by regressing relative

consumption shares of any two agents on their own past. However, for more general utility functions,

the unknown parameters have to be identified from restrictions implied by the model itself. This
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may prove difficult, if the restrictions only apply to constrained agents, but these cannot be identified

from the data unless the parameters of the utility function have been estimated. To circumvent these

problems, the majority of papers applying tests of this kind assume that agents have a CRRA utility

function (see Alvarez and Jermann (2000) and Krueger et al. (2008)). A second, and potentially more

serious problem is measurement error. If consumption is measured with error, then unconstrained

agents may mistakenly be identified as constrained even when the shape of the utility function is

known and past marginal utility ratios may be deemed significant when they are not. It is clear

from our discussion that the test for exogenous group formation will be particularly sensitive to

measurement error of this kind.

We now use simulated model solutions to show how to discriminate between endogenous and

exogenous group formation under imperfect enforceability. To solve the model numerically, we

restrict ourselves to 3 households with logarithmic utility functions. Individual income yi takes on

the values 1.5 and 3, with equal probability. Income realisations across households are identically

and independently distributed. The discount factor is β = 0.85. To compute the optimal contract,

we follow Marcet and Marimon (1999), Attanasio and Rios-Rull (2000) and Kehoe and Perri (2002)

in setting up a Lagrangian for a social planner who seeks to maximize a weighted sum of utilities of

a group of n agents by choice of current consumption and future Pareto weights. We implement the

algorithm using weighted-residual methods based on finite element approximations to solve for the

equilibrium of this model in each income state on a two dimensional grid of Pareto weights, which

are normalized such that
∑3
i=1 λ

i = 1 (see Judd (1998), Judd (1992), McGrattan (1996), Christiano

and Fisher (2000)). We solve for both the efficient sub-game perfect contract, which corresponds to

exogenous group formation, as well as for the efficient coalition-proof contract, which corresponds

to endogenous group formation.

The simulated data are obtained by starting the simulation at the grid point which gives equal

consumption to the three agents and then letting the 3-agent model run for 10,000 periods for both

the individual deviations model and the coalitional deviations model drawing a stochastic income

realization in each period. In order to assess the effect of measurement error, both the dependent

variable and the regressors are perturbed by a random error, ε ∼ N(0, σ2), whose standard deviation

σ = k
10 × std(γt), k = 1, ..., 10. That is, the standard deviation of the measurement error ranges from

10% to 100% of one standard deviation of the computed marginal utility ratios. In total, this gives

10 simulated economies each for the sub-game perfect and the coalition-proof contract to which the

empirical test is applied.

As the test is only valid for constrained agents, we select all time periods in which both agent 1 and
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2 are constrained based on the selection rule stated in Kocherlakota (1996): if min
( γ1

t

γ1
t−1

,
γ2

t

γ2
t−1

)
> 1,

then both agent 1 and 2 are constrained. Since the data are perturbed by measurement error, we

apply a more conservative cut-off rule of 1.1. In the case of log-utility, the expression for the marginal

utility ratio between agent 1 and 2, u
′(c2t )

u′(c1t )
, simplifies to c1t

c2t
and there are no unknown parameters in

the utility function. We can therefore run the following two regressions:

c1t
c2t

= β0 + β1
c1t−1

c2t−1

+ β2y
1
t + β3y

2
t + β4Yt + second order terms (36)

c1t
c2t

= β0 + β1
c1t−1

c2t−1

+ β2y
1
t + β3y

2
t + β4Yt + β5(

c1t−1

c2t−1

− 1)2 × y2
t + second order terms. (37)

These regressions are similar to the ‘changes-in-shares’ estimator in Ligon et al. (2002). That

is, rather than specifying a regression in levels of consumption, we estimate how the relative shares

of agent 1 and 2 are determined. The first regression tests whether the past history of constrained

agents as summarized by the past marginal utility ratio is significant in explaining own consumption.

If group formation is exogenous, the coefficient on c1t−1

c2t−1
is expected to be zero. If group formation

is endogenous, then as c2t−1 increases relative to c1t−1, we would expect agent 2 to be awarded a

higher payoff than agent 1 when enforcement constraints are binding, because this requires a smaller

movement in the marginal utility ratios. Hence the coefficient ought to be significant and positive.

In (37), we also introduce the interaction term ( c
1
t−1

c2t−1
−1)2×y2

t . Under endogenous group formation,

the effect of income changes of agent 2 on the current marginal utility ratio depends on the previous

period’s marginal utility ratio of agent 1 and 2. Broadly speaking, the bigger the difference between

initial consumption shares, the less we would expect income to matter in the endogenous group

formation case.

The simulation procedure is repeated 500 times. Table 1 reports the average coefficients and

p-values for σ = 0.1 × std(γt). The results successfully capture the predictions of the two models.

The first and third column of Table 1 report the coefficients from regression (36). In the presence

of endogenous group formation, the past marginal utility ratio of agent 1 and 2 has significant

explanatory power, because it determines the relevant deviation payoff. When c1t−1 is small relative

to c2t−1, it is optimal to deter a deviation by awarding agent 1 the minimum payoff in a group of

size 2. When c1t−1 is large relative to c2t−1, continuation payoffs which give agent 2 the minimum

payoff and agent 1 the maximum payoff become optimal. In contrast, when group size is exogenous,

the coefficient on c1t−1

c2t−1
is zero and has no explanatory power because the optimal punishment path

always involves reversion to the static autarky equilibrium. It is also noticeable that the coefficient

on income is much smaller under endogenous group formation. This does not imply though that own
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Relative consumption shares Individual Group

of agent 1 and 2 deviation deviation
c1t
c2t

(1) (2) (3) (4)
c1t−1
c2t−1

-0.002 -0.003 0.233 0.230

(0.4944) (0.4911) (0.000) (0.000)
y1

t 0.369 0.368 0.129 0.127
(0.000) (0.000) (0.000) (0.000)

y2
t -0.481 -0.481 -0.163 -0.147

(0.000) (0.000) (0.000) (0.000)
(

c1t−1
c2t−1

− 1)2 × y2
t - 0.001 - -0.901

- (0.488) - (0.000)
Yt -0.001 -0.002 -0.028 0.003

(0.497) (0.497) (0.231) (0.245)
constant 1.367 1.368 0.870 0.790

(0.000) (0.000) (0.000) (0.000)
Notes: Reported coefficients and p-values in brackets are averaged over
500 repetitions. Data in column (1) and (2) are generated by solving
for the equilibrium of a 3-player sub-game perfect limited commitment
contract. Data in column (3) and (4) are generated by solving for the
equilibrium of a 3-player coalition-proof limited commitment contract.
The economy is simulated for 10,000 periods and a random error is added
to consumption and income in each period. All time periods in which
agent 1 and agent 2 are identified as constrained are included in the re-
gression. The average number of included observations in 500 repetitions
is 1600. Second order terms are included, but not reported. The only
significant second order term is the interaction y1t × y2t .

Table 1: Predicted relative consumption shares when agent 1 and 2 are constrained.

shocks are better insured under endogenous group formation. The coefficient on income is smaller,

because the current relative consumption share of agent i is determined not only by his income, but

also by the history of the game.

In column (2) and (4) of the table we add the interaction effect of ( c
1
t−1

c2t−1
− 1)2 × y2

t to the

specification. Here, the differential effect of y2
t in the case of endogenous versus exogenous group

formation becomes very pronounced. In the former scenario, both the direct effect of agent 2’s

income and the past consumption shares of agent 1 and 2 as well as the interaction effect of these

two variables are large and significant. To illustrate the magnitude of the effects, first suppose
c1t−1

c2t−1
= 1. Then raising agent 2’s income from 1.5 to 3 decreases the marginal utility ratio in the

current period c1t−1

c2t−1
by 0.15. If c1t−1

c2t−1
− 1 is set to its maximum of 0.5, then increasing y2

t decreases

the marginal utility ratio by 0.36. This is the case because for marginal utility ratios close to 1 it

is optimal to increase agent 1’s punishment path relative to the case when income realizations of

constrained agents are equal in order to compensate for the increased inequality between agents due

to agent 2’s higher income realization. That is, consumption of agent 1 is raised relative to agent 2’s

income (even though in absolute terms, agent 2’s consumption may exceed agent 1’s consumption).
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However, as ( c
1
t−1

c2t−1
− 1)2 increases, the impact of agent 2’s income realization diminishes. In the case

of exogenous group formation, none of these effects matter.

Figure 2 plots the size and power of these tests as a function of measurement error. The size

calculations in the three panels on the left-hand side are based on solving the model under exogenous

group formation and recording the fraction of times in 500 repetitions the null hypothesis is rejected

for different significance levels α = 0.01, 0.05, 0.1. The first panel shows the size of the test for

β1 = 0 in regression (36). The test performs well for low to intermediate levels of measurement

error, however as measurement error increases, the test becomes less robust. For σ ≥ 0.5× std.(γt),

the null is rejected 80 % of the time when it is in fact true. One might expect that this happens

because constrained agents are not identified correctly as measurement error increases. However, this

does not appear to be the case. The conservative cut-off rule implies that even for the highest level

of measurement error, only an average of 4 in 1600 observations are classified incorrectly. Rather,

the null of β1 = 0 is sensitive to even moderate amounts of measurement error. The second and

third panel on the left-hand side report the size of the test for β5 = 0 and the joint test of β1 = 0 and

β5 = 0 in regression (37). Both these tests perform well and even for large levels of measurement

error, the null is rejected less than half the time at a significance level of 5%. The three panels on

the right-hand side report the power of the tests. The calculations are based on solving the model

under endogenous group formation and recording the fraction of times in 500 repetitions we accept

the null for different significance levels. The first panel shows the power of the test for β1 6= 0 in

regression (36). The test is extremely strong and the null is never rejected regardless of the degree

of measurement error. This is the case because the impact of the previous period marginal utility

ratio both directly and interacted with income is large and because measurement error at least to

some extent biases the results in favour of finding endogenous group formation.

Taken together, the results give us some confidence that the tests are able to distinguish between

exogenous and endogenous group formation at least when data are well measured. Comparing the

size and power of the test, it is clear that the main challenge lies in being able to reject endogenous

group formation when it is not present. Of course, the testing strategy relies on a number of

underlying assumptions. As discussed above, the power of this test depends crucially on the ability

to identify constrained and unconstrained agents correctly. Moreover, even when constrained agents

are identified correctly, the fact that the past marginal utility ratio matters may be due to other

factors. An obvious weakness is that the model excludes the possibility of savings and assumes

perfect information. If these assumptions do not adequately describe the environment, then the tests

described here may not be able to distinguish between endogenous and exogenous group formation.
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Figure 2: Size and power of the tests
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In a recent paper, Dubois et al. (2008) show that the marginal utility ratio retains information

about the past when enforcement constraints are binding even when group formation is exogenous

in an environment that combines formal short-term contracts and informal long-term contracts.

However, this is manifested by the fact that lagged consumption explains current income, which is

an endogenous variable in the presence of formal contracts. This is not a feature of the pure limited

commitment model under either exogenous or endogenous group formation and therefore the way

in which history matters is quite different in their model and ours.

Secondly, the model of recursive stability of groups employed in this paper is partial in the sense

that it does not consider deviations with agents outside the group. Group formation is also likely to

be determined by other factors outside of the model such as proximity, covariance of incomes and

heterogeneity of agents. Nevertheless, the constraints on group formation derived in this paper can be

considered a subset of the factors that explain group formation – a first hurdle any group must pass.

Given well measured income and consumption data on a census of mutually exclusive risk-sharing

groups over time, the above tests can be applied to examine whether coalitional deviations form part

of the constraints that limit group formation and as such may be considered a necessary condition

for the stability of a risk-sharing group. Alternatively, the algorithm derived above enables us to

estimate a full structural model of efficient risk-sharing when group formation is endogenous and

compare it to a number of alternatives including exogenous group formation, imperfect information

and models that include savings (see Ligon et al. (2002) and Karaivanov and Townsend (2008)).

To be sure, this is computationally cumbersome for large risk-sharing arrangements. But there is

increasing evidence that risk-sharing is confined to small networks of family and friends. Estimating

a structural risk-sharing model for such groups could be a fruitful next step for further research.

5 Conclusion

This paper has shown how to model an efficient risk-sharing contract in the presence of endogenous

group formation. Requiring groups to be stable with respect to deviations of subgroups as well as

individuals alters the predictions of the dynamic limited commitment risk-sharing model substan-

tially. In particular, ’amnesia’ in the wake of binding constraints is no longer a property of the

model. Instead, the consumption of constrained agents depends on both the history of shocks and

its interaction with the current income of other constrained agents. More generally, the analytical

properties derived can explain larger deviations from first-best insurance both for a given stable size

and even more so over the entire set of stable sizes than predicted by existing models of sub-game
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perfect dynamic risk-sharing.

The theoretical properties derived lead to relevant restrictions on consumption and income that

allow the researcher to empirically test whether the threat of coalitional deviations is relevant in

explaining the observed departure from full insurance. On a more practical level, establishing the

presence or absence of endogenous group formation is an important question in developing country

contexts, because the impact of policies such as outside financial intermediation and the provision of

external safety nets in terms of crowding out of existing arrangements are likely to be very different

if insurance group sizes are limited endogenously rather than exogenously.

Finally, the model derived in this paper provides a blue-print for structurally estimating a model

of dynamic risk-sharing with coalitional deviations. In a companion paper (Bold (2008)), we test

this model using data on intergenerational risk-sharing among families from the ICRISAT data

set against the alternatives of full insurance, autarky and dynamic risk-sharing with individual

deviations (see Ligon et al. (2002)). Moreover, we decentralize the economy to derive quantitative

implications on the relative price of risk generated by our model of risk-sharing. Preliminary results

suggest that dynamic coalition-proof risk-sharing does significantly better at explaining the data

than the alternatives suggesting that our model can potentially play an important role in enhancing

our understanding of consumption behaviour, risk-sharing and the returns to bearing risk.

6 Appendix A: Proofs

Proof of Lemma 1

1. The enforcement constraints in (17)-(22) are not convex. Hence, we cannot prove differentiability

using standard arguments. Instead, we follow the strategy in Pavoni (2006) to establish differentia-

bility of the value function at all points of interest.

The proof proceeds by defining a series of dynamic programmes of maximizing agent n’s utility

subject to agent 1, ...n − 1 receiving at least U1
s , ..., U

n−1
s and the enforcement constraints being

satisfied conditional on fixed punishment payoffs for all potential subcoalitions. We then show

that the conditional functions are differentiable in U1
s , ..., U

n−1
s , that Un(U1

s , ..., U
n−1
s ) is indeed

the upper envelope of these conditional functions, and that Un(U1
s , ..., U

n−1
s ) has left- and right-

hand derivatives everywhere. Hence, the conditions of Theorem 1 in Milgrom and Segal (2002)

are satisfied. Combining this with Theorem 2 in Cotter and Park (2006), it follows that the value

function is differentiable on the range of the optimal policy correspondence.

Let V denote the space of infinite sequences of all possible punishment payoffs (((Ṽ jg,Jr )m(k)
g=1 )J∈J)Sr=1

∈ V∗(m(k)) for a group of size n and let V denote a particular sequence in this space. For a given
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V, write the conditional maximisation problem as

Uns (U1
s , U

2
s , ..., U

n−1
s ; V) = max

((Ui
r)S

r=1)
n−1
i=1 ,(c

i
s)n

i=1

u(cns ) + β

S∑
r=1

πrU
n
r

(
U1
r , ..., U

n−1
r ;1 V

)
(38)

s.t. (17)− (22).

The conditional function Uns (U1(s), U2(s), ..., Un−1
s ; V) represents agent n’s maximised discounted

lifetime utility conditional on a given sequence of punishment payoffs, where 1V stands for the one

step ahead continuation of V. To proceed, we assume that a group of n is stable. Then it follows

from adapting Proposition 3 in Pavoni (2006) that (38) exists and is unique.

We now establish that the conditional function is well-behaved and in particular, that it is

differentiable. We then show that the value function is the upper envelope of the collection of

conditional functions using an inductive argument. The set of feasible promised utilities U1
s , ..., U

n−1
s

is compact, which can be shown by adapting the argument in Lemma 1 of Thomas and Worrall

(1988). Secondly, note that V ∗(1) and V ∗(2) are compact by standard arguments (Thomas and

Worrall (1988) and Kocherlakota (1996)). V is therefore compact by Tychonoff’s Theorem for

n ≤ 3. Suppose moreover that compactness of V has been established for all 1, ..., n − 1 (ignoring

for the moment that not all of these group sizes may be stable). The utility function is continuous

and bounded. Substituting from the promise-keeping constraints when they bind with equality, it is

easy to see that the choice set for consumption and continuation utilities is monotone and that the

utility function is decreasing in each (U is)
n−1
i=1 . Therefore, Theorem 4.6 and 4.7 in Stokey et al. (1989)

apply and the value function of the conditional problem is bounded, continuous, unique and strictly

decreasing in its first n − 1 arguments. In addition, the constraint set is convex conditional on V

and it follows that the value function is concave and the set of maximizers is continuous and single

valued. Finally, convexity of the constraint set and concavity of the utility function allows us to

apply Lemma 2 in Benveniste and Scheinkman (1979) to show that the value function is continuously

differentiable at any interior point of its domain. The usual envelope condition then applies and

∂Uns (U1
s , ..., U

n−1
s ; V)

∂U is
= −u

′(cns )
u′(cis)

∀i. (39)

Before proceeding, we show that the maximization of the conditional function with respect to V

Uns (U1
s , ..., U

n−1
s ) = max

V∈V
Uns (U1

s , ..., U
n−1
s ; V) (40)

is well-defined. By the inductive hypothesis, V is compact and the conditional function is continuous.
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Hence, Berge’s Theorem of the Maximum can be applied to this problem and the value function is

continuous and unique – and its range is therefore a compact set – and the optimal policy correspon-

dence V∗ is non-empty, compact valued and upper-hemicontinuous. Since each V i is a continuous

function of (U ir)
S
r=1, it follows that V is compact for n. By strong induction, the properties derived

for the conditional functions and the value function Un(U1
s , ..., U

n−1
s ) hold for all n. Moreover, both

the conditional and the value function are bounded. The equivalence between the sequential and

the recursive formulation then follows easily by applying standard arguments found in Stokey et al.

(1989).

To apply Theorem 1 in Milgrom and Segal (2002), we make the following assumption

Assumption 1 The set of maximizers V∗(U1
s , ..., U

n−1
s ) is finite.10

Together with differentiability of the conditional functions, this implies that the value function

is differentiable almost everywhere and has left- and right-hand derivatives everywhere. Hence,

Theorem 1 in Milgrom and Segal (2002) tells us that

∂Un,+s (U1
s , ..., U

n−1
s )

∂U is
≥ ∂Uns (U1

s , ..., U
n−1
s ; V)

∂U is
≥ ∂Un,−s (U1

s , ..., U
n−1
s )

∂U is
∀i = 1, ..., n− 1. (41)

If ∂Un,+
s

∂Ui
s

= ∂Un,−
s

∂Ui
s

, the value function is differentiable at U is and its derivative equals −∂u
′(cn

s )
∂u′(ci

s) .

We now show that the value function is differentiable at all optimal points and the first order

conditions are therefore necessary to characterize the maximum. Note that if the value function is

not differentiable at U is, then ∂Un,+
s (U1

s ,...,U
n−1
s )

∂Ui
s

≥ ∂Un,−
s (U1

s ,...,U
n−1
s )

∂Ui
s

describes a downward kink of

the value function and so U is cannot be a maximizer. To see this, note that we can always turn (15)

into a free maximization problem by substituting in the promise-keeping and binding enforcement

constraints. At any point of optimality, it must then be the case that

∂Un,+r

∂U ir
≤ ∂Un,−r

∂U ir
(42)

Combining this with (41) above, it follows that the value function is differentiable at any point

10While we have not been able to prove that this will in general be the case, the simulation results show that this
assumption is not implausible. The total utility to be allocated to the set of constrained agents and the allocations
making up this total utility are usually unique. The only non-uniqueness arises from the order in which the chosen
payoffs are allocated among the constrained agents. Of course, finiteness of the optimal policy correspondence in the
recursive formulation is not the same as finiteness of the set of infinite sequences that maximize the programme in
(40). It is merely a necessary condition. We would argue that assuming finiteness of the set of optimal sequences for
the sake of analytical tractability is not too controversial for the following reason: The main task of the paper is to
show that the sub-game perfect and the coalition-proof risk-sharing contract behave differently when constraints are
binding. It is well-known that the sub-game perfect contract can be characterized by a state-dependent, but history
independent updating rule. Hence, the optimal choice set in the sub-game perfect contract is finite and moreover,
it is single-valued. Therefore, if the assumption of finiteness was violated, then this in itself would imply that the
coalition-proof contract behaves differently from the sub-game perfect contract when constraints are binding.
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on the optimal policy correspondence and the first-order conditions are necessary (see Theorem 2,

Cotter and Park (2006)).

2. Solving for cis from the promise-keeping constraints, we write

∂Uns
∂U is

= −
u′(
∑n
i=1 y

i
s −

∑n−1
i=1 u

−1(U is − β
∑S
r=1 U

i
r))

u′(u−1(U is − β
∑S
r=1 U

i
r)

. (43)

It follows from the concavity of the utility function that the right-hand side of this expression is

decreasing in U is.

3. Having shown that the problem is differentiable at the optimum, we can use the Kuhn-Tucker

Theorem to show that the multipliers associated with the enforcement constraints are positive. To

see that the Kuhn-Tucker constraint qualification holds, note that at the optimum each agent can

have a binding constraint in at most one deviating subcoalition and at most n− 1 agents can have a

binding enforcement constraint. Then it can be shown that the Jacobian matrix of first derivatives

of the binding enforcement constraints has maximal rank (see Rincon-Zapatero and Santos (2007)).

Hence, the constraint qualification holds and there are nonnegative multipliers associated with the

enforcement constraints.

�

Proof of Proposition 2:

1) Suppose φir > 0 for i = 1, ..., n − 1 and φnr = 0. As a first step, note that (15) is equivalent to a

social planner maximizing a weighted sum of expected discounted utilities of n agents. The planner

takes as given the planning weights {γi}n−1
i=1 , which are equivalent to the Lagrange multipliers on

the promise keeping constraints in (16). He then chooses consumption cis, promised continuation

values U ir and the punishment payoffs (((Ṽ jg,Jr )kg=1)J∈J)Sr=1 subject to satisfying the enforcement

constraints corresponding to the equilibrium concept that is applied:

UPs = max
((Ui

r)S
r=1)

n−1
i=1 ,(c

i
s)n

i=1

n−1∑
i=1

γi
(
u(cis) + β

S∑
r=1

πrU
i
r

)
+u(cns ) + β

S∑
r=1

πrU
n
r

(
U1
r , ..., U

n−1
r

)
. (44)

33



If φir > 0 for i = 1, ..., n− 1 and φnr = 0, the first order condition with respect to U ir is

−∂U
n
r

∂U ir
= γi(1 + φir)

⇔ −∂U
n
r

∂U ir
> γi (45)

i.e the marginal gain from increasing U ir to satisfy the enforcement constraints is less than the

marginal loss in utility due to decreasing Unr (U1
r , ..., U

n−1
r ). Therefore, the planner will increase

{U ir}n−1
i=1 by as little as possible to satisfy the enforcement constraints. In the sub-game perfect

contract, this implies setting U ir = u(yir) + βV ∗(1) and hence choosing the punishment path Ṽ i =

V ∗(1), since this is the payoff that agents can achieve by unilateral deviation. Because the autarky

payoff is fully determined by the current income realization of agent i, it corresponds to a static

equilibrium and is not history-dependent.

2) Next, we show that the optimal punishment payoffs are history-dependent in the coalition-

proof contract. As they are chosen with the fact in mind that continuation payoffs will be equal to the

discounted punishment payoffs augmented by one period of autarky consumption when enforcement

constraints are binding, it then follows that the continuation payoffs on the equilibrium path are

history-dependent when enforcement constraints are binding. In what follows, a superscript fb

indicates the first-best allocation given the planning weights after history ht, whereas a superscript

c denotes the constrained contract. Suppose that in the next period in state r, y1
r = y2

r , and agent

1 and 2 would both find an individual deviation profitable if first-best transfers were implemented,

and can therefore also threaten to deviate jointly. All other enforcement constraints are satisfied.

The total loss in utility UPs when enforcement constraints are binding can be approximated by

dUPs = UP,fbs − UP,cs ≈ βπr
n−1∑
i=1

(γi +
∂Unr
∂U ir

)
∣∣∣
Ui,c

r

(U i,fbr − U i,cr )

= βπr

n−1∑
i=1

(γi − γir)(U i,fbr − U i,cr )

= −βπr[γ1φ1,{12}
r (U1,fb

r − U1,c
r ) + γ2φ2,{12}(U2,fb

r − U2,c
r )].

(46)

where the last equality follows from the fact that γi = γir for all unconstrained agents. By assump-

tion, the first-best allocation following this history would give agent 1 and 2 less than autarky utility

and therefore (U i,fbr − U i,cr ) < 0 for i = 1, 2. Hence dUPs is positive and the planner will choose

punishment paths to support the continuation payoffs U1,c
r and U2,c

r , such that UP,fbs − UP,cs is as

close to zero as possible. Suppose, the planner has chosen a particular punishment path Ṽ 1,{12}
r for
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agent 1 with V 2(Ṽ 1,{12}
r ) on the Pareto frontier of a risk-sharing group of size 2. By symmetry of

the stable payoff vectors, for a given total utility Ṽ 1,{12}
r + V 2(Ṽ 1,{12}

r ), the planner can either pick

a punishment path, such that Ṽ 1,{12}
r = Ṽ h ≥ Ṽ l = V 2(Ṽ 1,{12}

r ) or vice versa, where h and l denote

high and low. Also write Uhr = u(y1
r) +βṼ h, U lr = u(y1

r) +βṼ l. Then if γ2 > γ1, which implies that

U1
s < U2

s ⇒ dUP (Ṽ h, Ṽ l) ≥ dUP (Ṽ l, Ṽ h). That is, the fall in total utility is less when U1
r = U lr and

U2
r = Uhr . Towards a contradiction, suppose

dUPs (Ṽ h, Ṽ l) ≈ βπr
[
(γ1 +

∂Unr
∂Uhr

)dU1
r + (γ2 +

∂Unr
∂U lr

)dU2
r +

n−1∑
i=3

(γi +
∂Unr
∂U ir

)dU ir
]
<

dUPs (Ṽ l, Ṽ h) ≈ βπr
[
(γ1 +

∂Unr
∂U lr

)dU1
r + (γ2 +

∂Unr
∂Uhr

)dU2
r +

n−1∑
i=3

(γi +
∂Unr
∂U ir

)dU ir
]
.

(47)

From (47), it follows that

(γ1 + ∂Un
r

∂Uh
r

)(U1,fb
r − Uhr ) + (γ2 + ∂Un

r

∂U l
r

)(U2,fb
r − U lr) <

(γ1 + ∂Un
r

∂U l
r

)(U1,fb
r − U lr) + (γ2 + ∂Un

r

∂Uh
r

)(U2,fb
r − Uhr )

⇔ (γ1 − γ2)(U lr − Uhr ) + (∂U
n
r

∂Uh
r
− ∂Un

r

∂U l
r

)(U1,fb
r − U2,fb

r ) < 0,

(48)

which is a contradiction, because the first term is positive by assumption, and the second term is

positive because ∂Un
r

∂Uh
r
<

∂Un
r

∂U l
r

from Lemma 1 and the fact that U1,fb
r < U2,fb

r when γ1 < γ2.

Finally, we show that Ṽ h is strictly greater than Ṽ l when γ1 < γ2. The difference in total utility

between choosing Ṽ 1,{12}
r = V 2(Ṽ 1,{12}

r ) = V and V
1,{12}
r = V − ε and V 2(V − ε) is given by

UPs (V − ε, V 2(V − ε))− UPs (V, V 2(V )) ≈

− βπrε
[(
γ1 +

∂Unr

∂V
1,{12}
r

∣∣∣
V

1,{12}
r =V

)
+
∂V

2,{12}
r

∂V
1,{12}
r

∣∣∣
V

1,{12}
r =V

(
γ2 +

∂Unr

∂V
2,{12}
r

∣∣∣
V

2,{12}
r =V

)] (49)

Since ∂V 2,{12}
r

∂V
1,{12}

r

∣∣∣
V

1,{12}
r =V

= −1, the above expression is greater than zero when γ1 < γ2.11 Therefore,

γ1 < γ2 and U1
s < U2

s imply that Ṽ 1,{12}
r < V 2(Ṽ 1,{12}

r ). If y1
r = y2

r , this necessarily implies

that U2
r > U1

r in the coalition-proof contract. An analogous argument can be made for any stable

subgroup m = 1, ..., n−1. Therefore the coalition-proof efficient contract is history-dependent when

enforcement constraints are binding.

3) This follows trivially from the fact that the punishment path in a sub-game perfect efficient

contract involves reversion to the autarky payoff, which in state r is given by u(yir) + βV ∗(1).

11The argument made in this proof depends on the fact that the ex-ante value function V 2(V
1,{12}
r ) is differentiable

at V . As shown in Koeppl (2003), for this to be the case, the constraint qualification must be satisfied at V .
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4) Again, we consider the potential deviation of a coalition consisting of two agents in a group of n

agents. We compare the case where both agents have income realization y1
r = y2

r = y
′′

r to the case in

which agent 1 has a lower income realization, y1
r = y

′

r < y2
r = y

′′

r . Again, let γ2 > γ1. We know from

2) that the optimal choice in the first case implies that U1
r = u(y

′′

r ) + βṼ l < U2
r = u(y

′′

r ) + βṼ h,

where Ṽ l < Ṽ h implies that agent 2’s continuation payoff from next period onwards is raised relative

to agent 1’s payoff. Because the set of punishment paths is symmetric, {V 1,{12}
r , V 2(V 1,{12}

r )} =

{Ṽ h, Ṽ l} is also a feasible punishment path. We now show that the allocation U1
r = u(y

′

r) + βṼ h,

U2
r = u(y

′′

r ) +βṼ l increases welfare relative to U1
r = u(y

′

r) +βṼ l < U2
r = u(y

′′

r ) +βṼ h, which means

that the latter cannot be in the set of maximizers. To see this, write the change in the planner’s

value function as

UPs (Ṽ h, Ṽ l)− UPs (Ṽ l, Ṽ h) ≈ β2πr
[
γ1(Ṽ h − Ṽ l) + γ2(Ṽ l − Ṽ h)

+
[∂Unr
∂U1

r

∣∣∣
u(y′r)+βṼ l

− ∂Unr
∂U2

r

∣∣∣
u(y′′r )+βṼ h

]
(Ṽ h − Ṽ l)

]
Suppose that u(y

′

r) + βṼ h < u(y
′′

r ) + βṼ l. If γ1 = γ2, then UPs (Ṽ h, Ṽ l) > UPs (Ṽ l, Ṽ h) because

the gain in Unr as U2
r decreases by Ṽ h − Ṽ l exceeds the fall in Unr as U1

r increases by the same

amount (see part 2. of Lemma 1). Hence it follows from the continuity of the value function that

∃ε > 0, such that γ2 − γ1 = ε and UPs (Ṽ h, Ṽ l) > UPs (Ṽ l, Ṽ h), but then {U1
r , U

2
r } = {u(y

′

r) +

βṼ l, u(y
′

r) + βṼ h} cannot be an optimal choice on the range of deviation payoffs induced by y2
r =

y
′′

r > y1
r = y

′

r. If u(y
′

r)+βṼ h > u(y
′′

r )+βṼ l, then an analogous argument can be made by comparing

Unr (u(y
′′

r ) + βṼ h, u(y
′

r) + βṼ l, ...), which by symmetry equals Unr (u(y
′

r) + βṼ l, u(y
′′

r ) + βṼ h, ...), to

Unr (u(y
′

r) + βṼ h, u(y
′′

r ) + βṼ l, ...). �
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