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Abstract 
From the late 1970s through mid 1990s blood-lead levels decreased 
drastically in Swedish children due to the sharp phase-out of leaded gasoline. 
Exploiting the distinct geographical variation in early childhood lead 
exposure induced by the regulations together with micro data on all children 
in nine birth cohorts I show that reduced lead exposure early in life improves 
scholastic performance, cognitive ability, and labor market outcomes among 
young adults. At the relatively low levels of exposure considered, the 
analysis reveals a nonlinear relationship between local air lead levels in early 
childhood and adult outcomes, indicating the existence of a threshold below 
which further reductions no longer improve adult outcomes. Importantly, the 
effect is greater for children of lower socioeconomic status (SES), 
suggesting that pollution is one mechanism through which SES affects 
long-term economic outcomes and that environmental policies potentially 
can reduce the intergenerational correlation in economic outcomes. 
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1 Introduction 
From the end of the 1960s government air pollution regulations have become 
increasingly stricter throughout the developed world. This has lead to 
sharply improved air quality in many countries and regions.1 Recently, the 
air pollution reductions following some of these regulations have been 
shown to improve neonatal health and to reduce infant mortality (Chay and 
Greenstone, 2003a; Currie and Neidell, 2005; Lüchinger, 2009). However, 
these and previous studies have not been able to asses the potential long run 
effects of exposure to poor air quality in early childhood on the surviving 
infants and children.2 Since children who are on the life/death margin at 
birth only constitute a small fraction of all children, the total cost of air 
pollution in terms of its impact on child health could potentially be much 
higher if also the sub-clinical effects on the general population of children 
are taken into account. For example, many of the pollutants released are 
neurotoxicants that potentially impair children’s development in early life 
even at low levels of exposure. Such effects, even if not apparent at birth or 
in early childhood, can cause psychological or behavioral problems that first 
become apparent later on. Moreover, if skills beget skills, as suggested by 
Cunha and Heckman (2007) even if the direct health damage inflicted by 
pollutants early in life is fully reversible over time, long-run outcomes could 
still be affected through dynamic complementarities in human capital 
accumulation. 

In order to shed light on how exposure to poor air quality early in life 
affects adult outcomes this study focuses on the causal impact of early 
childhood air lead exposure on subsequent cognitive skills, educational 
attainments, and labor market outcomes among young adults in Sweden. By 
merging unique data on local air lead levels in early childhood with 
comprehensive population micro data, it is possible to follow all children in 
nine birth cohorts from birth throughout school and examine their 
experiences on the labor market as young adults. The outcomes considered 
include scholastic performance (Grade 9 GPA), cognitive ability test scores 

 
1 See e.g. Giussani (1994) for a thorough report of the impact and history of pollution 
regulations in the UK. In the developing world along with increased economic growth 
pollution levels are still increasing rapidly. China stands out as a stark example where air 
pollution levels as measured between 1983 and 1993 were up to 5 times higher than what was 
observed in the US before the passage of the 1970 Clean Air Act Amendments (Almond et 
al., 2009). 
2 A notable exception is Reyes (2007) who focuses on the relationship between lead exposure 
in childhood and violent crime rates. I describe her study (and the differences to this study) in 
detail below.  
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(males, age 18), educational attainments and early social and labor market 
outcomes. These outcomes have previously been shown to be predictive of 
subsequent outcomes throughout the life cycle, and should therefore be 
particularly interesting from a public policy perspective. 

The local lead pollution data stems from a previously unexplored data 
source. Since the early 1970s the Swedish environmental protection agency 
has used moss (bryophyte) samples covering the whole of Sweden to 
examine regional differences and trends in heavy metal air pollution levels. 
Mosses are particularly useful as air pollution biomonitors since they lack 
roots and therefore solely absorb heavy metal depositions from the air. The 
use of moss as biomonitors for ambient heavy metal air pollution is well 
established and the program has gradually been expanded; first to the rest of 
the Scandinavian countries, and since 1995 most other parts of Europe. In a 
companion study Nilsson et al. (2009) show that moss lead levels is a good 
predictor of blood lead levels in children. 

Although a consensus exists on the health impact of high levels of lead 
exposure on adult health, the association between lower levels of lead 
exposure in childhood and cognitive development is still under debate 
(Canfield et al., 2003; Lanphear et al., 2000). The main reason is that lead 
exposure is not randomly distributed across locations, and hence 
confounding is a serious concern as highlighted by e.g. Bellinger (2004a). 
For example, parents with higher incomes or preferences for cleaner air are 
likely to sort into areas with better air quality and hence their children are 
less likely to be exposed to high levels of lead pollution. Failing to account 
for residential sorting of this kind can result in an upwardly biased estimate 
of the effect of lead exposure on children’s subsequent outcomes. On the 
other hand, pollution tends to be higher in densely populated areas and at the 
same time metropolitan areas often attract highly educated parents with more 
resources, contain better access to quality child care, schools, health care and 
other amenities that are positively associated with adult outcomes. Such 
local amenities could in turn result in an underestimated role of childhood 
lead exposure if not properly taken into account. 

To mitigate these and similar concerns this study focuses on children born 
from the early 1970s until the mid 1980s. The reason is that during the 
1970s, along with many other developed countries, Sweden initiated a 
gradual phase-out of leaded gasoline in order to protect the environment and 
public health. In Sweden, the main reduction in gasoline-lead levels occurred 
between 1973 and 1981 when the maximum allowed lead level per litre of 
gasoline dropped by 79% (Table 1). Since gasoline lead was the main source 
of lead exposure in the general population3, as shown in Figure 1, children’s 

 
3 80% of the air lead levels in the late 1980s where due to traffic (MOENR, 1994).  
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blood-lead levels (B-Pb) decreased drastically from the 1970s until the mid 
1990s when leaded gasoline finally was banned.4 

 
Table 1 Changes in maximum allowed gasoline lead levels 
Date of policy 
change: 

Maximum lead content: 

1 Jan 1970 Max 0.7 g/L (2.65 g/gal) 
1 Jan 1973 Max 0.4 g/L (1.51g/gal) 
1 Jan 1980 Max 0.15 g/L (0.56g/gal) for regular  
1 Jan 1981 Max 0.15 g/L  (0.56g/gal) for premium 
1 Jan 1986 Leaded regular gasoline is prohibited 
1 March 1995 Total ban on lead for all gasoline grades 
Source: The Swedish Petroleum Institute.  

 
Due to large differences in initial lead levels the phase-out of leaded gasoline 
induced substantial variation across localities in the reduction of lead 
exposure. In the main analysis I exploit the differential changes in early 
childhood lead exposure for the cohorts born between 1972 and 1984. I 
compare changes in outcomes for children born in municipalities 
experiencing large reductions in lead exposure with changes in outcomes of 
children born in municipalities with only minor changes in air lead levels. 
By exploiting these differential changes in exposure across birth cohorts 
within the same municipalities unobserved time-invariant differences 
between the municipalities is taken into account. 

 

                                                 
4 Similar large reductions in blood lead levels associated with the phase-out of lead from 
gasoline have been documented in many countries (c.f. Thomas et al., 1999).  Other sources 
of lead exposure such as leaded paint was banned in the early 1920’s and are therefore 
believed not to have caused the reductions in blood lead levels during the 70’s and 80’s. The 
costs associated with phasing out lead have been shown to be low, c.f. OECD (1999). After 
1995 children’s blood lead first seemed to stabilize at around 2µg/dL, but since 2000 it has 
continued to decrease, albeit at a slower speed in absolute terms, c.f.  Strömberg et al. (1995, 
2001, 2008).  
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Figure 1 Mean blood-lead levels among primary school children and tons of lead 
added to gasoline 1976-99. Source: Strömberg et al. (1995) and  Strömberg et al. 
(2003). 

The importance of taking such unobserved characteristics into account is 
highlighted by a cross-sectional analysis showing that several predetermined 
parental characteristics that are strongly correlated with children’s adult 
outcomes also are strongly correlated with their children’s lead exposure. 
That is, higher lead exposure for the child is associated with lower 
educational attainments among the parents. This result suggests that 
cross-sectional estimates of the role of early childhood lead exposure are 
likely to overestimate the relationship between early lead exposure and 
subsequent outcomes due to omitted variable bias. In contrast, the within 
municipality variation in lead exposure induced by the gasoline lead level 
regulations is not significantly correlated with the predetermined parental 
characteristics, which provides support for the validity of the main 
identification strategy. In addition, besides several important individual, 
parental and municipality of birth control variables the data also contain 
unique family identifiers which enable a comparison of outcomes of full 
siblings with different early childhood lead exposure levels. By comparing 
differences in adult outcomes among siblings it is possible to take into 
account additional unobserved characteristics which the siblings have in 
common and that also influence adult outcomes. 

The World Health Organization estimates that globally 20% the urban 
children have blood lead levels exceeding 10µg/dL (Fewtrell et al.,2003); the 
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level above which the Center for Disease Control and Prevention (CDC) 
recommends that actions to reduce lead exposure should be initiated.5 
Naturally, the relevance of the current limit of concern hinges on the relative 
effects of lead exposure above and below the limit. Since the average blood 
lead levels of Swedish children at its peak in the early 1970s on average 
already were lower than 10µg/dL, the Swedish experience is particularly 
interesting since it provides a direct test of the relevance of the concurrent 
limit. The combination of population micro data, relatively low initial 
exposure levels and considerable differences in changes in exposure induced 
by government regulations provides a compelling setting to search for a 
threshold of the relationship between early childhood lead exposure and 
adult outcomes.  

The main results suggest that low levels of lead exposure early in life 
have both statistically significant and economically important effects on 
future educational attainments and labor market outcomes. A key finding is a 
clear nonlinear relationship between local air lead levels in childhood and 
long-term outcomes at the relatively low levels of exposures considered. 
Above an estimated municipality average early childhood blood lead level of 
5µg/dL, reductions in lead exposure have a consistently positive and 
significant impact on long-term outcomes. Below this level reductions no 
longer seems to affect adult outcomes in a consistent or significant direction. 
Importantly, the results are insensitive to a number of specification changes, 
such as the inclusion of family fixed effects, measures of other pollutants, 
measures of lead exposure later on in childhood, and various sample 
restrictions. 

Further analysis reveals that children from poorer families seem to have 
benefited most from the gasoline lead reductions. Although data constraints 
prohibit a full differentiation of the mechanisms behind the socioeconomic 
status (SES) differences, a key finding is that residential segregation within 
municipalities (and thereby potentially differential neighborhood lead 
exposure levels) does not seem to be able to entirely explain the SES-
gradient in the effects of lead. Instead differential avoidance behavior, 
differences in sensitivity to the same levels of exposure or differences in the 
ability to compensate for the effects of early lead exposure seems to be more 
plausible explanations for the SES-gradient. Whichever of these pathways 
that matters most, these results indicate that environmental policies may be 
able to reduce the intergenerational correlation in economic outcomes and 

 
5 In the US, approximately 310,000 children aged 1-5 years have higher blood lead levels than 
the level of concern (CDC, 2005), and average childhood blood lead levels in the adult US 
population will have decreased from 10µg/dL in 2002 to below 3µg/dL in 2018 (Reyes, 
2007). The acceptable limit has been revised downwards several times since the 1970 level of 
60µg/dL as a result of increasing evidence of an association between lower lead levels and 
health. 
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potentially function as a redistributive instrument, since it seems to 
disproportionally improve long-term outcomes among low SES children. 

The remainder of the paper is structured as follows: section 2 gives a brief 
summary of previous studies linking childhood lead exposure to adult 
outcomes. Section 3 describes the data. In section 4 the empirical strategy is 
explained and section 5 presents the results. Sections 6 and 7 discuss the 
policy implications and conclude.  

2 Early childhood lead exposure and adult outcomes 
Exposure to lead has previously been linked to a number of adverse effects 
on health. Prospective cohort and cross-sectional studies of children have 
demonstrated associations of lead exposure, measured by various indices, 
and cognitive skills. In a series of meta-analyses, using data from some of 
the cross-sectional studies of school-age children (Skerfving and Bergdahl, 
2007), it was concluded, that a decrease of one (1) IQ point was seen for 
every 2-4µg/dL increase in concurrent blood-lead levels (B-Pb). 

There are however good reasons to suspect that lead exposure in utero or 
in early childhood could have a stronger effect compared to the effect of 
blood lead levels later on. First, the developing nervous system is more 
vulnerable to the toxic substances than the mature brain (Dobbing 1968; 
Schwartz, 1994; Lidsky and Schneider, 2003). Secondly, this sensitive 
period in human development coincides with a period of particularly high 
uptake of lead. B-Pb levels typically follow an inverted u-shaped pattern 
between ages 6 and 60 months, reaching its peak around age 24 months due 
to the intense hand-mouth activity common at these ages (Canfield et al., 
2003). In a recent study a 10µg/dL decrease in B-Pb was estimated to 
increased cognitive ability at age 3 by 7.4 IQ points (cf. Lanphear et al., 
2005). 

Besides the effects on cognitive development, an association between 
early lead exposure and anti-social behavior has also been found. For 
example, using time-series data from early to late 20th century Nevine 
(2000) find that the consumption of lead in the general population in the first 
year of life co-varies with teenage pregnancy (18 years later) and crime rates 
(20 years later). Finally, lead exposure is also associated with poorer pre- 
and postnatal growth, hearing impairment, reduced effectiveness of the 
kidneys, and lower skeletal growth among children.6 

However, all of these estimates stem from observational studies, and 
while many of the studies try to account for important potential confounders 
e.g. maternal education, home environment etc., it is important to realize that 

 
6 Bellinger (2004b) provides a thorough review of the literature on the association between 
childhood lead exposure and childhood outcomes. 
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unless all factors correlated with both lead exposure and e.g. cognitive test 
scores are accounted for, the estimated impact of lead will be biased; most 
likely upwards.7 8 The bias is furthermore likely to become more important 
when studying the relationship between lower levels of exposure and less 
obvious non-clinical outcomes, such as cognitive development. While many 
randomized control studies on animals supports a causal link between lead 
exposure and cognitive ability, it is not evident that the results from such 
studies are easily generalized to human subjects.9  

A notable exception is Reyes (2007) that addresses the omitted variables 
problem by focusing on the impact of exogenous state-year specific changes 
in gasoline lead levels in the US on state level violent crime rates around 20 
years later. The panel data employed allow for controls of fixed unobserved 
state-specific characteristics correlated with both childhood lead exposure 
and crime. Reyes finds a strong relationship between state level lead 
exposure in early childhood and state level violent crime rates, suggesting 
that the sharp reduction in lead in gasoline following the Clean Air Act 
Amendments in the early 1970s could explain as much as 50% of the sharp 
drop in violent crime that occurred in the US during the 1990s. 

Although compelling, Reyes’ analysis suffers from the use of aggregated 
data since it is not known whether the individuals exposed in early childhood 
are actually still living in the state where they were born 20 years later when 
the outcomes (also measured at the state level) are realized. Since in the US 
between 25-40% of the children migrate from the state of birth before age 
22, this is clearly a source of concern. Reyes attempts to account for inter-
state migration rates, however, since it is not obvious how early childhood 
lead exposure affects migration propensities it is not clear to what extent 
correcting for general migration patterns solves this problem. Moreover, the 
mechanisms through which early childhood lead exposure affect crime 
remains unexplored in Reyes’ study. 

This study distinguishes itself from and complements Reyes study in at 
least two important ways. First and foremost this study focuses on children 
with blood lead levels below the concurrent 10µg/dL level of concern. The 
subjects in Reyes’ study on violent crime were estimated to have a blood 
lead level between 10 and 20µg/dL. Hence, the results from this study are 
potentially more informative about the long-term effects of early childhood 
lead exposure at levels that are still common in the US and in many other 
countries today. 

 
7 The importance of omitted variable bias has lately been recognized also in the 
epidemiological literature (cf. Bellinger, 2004b). 
8 Similarly the main problem with using time-series data is that there are many things which 
possibly co-vary with both lead consumption during childhood and unsocial behavior later in 
life.   
9 For example they do not take avoidance behavior into account such as staying indoors on 
days with high pollution (see Neidell, 2004).  
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Secondly, an improvement of this study compared to previous work using 
aggregate data is that the data employed follow individuals rather than 
states/counties/cities across time, but still makes use of the plausibly 
exogenous changes in local air lead levels induced by government 
regulations. The comprehensive population micro data derived from 
administrative registers enable me to follow children from birth throughout 
school, and to examine their early experiences on the labor market virtually 
without any attrition, which is typically a common problem in prospective 
studies. 

3 The data 

3.1 Measuring lead exposure in childhood 
The measure of local lead exposure levels used in this study has not 
previously been explored in the literature. With a bi-decennial interval since 
1975 the Swedish Environmental protection agency has monitored heavy 
metal air pollution using a nationwide grid of moss (bryophytes) samples. 

The use of mosses as biomonitors of heavy metal pollution was developed in 
Sweden at the end of the 1960s in pioneering work by Rühling and Tyler 
(1968, 1969) and is by now well established.10 On a national scale, the use of 
moss as air pollution monitors expanded to Norway and Finland in 1985, and 
since 1995 28 countries participate in a bi-decennial moss survey designed to 
study regional differences and time trends in heavy metal deposition using 
around 7,000 sample locations throughout Europe in each round.11

Moss is particularly suitable for biomonitoring of air pollution levels for 
several reasons. (1) The lack of roots implies that moss solely depend on 
surface absorption of pollution through precipitation or dry deposition of 
airborne particles.12 (2) The absorption and retention of metals is high, and 
(3) it can be found in abundance in nearly all environments. (4) The annual 

 
10 See Onianwa (2001) for a recent and comprehensive review of this literature.  
11 The European biomonitoring program is described in greater detail in Rühling, ed., (1994). 
12 The close-set leaves of the carpet-forming moss species enable them to filter the air 
efficiently. The contact with the underlying mor layer and soil is negligible for most species, 
and the risk of contamination by metals from the substrate is thus insignificant. A 
non-negligible part of the lead deposition levels has its origin in other regions or even further 
away (Rühling and Tyler, 1973). While the analysis in this paper takes into account the fixed 
characteristics of localities (such as the yearly precipitation rate, distance from the 
contributing pollution sources in other parts of Europe etc.), it is still likely that parts of the 
variation in lead exposure are due to the phase-out of leaded gasoline in other parts of 
continental Europe. This implies that part of the effects provided here reflect the total impact 
of phasing-out lead from gasoline, not only in Sweden, but in other parts of Europe as well. 
For ease of exposition the total deposition level, that is the sum of local air lead levels and 
deposition from precipitation is simply denoted air pollution levels.  
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growth of the moss species included in the surveys is easily distinguishable 
and, since the transportation of metal between the yearly growth segments is 
minimal, it is possible to distinguish temporal patterns in pollution levels. 

Biomonitors also have several advantages over regular pollution 
monitors; the main being its simplicity, accuracy and low cost which allows 
a large number of sites to be included in the surveys. In the Swedish moss 
survey samples from around 1,000 locations are collected. Additionally, 
unlike regular pollution monitors which often go in and out of operation as a 
response to prevailing changes in local pollution levels, the moss samples 
are collected all over Sweden using a systematic procedure. The sampling 
sites are chosen carefully; they should be located at least 300 m away from 
bigger roads and closed residential areas, or at least 100 m from smaller 
roads and single houses. At each site 5 to 10 subsamples are collected in an 
area of approximately 100 m2. From each sampling site the growth over the 
last three years of all sub-samples is pooled and analyzed and hence reflects 
the average air lead level during the three years preceding the date of 
sampling. 

This study focuses on the samples collected in 1975, 1980 and 1985, 
which reflects the average lead deposition levels during the years 1972-1974, 
1977-1979, and 1982-1984. The selection of these years is made for two 
reasons. First, between these years the maximum allowed grams of lead per 
litre of gasoline decreased particularly sharply. Second, since the main 
outcomes focused on are educational attainments and labor market outcomes 
it is necessary to restrict the sample to those cohorts that have completed 
their compulsory education and for whom the exposure level in early 
childhood is known. 

Although the principles for choosing the location of the specific sampling 
sites and how to collect the samples is well defined it should be made clear 
that the sampling locations are not always identical across the survey years.13 

Hence, in order to construct a measure of municipality lead exposure I 
follow a similar approach as Neidell (2004) and Neidell and Currie (2004): 
first I calculate the centroid of each municipality. Then I measure the 
distance between the sampling site and the center of the municipality. 
Finally I calculate a weighted average air lead exposure level using the lead 
levels at the five closest sampling points (i.e. altogether between 25 and 50 
samples), with the inverse of the distance to the sampling point as weight. 
This is done for each time period and municipality. 

Figures 2 and Figure 3 display the lead concentrations in the 
municipalities in 1975 and 1985 using this definition of exposure. Figure 4 
displays a kernel density plot of the distribution of the municipality lead 

 
13 However, it should be remembered this is not unique to the moss biomonitoring of 
pollutants. Traditional pollution monitors also go in and out of operation. Presumably to a 
higher extent due to changes in pollution than in the case of moss biomonitors. 
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exposure levels as measured in 1975, 1980 and 1985. From these figures it is 
clear that entire lead exposure distribution shifted drastically in between the 
years. Similarly a within municipality comparison of the lead levels clearly 
display the tremendous differences across municipalities in the reduction of 
lead exposure that took place between 1975 and 1985 (Figure 5). These 
sharp within municipality differences in the reduction of early childhood 
lead exposure across the cohorts is a key feature of the main identification 
strategy in this study as discussed further below.  

Three important questions regarding the local lead exposure definition 
should be addressed before proceeding with the empirical analysis. The first 
concerns the arbitrary choice of using the five nearest sampling sites to 
define municipality of birth lead exposure. To test the sensitivity of the 
analysis to this assumption I have also used the 3 nearest sample points 
instead. The differences between these definitions are small and they are 
highly correlated (corr. coeff.> 0.9). 14

Secondly, to get an idea on how accurate the five nearest sample approach 
is in predicting the actual exposure level, I estimate the level of lead at each 
sampling point, as opposed to municipality, pretending as if the sampling 
point of interest was not there. That is, I estimate the air lead level at a given 
sampling point based on the air lead levels at the five nearest sampling 
points. I do this for all sampling points in the data, and then calculate the 
correlation between the actual and the estimated air lead levels. The 
correlation between these two measures is high (corr. coeff.=0.80), which 
clearly indicates that the pollution assignment method employed provides 
reasonably accurate predictions of actual air pollution levels, and suggests 
that it does not seem to be a major concern for the analysis. 

 
14 The results on adult outcomes when using the 3 nearest samples definition rather than the 5 
nearest sample definition are qualitatively similar. 



 

Figure 2 Moss lead levels (µg/Kg) in Swedish municipalities in 
1975.Source: Authors calculation using data from the Swedish 
Environmental Research Institute (IVL).  
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Figure 3 Moss lead levels (µg/Kg) in Swedish municipalities in 1985.Source: 
Authors calculation using data from the Swedish Environmental Research Institute 
(IVL).  
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Figure 4 Kernel density distributions of moss lead levels in Swedish municipalities 
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Figure 5 The distribution of within municipality lead level changes between 1975 
and 1985  
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 Finally, as in any study using data on local exposure levels rather than 
individual exposure an important question is how well the lead levels in 
moss predicts the actual blood lead levels in children. Unfortunately there 
exist no data that monitors the trends in blood lead levels among young 
children or the population in general in Sweden during this time period. 
However, since 1978 in two municipalities in southern Sweden, blood 
samples have been collected with a two year interval from about 120 
primary school children (age 7-10) per annum. The results from these studies 
on the trends in childhood lead exposure are described in detail elsewhere 
(Strömberg et al., 1994, 2003). At the same time the department of 
environment (Miljöförvaltningen) in one of these municipalities 
(Landskrona) has at three time points (1984, 1995 and 2006) collected 
around 50 moss samples all over the municipality following the same 
procedure as the national monitoring program.15 

Most previous studies using aggregate data on pollution have been forced 
to assume that local air pollution exposure is a valid proxy for actual 
exposure. However, the two datasets in Landskrona provide a unique 
opportunity to assess the strength of the relationship between local air lead 
exposure and children’s lead exposure. Nilsson et al. (2009) do precisely this 
and link the average lead level of the five nearest moss samples to the 
children using their home addresses and estimate the elasticity between lead 
in moss and lead in children. Controlling for important individual 
characteristic, time and locality fixed effects they establish a Blood-
Pb/Moss-Pb elasticity for the pre-gasoline lead free period (i.e. before 1995) 
of 0.44. This elasticity implies that a 10% reduction in Moss-Pb corresponds 
to a 4.4% decrease in primary school children’s B-Pb. This estimate implies 
that the drop in air lead exposure between e.g. 1982 and 1994 can account 
for as much as 50% of the change in children’s blood lead levels. Appendix 
A, gives a further review of the main findings in Nilsson et al. (2009).16 

 However, it is important to remember, as found in many previous studies, 
that the relationship between environmental lead exposure and very young 
children’s blood lead levels is significantly higher. For example, Reyes 
(2007) finds that the elasticity between lead in gasoline and blood lead in 
children aged 0-6 is around 30% higher than among children aged 6-12, 

 
15 I am great full to Olle Nordell Landskrona miljöförvaltning for collecting and providing me 
with the data on lead in moss in Landskrona municipality. See also Nordell (2007) for (a 
Swedish) description of the sampling procedure and description of the moss data from 
Landskrona. To attain the moss lead levels which are comparable to those from the National 
survey it is necessary to calibrate the lead levels with a factor of 0.44 as described by 
Folkeson (1979), since they are measured in two different moss species. 
16 Assuming that this estimate functions as a valid proxy for the relationship between lead in 
moss and lead in children for the general population of children, in the last part of this paper I 
back out the elasticity between the adult outcomes focused on here and the children’s blood 
lead levels. 
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which is important to remember later on when trying to estimate the 
relationship between the adult outcomes and early childhood blood lead 
levels.  

 

3.2 Outcome measures 
The individual outcome data stems from two data sources in the Educational 
database at the Institute for Labor Market Policy Evaluation (IFAU) in 
Uppsala.17 In the main analysis I use all individuals born in Sweden in the 
three years prior to the year the moss samples were collected; that is all those 
born in 1972-1974, 1977-1979 and 1982-1984. Again the reason for the 
1972 and 1984 constraint is that many of the individuals born after 1985 are 
less likely to have finished schooling in 2004 and that the first lead exposure 
measure available reflects the situation in 1972-1974 (i.e. mosses collected 
in 1975). As explained above the lead levels in the mosses measure the local 
lead deposition when they were between 0-3 years old. As discussed above, 
this age interval corresponds to a particularly sensitive period in human 
development and a period with particularly high lead uptake rates. 

It is important to recognize that this assignment of exposure does not 
reflect an exact definition of timing of exposure for the cohorts. For 
example, taking the measure of air lead in moss literarily, for children born 
in June 1972 the lead exposure levels approximately reflect average lead 
exposure from the second trimester (starting January 1972) until about age 
30 months (December 1974). For children born in June 1974, the moss lead 
exposure level reflects the exposure from conception until age 6 months. To 
check whether the results are sensitive to this deviation of exposure within 
cohorts, separate regressions including only the children born in the middle 
of each exposure measure period, i.e. those born in 1973, 1977 and 1983, 
where also tested, which yielded very similar results.18 For these children the 
exposure levels reflect the average exposure level from conception until age 
2. Finally, I focus on children who were living in Sweden in 2004, who have 
completed compulsory schooling (9 years education) and  who were born in 
Sweden, so that their municipality of birth (and hence childhood lead 
exposure) is known. 

The outcome variables considered are grade point averages in grade 9 
(GPA at end of the 9 year compulsory school), whether the GPA was below 
(above) the 25%-tile (75%-tile) of the GPA distribution, the cognitive test 
score as measured for all men at military enrollment, whether the score was 

 
17 I am grateful to Björn Öckert for assembling the data and for sharing it with me. 
18 While the estimates of the parameters are essentially unchanged the precision also 
decreases since the sample is reduced by 2/3. These results are not reported but available upon 
request from the author. 
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below (above) the 25%-tile (75%-tile) of the cognitive test score distribution, 
whether having completed high school, ever enrolled in college education, 
the number of years of schooling completed, (ln) labor market earnings, 
welfare dependency and finally whether or not having become a teenage 
mother. The labor market and educational outcomes outcome variables are 
measured in 2004 (at ages 20-32). All of these outcomes have previously 
been shown to be predictive of other outcomes throughout life. 

The military enrollment test scores are Stanine (Standard Nine) test scores 
which is similar to the AFQT in the US. The score is an evaluation of 
cognitive ability based on several subtests of logical, verbal and spatial 
abilities and a test of the draftees’ technical understanding. The results on 
these subtests are combined to produce a general cognitive ability ranking on 
a 1-9 scale. All men were obliged by law to go through the military draft. 
However, due to reforms in the military enrollment procedures affecting the 
latest cohorts (i.e. those born during the 80s) the cognitive outcomes are only 
used for those born before 1980. Before that about 90 percent of all men in 
each cohort went through the draft procedure almost exclusively (99%) at 
age 18 or 19.19 The test score is percentile ranked within each cohort of 
draftees to account for any minor changes in the tests over time.20 Teenage 
motherhood is included as an outcome since it has previously been shown to 
be correlated with early childhood lead exposure using time-series data (see 
Nevin, 2000). Table B1 provides the definitions of the outcome and control 
variables and descriptive statistics for the outcome variables, individual and 
parental characteristics as well as some municipality of birth background 
characteristics. 

4 Empirical method 

4.1 Empirical model 
As discussed above a number of factors complicate the estimation of causal 
effect of early childhood lead exposure on adult outcomes. Under the 
assumption that the effects of the covariates are additive and linear it is 
possible to remove the influences of many potential confounding factors by 
estimating a linear regression model that accounts for unobserved 
differences in municipalities and cohorts, 
 

 
19 In principle only the physically and mentally handicapped was exempted. 
20 The test has been subject to evaluation by psychologists and appears to be a good measure 
of general intelligence (Carlstedt, 2000). 



1(Lead exposure) 'ijtc jc ijtc x t j ijtcy Xα β β= + + + + +γ φ ε

{1975,1980,1985}c

 (1)
   

 

where y is either a continuous measure or an indicator variable of the adult 
outcome of individual i, born in municipality j in year t and belonging to 
cohort c where ∈ . Lead exposure is the continuous early 
childhood lead exposure measure (µg/kg moss) as described above; X is a 
vector children’s own, parental and municipality of birth characteristics. 
They are indicators for child sex, month of birth, number of siblings, year of 
compulsory school graduation, maternal educational attainments (7 levels), 
maternal age at birth, indicators for parental earnings (quartiles) for sum of 
parental earnings in 1990, the average income of the parents in the 
municipality, share of parents that have completed high school/ university, 
the share with missing paternal indicator, the share of boys in the same 
cohort, cohort size, and the average family size. Finally tγ  and jφ  are nine 
year of birth and 287 municipality of birth specific effects respectively. ijtcε  
is the error term. 

The inclusion of X controls for many of the important background 
characteristics that varies across cohorts and municipalities and the 
municipality of birth specific fixed effects jφ  accounts for persistent 
differences between municipalities that could be correlated with the 
children’s future outcomes and childhood lead exposure. The month of birth 
dummies is included since both adult outcomes, but potentially also early 
childhood lead exposure can be influence by the season of birth.  The nine 
year of birth dummies tγ  control for all general trends in the outcomes of 
interest.  

 The main parameter of interest is 1β  and the main hypothesis to test is 
whether 1 0β = , that is if early childhood lead exposure has no effect on 
adult outcomes. Under the identifying assumption that the error term is 

uncorrelated with the lead exposure, 1

OLS
β  reflects the causal impact of the 

local air lead level (an additional gram of lead per Kg moss) has on 
subsequent adult outcomes. That is after conditioning on individual, 
parental, observable and fixed unobservable municipality characteristics, the 
main identifying assumption requires that there are no unobserved 
characteristic that are correlated with both childhood lead exposure and adult 
outcomes. 
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4.2 An indirect test of the main identifying assumption 
Although this identifying assumption is fundamentally untestable, it is 
possible to indirectly assess the plausibility of this assumption by looking at 
the correlation between factors that are expected to be correlated with adult 
outcomes of the child but not with the child’s lead exposure if the identifying 
assumption is valid. It is particularly informing to contrast this correlation in 
a traditional cross-sectional analysis with the within-municipality analysis, 
since this may reveal how well the within municipality analysis can reduce 
the potential bias induced by omitted variables. 

Candidate factors qualifying for such a test directly available in the data 
are predetermined parental characteristics; such as parents educational 
attainments. These parental characteristics can be considered to be 
predetermined in the present context since the lion share of the parents (>95 
percent) were born before 1960, i.e. before environmental lead exposure 
became a serious environmental problem in Sweden.21 Therefore assessing 
whether predetermined parental characteristics are correlated with 
municipality lead levels during their children’s early childhood should give 
a hint of whether omitted variables (associated with parents characteristics) 
is a major concern in the within municipality analysis. 

 The first panel of Table 2 first provides estimates of 1β  from a regression 
of the parents’ educational attainments (or earnings) on their children’s early 
childhood lead exposure using data on all cohorts but without controlling for 
municipality fixed effects.22 The columns present the estimated impact on 
whether at least one of the parents had completed high school, university, the 
total parental earnings and finally the same outcomes for the mother and 
father separately, and an indicator for if the father is not known/missing. The 
model only controls for year of birth and cohort size of the child. In this 
cross-sectional analysis many of the parental predetermined characteristics 
are statistically significant and generally indicate that poorer educational and 

                                                 
21 Using mosses collected from 1860 until 1968 Rühling and Taylor (1968) show that in the 
southern part of Sweden (the most highly exposed in the present sample) the increase in lead 
concentrations in moss were restricted to two distinct periods: a first increase towards the end 
of the nineteenth century, and a second increase during the 1960s (80-90 µg/kg in 1968).  
Before that the average lead level in Skåne (the southernmost regions in Sweden with the 
highest lead level in the data used in this study) was around 40-50 µg/kg moss. They conclude 
that the first rise is probably due to industrial pollution, possibly due to the increase use of 
coal, and that the second rise is more than likely caused by the rapid increased use of lead 
gasoline. The exact same pattern is found in a study by Rehnberg et al. (2000) who use 
extraordinary data on lead levels in lake sediments to examine regional trends in lead 
depositions in Sweden over a period of 4,000 years. In particular the lead concentrations in 
the lake sediments increased by 50% between 1960 and the peak year of 1970. Hence the 
parents of the children were exposed to relatively low levels during their own childhood and 
therefore the lead levels in during the parents childhood is not expected to be able to influence 
the children’s adult outcomes to any large extent.  

 
 
20 
22 The parent’s outcomes are measured in 1990 when the average mother was 40 years old. 
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labor market outcomes of the parents are strongly correlated with their 
children’s childhood lead exposure levels. 

In the second panel of Table 2 the same set of estimates is presented when 
only using the within municipality variation in childhood lead exposure. 
After controlling for municipality specific effects, for the majority of the 
outcomes, the magnitude of the relationship between lead and predetermined 
parental characteristics decreases typically by at least an order of magnitude, 
sometimes changes sign and are no longer statistically significant. The 
exception is father’s high school completion which switches sign compared 
to the cross-sectional analysis and now indicates that higher exposure is 
correlated with higher probability of having a father that has completed high 
school education. However, it is only marginally statistically significant, and 
given the number of outcomes considered it is not surprising that at least one 
coefficient is significant at the 10% level. 

This exercise highlights the problems with using cross-sectional research 
designs to make causal inferences. It furthermore provides supports for the 
validity of the main identifying assumption since the within municipality 
analysis seems to be able to reduce the importance of observed and hence 
also most likely unobserved omitted variables considerably. 



 
 

 
 

Table 2  Parents predetermined characteristics and their childrens’ lead exposure 
PANEL A: 
 
 

Parents 
Earnings 

Parents  
High 

school 
Parent 

College 
Mom’s 
College 

Mom’s 
High 

school 
Father 

College 

Father 
 High 

School 
Father 

earnings
Young 
mother 

Lead exposure 
(µg/Kg) 

.0004 
(.0005) 

-.0011** 
(.00029) 

-.00035 
(.0004) 

-.00023 
(.0003) 

-.0011*** 
(.0003) 

-.0002 
(.0004) 

-.0009** 
(.0004) 

-.0001 
(.0004) 

-.0005* 
(.0003) 

R-squared 0.02 0.01 0.02 0.01 0.01 0.03 0.02 0.02 0.03 

Municipality 
fixed effects? 

No No No No No No No No No 

PANEL B: 
Parents 

Earnings 

Parents  
High 

school 
Parent 

College 
Mom’s 
College 

Mom’s 
High 

school 
Father 

College 

Father 
 High 

School 
Father 

earnings
Young 
mother 

Lead exposure 
(µg/Kg) 

.0002 
(.0004) 

.00012 
(.00025) 

-.00003 
(.00029) 

0.00001 
(.0002) 

.00012 
(.00025) 

-.00005 
(.0002) 

.00046* 
(.00025) 

.00008 
(.0003) 

-.00017 
(.0002) 

R-squared 0.04 0.03 0.06 0.06 0.02 0.05 0.03 0.04 0.03 
Municipality 
fixed effects? 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

# observations 797,889 797,889 797,889 797,889 797,889 768,644 768,644 797,889768,644
Notes: Standard errors are clustered at the municipality level.  Controls for year of birth of the child and cohort size.  
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5 Results 
In the following sections I look at the impact of childhood lead exposure 
levels on future outcomes. To preview the central results, in the baseline 
specification early childhood lead exposure have a negative impact on 
virtually all future outcomes considered. The number of years of schooling, 
having a low GPA at the end of the compulsory school, high school 
graduation, and being on welfare are all statistically significantly correlated 
with early childhood lead exposure. The estimated impact on the remainder 
of the outcomes is too imprecise to draw definite conclusions. However, 
further analysis reveals that the poor precision of the baseline estimates 
seems to be due to that the relationship with long-term outcomes are 
nonlinear. Reductions in lead exposure from high initial levels have 
consistently significant effects on virtually all of the outcomes, but similarly 
sized reductions from initially low levels of exposure only yield inconsistent 
and insignificant effects on the outcomes considered. A number of 
specification checks reveals that the estimated effects of exposure reduction 
from the highest levels is robust and that children from disadvantaged 
families seem to have benefited most from the reductions in lead exposure. 

5.1 Baseline results 

5.1.1 Cross-sectional estimates 
Before proceeding with the main fixed effects analysis it is useful to 
replicate the results from a conventional cross-sectional analysis. For each 
cross section (1975, 1980, 1985) the results from estimations of equation (1) 
(but without the municipality fixed effects) on all outcomes considered in the 
main analysis is presented in Column (1)-(3) of appendix Table B2. These 
cross-sectional estimates in general points in the expected direction, 
although there is considerable variability in the magnitude of the estimates 
both within a given year for different outcomes but also across years for a 
given outcome. The estimates are furthermore only occasionally statistically 
significant at conventional significance levels. After pooling the data 
(column 4), except for earnings, all the estimates indicated that reduction in 
early lead exposure improves long-term outcomes. 

If considering the statistically significant estimates from the pooled 
cross-sectional model it seems as if lead exposure particularly impairs 
development among children in the lower tail of the ability distribution. Both 
the risk of ending up in the lower quartile of the GPA and IQ-test score 
distribution are significantly affected, although only at the 10% significance 
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level. The estimated effects on these outcomes suggest that the average 
reduction in air lead exposure (60%) that occurred between the early 1970’s 
and early 1980s reduced the incidence of ending up in the lower tail of the 
grade and IQ distribution by around 1 percentage point or by about 4%. 
Although, as shown above in Table 2, these cross-sectional estimates are 
likely biased by unobserved characteristics correlated with both high levels 
of lead exposure and the adult outcomes of the children. Overall the 
cross-sectional results in Table B2 provide little evidence of a significant 
relationship between adult outcomes and early childhood lead exposure. 
However, as will become clear, the pattern with stronger effects in the lower 
part of the ability distribution remains throughout the empirical analysis, 
even after unobserved heterogeneity has been taken into account.  

5.1.2 Municipality of birth fixed effects 
Next the analysis proceeds by focusing on the fixed effects estimates which 
under the present conditions potentially give a more accurate picture of the 
relationship of interest. The first column in Table 3 presents the results from 
the estimates of equation (1) for the percentile ranked GPA, now including 
the municipality of birth fixed effects. The estimate for GPA presented in 
column (1) implies that when the average lead exposure during early 
childhood increases with 1 µg/kg the grade point average decreases with 
0.017 percentiles. Similarly, the probability of ending up in the lower 
quartile of the grade distribution increases with 0.024 percentage points per 
1µg/kg increase in lead exposure. For males the average IQ level also 
decreases with 0.010 percentiles. An inverse relationship between lead 
exposure and the probability of ending up in the higher end of the grade 
distribution is also found. The probabilities of ending up in the top or lower 
part of the IQ distribution are also affected as expected. Table 4 present the 
estimated impact on educational attainments, early labor market and social 
outcomes. Again all point estimates suggest that higher levels of lead 
exposure are detrimental for subsequent outcomes. 

However, in general the precision of the estimates presented in Tables 3 
and 4 is poor. Only the probability of ending up in the lower tail of the grade 
distribution, high school completion rates, the number of years of schooling 
and the welfare dependency rates are significant at conventional significance 
levels. At first examination the estimated effects may seem small but it is 
important to recall that these reduced form estimates imply that the 
reductions in lead exposure during the observation period implies that the 
probability of ending up in the lower end of the GPA distribution decreased 
by 3.3 percent, increased high school completion increased by 0.9 percent, 
years of schooling completed in 2004 increased by 0.05 years and the prob-



 
 

Table 3 Grade point averages and cognitive test scores 
Specification (1) (2) (3) (4) (5) (6) 
Outcomes: GPA 

 
Low 
GPA 

High 
GPA 

IQ Low IQ High IQ 

Sample ALL ALL ALL Males Males Males 
Lead exposure 
(µg/Kg) 

-.0171 
(.0104) 

.00024* 
(.00014) 

-.00017 
(.00013) 

-.0109 
(.0135) 

.00016 
(.00019) 

.00002 
(.00018) 

R-squared 0.22 0.12 0.13 0.17 0.09 0.1 

Mean of dep. var. 50 0.25 0.25 50 0.25 0.25 

Individual characteristics yes yes yes yes yes yes 
Year of birth  yes yes yes yes yes yes 
Fixed municipality  yes yes yes yes yes yes 
Mean of dependent variable 50 0.25 0.25 50 0.25 0.25 
Observations 797,889 797,889 797,889 262,283 262,283 262,283 
Notes: The IQ and GPA variables are percentile ranked for each graduation/ enlistment cohort.  In addition the 
estimated model includes controls for parental characteristics, and municipality characteristics (see section 4.1 for 
details).  Standard errors are clustered at the municipality level. */**/*** indicate significance at the 10/5/1 
percent levels.  

 
 



 
 

 
Table 4 Alternative long-run outcomes 
Specification (1) (2) (3) (4) (5) (6) 

Outcomes: High 
school 

Ever in 
College 

Yrs. in 
School 

Log  
earnings 

Welfare Teen 
mother 

Sample ALL ALL ALL ALL ALL Women 
Lead exposure 
(µg/Kg) 

-.00022** 
(.00010) 

-.00029 
(.00020) 

-.00142* 
(.00084) 

-.00021 
(.00036) 

.00016*** 
(.00005) 

0.00001 
(.00005) 

R-squared 0.06  0.18 0.2032 0.1301 0.03 0.03 
Mean dep. var. 0.89 0.33 12.7 176,400 0.04 0.04 

Individual 
characteristics 

yes yes yes yes yes yes 

Year of birth  yes yes yes yes yes yes 
Fixed 
municipality  

yes yes yes yes yes yes 

Observations 797,889 797,889 797,889 718,843 797,889 387,576 
Notes: In addition the estimated model includes controls for parental characteristics, and 
municipality characteristics (see section 4.1 for details). Standard errors are clustered at the 
municipality level. */**/*** indicate significance at the 10/5/1 percent levels.  
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ability of welfare dependency in 2004 decreased by 0.6 percentage points. 
Again, the effects seem to be stronger in the lower tail of the ability/skill 
distribution. 

 

5.2 Nonlinear effects in lead exposure 
Since most neurotoxins follow a hockey stick shaped effect, with a much 
lower marginal effect below some threshold, one potentially important 
reason for the relatively poor precision of the estimates in Table 3 and 4 
could be that the relationship is nonlinear or discontinuous at the levels of 
exposure considered. As discussed above identifying the threshold of such 
nonlinear effects are, of course, highly interesting from a public policy 
perspective. However, neither the biological nor the epidemiological 
literature provides a strong theory and only very limited evidence that could 
give any guidance in the search for a threshold when it concerns lead (c.f. 
Needleman, 2004). Indeed most studies have failed to identify a lower 
threshold for effects on cognitive skills, although an important reason is 
presumably that the sample sizes at the lowest exposure levels have been 
relatively small, and that confounding most likely becomes even more acute 
when studying the sub-clinical effects of low exposure levels. 

 In order to examine the presence and influence of nonlinearities in this 
case the same model as in equation (1) is estimated, but now the single 
continuous linear lead exposure measure is replaced by linear splines with 
breakpoints at each quartile of lead exposure. This setup mimics the 
approach taken by Reyes (2007), who find no/only weak nonlinearities in the 
lead exposure-violent crime relationship. However, again the average blood 
lead levels in her sample were considerably higher than in this context. By 
using splines it is possible to examine if the effect of a similar sized 
reduction in lead exposure within the different quartiles of exposure has 
heterogeneous impacts on adult outcomes. 

Table 5 presents the results from this specification for the GPA and the 
cognitive test scores, and Table 6 for the other outcomes. In contrast to the 
analysis using a single linear measure of exposure, the estimates based on 
changes within the different quartiles of exposure show a strikingly 
consistent pattern. A 1 µg/kg reduction in moss lead in the municipality of 
birth in early childhood has a highly significant and consistent adverse effect 
on basically all outcomes considered; but only within the highest quartile of 
exposure (i.e. >48µg/kg). Below this level similarly sized reductions in lead 
exposure has inconsistent and generally insignificant effects on long-term 
outcomes.



 
Table 5 Nonlinear effects of early childhood lead exposure: GPA and cognitive test scores  
Specification (1) (2) (3) (4) (5) (6) 

Outcomes: GPA 
 

Low GPA High 
GPA 

IQ Low IQ High IQ 

Sample ALL ALL ALL Males Males Males 
Lead in 1st quartile -.0463 

(.0426) 
.00006 
(.0005) 

-.0008 -.0166 
(.0529) 

-.0010 
(.0006) 

-.0010 
(.0006) (.0008) 

Lead in 2nd quartile -.0421 
(.0452) 

.00024 
(.00059) 

-.0010* 
(.0006) 

-.0269 
(.0404) 

.0013** 
(.0006) 

.0002 
(.0005) 

Lead in 3rd quartile .0128 
(.0301) 

-.00008 
(.00041) 

.00015 
(.0003) 

.0216 
(.0175) 

  -.0003 
(.0003) 

.00045* 
(.00025) 

Lead in 4th quartile -.0350** 
(.0136) 

.00046*** 
(.00018) 

-.00025 
(.0002) 

-.0283*** 
(.0106) 

.00025 
(.00016) 

-.0003** 
(.0001) 

R-squared 0.22 0.12 0.13 0.17 0.09 0.10 
Mean of dep. var. 50 0.25 0.25 50 0.25 0.25 
Individual 
characteristics 

yes yes yes yes yes yes 

Year of birth  yes yes yes yes yes yes 
Fixed municipality  yes yes yes yes yes yes 
Observations 797,889 797,889 797,889 262,283 262,283 262,283 
Notes:  The coefficients shown reflect the average effect of a 1µg/kg increase within each quartile. The IQ and GPA 
variables are percentile ranked for each graduation/ enlistment cohort. Standard errors are clustered at the 
municipality level. */**/*** indicate significance at the 10/5/1 percent levels. The sample for the IQ test scores are 
reduced and only include children born before 1980 in order to reduce the impact of changes in the enrollment 
procedures for men born after 1980.

 
 



 
 

 

Table 6 Nonlinear effects of early childhood lead exposure: Alternative long-run outcomes 
Specification (1) (2) (3) (4) (5) (6) 

Outcomes: High 
school 

Ever in 
College 

Yrs. in 
School 

Log  
earnings 

Welfare Teen 
mother 

Sample ALL ALL ALL ALL ALL Women 
Lead in 1st quartile -.0002 

(.0005) 
-.0006 
(.0011) 

-.0043 
(.0039) 

-.0004 
(.0020) 

-.00039 
(.0003) 

.00015 
(.00025) 

Lead in 2nd quartile .0004 
(.0005) 

-.0005 
(.0011) 

.0003 
(.0040) 

.0044** 
(.0021) 

.00035 
(.00025) 

.00023 
(.00027) 

Lead in 3rd quartile -.0003 
(.0003) 

-.0001 
(.0005)   

-.0001 
(.0023) 

.0004 
(.0007) 

.00004 
(.00013) 

-.00025* 
(.00014) 

Lead in 4th quartile -.00026** 
(.00013) 

-.0005 
(.0003) 

-.0027** 
(.0013) 

-.0016*** 
(.0005) 

.00019*** 
(.00006) 

.00017* 
(.00009) 

R-squared 0.06  0.18 0.20 0.1302 0.03 0.03 
Mean of dep. var. 0.89 0.33 12.7 176,400 0.04 0.04 
Individual 
characteristics 

yes yes yes Yes yes yes 

Year of birth  yes yes yes Yes yes yes 
Fixed municipality  yes yes yes Yes yes yes 
Observations 797,889 797,889 797,889 718,843 797,889 387,576 
Notes:  The coefficients shown reflect the average effect of a 1µg/kg increase within each quartile.  The IQ and GPA 
variables are percentile ranked for each graduation/ enlistment cohort. Standard errors are clustered at the 
municipality level. */**/*** indicate significance at the 10/5/1 percent levels. 
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This analysis reveals a clear nonlinear effect of reduction in early childhood 
lead exposure on long-run outcomes. Since the average blood-lead level in 
the cohorts considered already initially were lower than the limit of concern, 
these results also suggest that if anything the threshold of the adverse effects 
of lead exposure on the long-term outcomes lie at a level that is significantly 
lower than a blood lead level of 10µg/dL.23 In section 6 I use the elasticity 
provided by Nilsson et al. (2009), to estimate the childhood blood lead level 
corresponding to the moss lead level found in the analysis in this section.24

5.3 Robustness checks 
Next, since the previous estimates primarily show an effect at the highest 
quartile of lead exposure, in order to increase precision, the remainder of the 
analysis concentrates on children born in municipalities with a moss lead 
level above the 1st quartile of initial exposure (>37 µg/kg in 1975). This 

 
23 The earliest systematic blood lead levels sampled among children in Sweden was conducted 
in 1978 by Strömberg et al. (1995). At that time the blood lead level was just below 6 µg/dL 
on average in two locations in southern Sweden (where the air lead levels were among the 
highest in Sweden at the time). Needleman report blood lead levels in the US in the same year 
of on average around 14 µg/dL. Before this point in time in order to assess the lead levels of 
the children I use the estimates of previous work by Reyes (2007). She finds that an increase 
of 1 gram lead per gallon of gasoline increases blood lead level with approximately 3.3 µg/dL 
in the general population. Taking her baseline specification literally 
(B-Pb=9.316+3.325*GRAMSLEAD/GALLON) and combining it with the data in Table 1 
suggest that at the year of birth of the first cohort born in 1972-74 the average blood lead level 
would have been on average 6µg/dL. A second way to assess the initial blood lead levels is to 
use the model developed in Nilsson et al. (2009) and use the average moss lead level in 1975 
to predict the blood lead levels in primary school children at that time. This approach provides 
a predicted initial blood lead level of around 3µg/dL in primary school children. After 
adjusting the blood lead moss lead elasticity using the age specific blood lead blood gasoline 
elasticity estimated by Reyes (2007) (30% higher for children aged 0-6 than for children aged 
6-12) and under the additional assumption that the additative separable specification used in 
the estimation hold for both populations, the relevant blood lead level in for children aged 0-6 
would on average correspond to about 5µg/dL. A third way to estimate the initial blood lead 
level is to use the estimates in Strömberg et al., who based on repeated blood lead 
measurements find that individual blood lead levels in primary school children decreases on 
average by around 6% per year. Given the average level in 1978 this would imply that the 
average blood lead levels among 1-4 year olds in 1972 (since the samples are taken from 
children aged 7-10 in 1978) would be on average 8.5µg/dL. Since these samples were taken in 
a region with the highest lead exposure (based on the moss lead values) it seems reasonable to 
assume that this level represent a higher bound of blood lead levels in the general population 
of children in these cohorts. Hence all three approaches provide estimates that suggest that 
initial blood lead levels were below 10µg/dL for the cohorts born between 1972 and 1974. 
24 One concern with this analysis is that the apparent nonlinear effect could be due to that the 
precision of the estimates are poor at the lower quartiles of exposure simply because the 
changes in exposure within these quartiles are not large enough. However, the pattern in 
Table (6) and (7) is if anything reinforced if the children growing up in municipalities with 
the least (<10 %-tile) changes in exposure between 1975 and 1985 are excluded. 
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decreases the number of municipalities included in the analysis to 210 and 
the number of children to 670,000.  

To make sure that excluding the lowest initial level municipalities in this 
way does not introduce any major bias it is informative to compare the 
baseline model estimates for the reduced sample with the baseline linear 
spline estimates. Column (1) of Table B4 in appendix B report the estimates 
from the original specification in equation (1) estimated on the reduced 
sample (Tables B2 and B3 report the full results). As expected, these 
estimates are higher and more precisely estimated compared to the baseline 
OLS estimates displayed in Tables 3 and 4, and are reasonably similar to the 
estimates for reductions in the highest quartile of exposure in Tables 5 and 6. 
For further comparison, in Table B4 I have also included the estimated effect 
when children in the highest quartile of initial exposure are excluded 
(column 3). After excluding the highest quartile of initial exposure the 
estimated parameters in virtually all cases are insignificant and when they 
are significant (earnings, teen pregnancy) they are always pointing in the 
unexpected direction. By comparing the results in columns (1) and (3) in 
Table B4 it again becomes clear that the initial level of exposure is important 
and that the relationship between early childhood lead exposure and 
long-term outcomes seem to be nonlinear. Columns (2) and (4) of Table B4 
also report estimates after splitting the sample based on changes in exposure 
between 1975 and 1985. The resemblance between the high initial and high 
changes municipality estimates is striking. 

Table 7 continues the analysis by testing the sensitivity of the reduced 
sample estimates. First, for ease of comparison, column (1) reviews the 
baseline estimates for the children under risk of being affected. In column 
(2) family fixed effects estimates are reported. This model accounts both for 
the fixed characteristics of the biological parents and the municipality of 
birth. The family identifier used is a combination of the unique mother and 
father identifiers and hence in the analysis the comparison is made between 
full biological siblings only (in total 123,324 families). 



  
 

Table 7 Robustness checks 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Specification/ 
Sample: 

Baseline  
 

+ Family 
fixed 

effects 

+ Linear 
time 

trends 

+ 
cadmium 
exposure 

Log 
exposure 

Excl. 3 
largest 
cities 

+ Child-
care 

enroll. 

Munici-
pality 
level 
data 

EXPOSURE: Lead  Lead Lead Lead ln (lead) Lead Lead Lead 
OUTCOMES:         
GPA -.0356** 

(.0143) 
-.0175* 
(.0102) 

-.0294 
(.0218) 

-.0453*** 
(.0172) 

-1.290** 
(.5575) 

-.0246** 
(.0125) 

-.0356** 
(.0145) 

-.0289** 
(.0148) 

Low GPA .0006*** 
(.0002) 

.0004** 
(.0002) 

.00034 
(.0003) 

.0006*** 
(.0002) 

.0162** 
(.0074) 

.0004*** 
(.0002) 

.0006*** 
(.0002) 

.00045** 
(.0002) 

High GPA -.0003 
(.0002) 

-.00014 
(.00018) 

-.00043* 
(.00025) 

-.00044** 
(.0002) 

-.0154** 
(.0071) 

-.00018 
(.00018) 

-.00032* 
(.00018) 

-.00025 
(.00018) 

IQ (Men)   -.0336*** 
(.0128) 

-.0664** 
(.0290) - -.0403*** 

(.0105) 
-1.129*** 

(.4004) 
-.0352*** 

(.0106) 
-.0349*** 

(.0092) 
-.0272** 
(.0128) 

Low IQ  (Men) .0003** 
(.00015) 

.0009* 
(.0004) - .00044** 

(.00015) 
.0141** 
(.0058) 

.00034** 
(.00015) 

.0003** 
(.00015) 

.00031 
(.00025) 

High IQ  (Men) -.00026** 
(.00012) 

-.0009* 
(.0005) - -.0003* 

(.00015) 
-.0064 
(.0059) 

-.00024* 
(.0001) 

-.00028** 
(.00012) 

-.00031* 
(.00017) 

 
 



 
 

 
Table 7 CONT’D      

High school   -.00033* 
(.00017) 

-.0003** 
(.00014) 

-.0002 
(.00028) 

-.0003 
(.0002) 

-.0066 
(.0067) 

-.0001 
(.00015) 

-.0002   
(.00014) 

-.0002 
(.00015) 

University -.0002 
(.0002) 

-.0003 
(.00019) 

.0002 
(.0003) 

-.00033 
(.00028) 

-.0071 
(.0093) 

-.00024 
(.00028) 

-.0002 
(.0002) 

-.0002 
(.0002) 

Years of schooling -.0022* 
(.0012) 

-.0019** 
(.0008) 

-.0007 
(.0015) 

-.0022* 
(.0013) 

-.0644 
(.0447) 

-.0015 
(.0012) 

-.0015 
(.0010) 

-.0009 
(.0008) 

Welfare .00012 
(.0001) 

.00017** 
(.00008) 

.00004 
(.0001) 

.00005 
(.0001) 

.0017 
(.0035) 

.0002*** 
(.00006) 

.0001 
(.0001) 

.00011 
(.00008) 

Earnings -.0009** 
(.00045) 

-.0011** 
(.0005) 

.0012** 
(.0005) 

-.0015** 
(.0007) 

-.0123 
(.0237) 

-.0009* 
(.0005) 

-.0007* 
(.0004) 

-.0007* 
(.0004) 

Teenage mom 
 

.0001 
(.0001) 

.0005** 
(.0002) 

.00013 
(.0001) 

.00014* 
(.00008) 

.0038 
(.0034) 

.0001 
(.0001) 

.0001 
(.0001) 

.00007 
(.00005) 

Notes: Each row and column represent a separate regression.  Column (2) presents the results estimates from a family 
fixed effects model; column (3) introduces municipality of birth specific time trends; column (4) replaces the linear 
exposure measure with log lead exposure, column (5) excludes the 3 largest cities; column (6) checks to what extent 
the estimated baseline effect of exposure to lead is confounded by effects of changes in other pollutants; column (7) 
adds controls for public childcare enrollment; finally column (8) reports estimates from a model where the individual 
data have been aggregated to the municipality level.  In addition all specifications includes controls for municipality, 
cohort fixed effects and individual and parental controls. The reported estimates is the marginal effect of one (1) unit 
(1 µg/Kg) increase in municipality of birth lead exposure during early childhood, except in column (4) which report 
estimates for a lin-log specification. The IQ and GPA variables are percentile ranked for each graduation/ enlistment 
cohort. */**/*** indicate significance at the 10/5/1 percent levels.  Standard errors are clustered at the municipality 
level (except for the IQ outcomes regressions that only uses two time periods and hence adjust standard errors at the 
time period-municipality level). The municipality level regressions (column (7)) are weighted by the number of 
children in each municipality/period cell. The IQ (GPA) outcomes also control for year of enlistment (Graduation) 
specific effects.  The baseline sample estimates refers to the linear estimates after excluding the municipalities below 
the 1st quartile of initial (1975) lead exposure level (full results in appendix B). In the family fixed effect model only 
families with less than four children are included. 
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The municipality fixed effect in this model is identified by families that 

report differing municipality of birth for their children.25 After including 
family fixed effects, the effect of childhood lead exposure is identified by 
differences in exposure between siblings. As the estimates in column (2) 
show, conditioning on parental fixed effects in addition to the municipality 
fixed effects produces estimates that are similar to the baseline estimates, but 
for cognitive test scores the point estimates are larger in absolute terms. The 
high similarity between the sibling fixed effects results and the main results 
are striking, and provides further evidence for the validity of the estimated 
relationship. 

In column (3) the baseline specification is augmented with municipality 
of birth specific linear time trends. This model addresses the concern that the 
main effects could partly result from trends in outcomes at the local 
municipal level. After introducing these time trends, the majority of the point 
estimates decreases somewhat. For earnings the point estimate changes sign. 
At the same time the precision of almost all estimates decreases 
significantly. However, the sharply decreased precision of the estimates after 
controlling for municipality linear time trends should come as no surprise. 
The parameter of interest in this specification is identified using only the 
residual variation of each municipality around its own time trend. Since the 
effective panel only stretches over three years (1975, 1980, 1985), this 
specification is likely to reduce the signal-to-noise ratio considerably and 
increase attenuation bias. 

When trying to identify the effects of a particular polluting element it is 
important to address the concern that any association found between lead 
exposure in childhood and outcomes later in life in principle could be due to 
that the observed air lead levels simply proxy for other unobserved 
pollutants correlated with lead. If higher (unobserved) pollution also leads to 
poorer subsequent outcomes, this may bias the estimated impact of lead 
upwards. The focus on the changes in air lead levels induced by government 
regulations targeting gasoline lead levels in particular should mitigate much 
of this problem. Still, since the moss sample data also hold information on 
seven of the other most common heavy metal pollutants (As, Cd, Cr, Cu, Ni, 
V, Zn) it is easy to do an initial assessment of the potential severity of this 
problem.26 Of all the observable environmental pollutants in the data, the 
only other air pollutant which displays even nearly as large and widespread 
changes during the observation period as lead does is cadmium (Cd). 

Cadmium has previously been found to be associated with adverse health 
outcomes (kidney damage, bone disease). Early exposure to Cd has been 

 
25 In 19.8% of the two-child families the siblings have differing municipalities of birth.  
26 This is the data contained from the start of the moss survey. From 1985 the Iron (Fe) and 
mercury (Hg) levels also started to be assessed.  
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shown to be able to produce neurotoxic effects in laboratory experiments 
(Anderson et al., 1997; Peterson et al., 2004), and in a recent study cadmium 
air releases are shown to affect infant health in humans (Currie and 
Schmeider, 2009). Moreover, air cadmium and air lead levels display a fairly 
high correlation at the municipality level; both in the cross-section (corr. 
coeff.=0.8) and in changes between 1975 and 1985 (corr. coeff.=0.5). Hence, 
changes in air Cd levels could potentially at least partly explain the 
estimated relationship between lead and subsequent adult outcomes. 
However, in this context it is not likely that the baseline estimates for lead 
are driven by the changes in local air cadmium exposure rather than local air 
lead exposure. This is so since unlike lead, the primary exposure route of 
cadmium is dietary rather than respiratory (WHO, 1972; IPCS, 1992; Moon 
et al., 2003; Ohlsson et al., 2005).27 Cadmium accumulates in crops, fish and 
livestock. But since only a small proportion of the food that children in 
Sweden (and elsewhere in most developed countries) eat is locally produced, 
a priori it is not expected that the intertemporal changes in local air 
cadmium levels in early childhood necessarily are associated with adverse 
future outcomes. 

Nevertheless, to make sure that the impact of the changes in lead are not 
confounded by the changes in cadmium both the lead and cadmium exposure 
measures are entered into the same regression to assess to what extent 
controlling for cadmium has an effect on the precision and/or magnitude of 
the estimated effect of lead. The estimated lead coefficients are reported in 
column (4) of Table 7. For most outcomes the estimates effects of lead 
remain highly similar after the additional control for cadmium is included. 
These results clearly indicate that the effect of lead does not seem to be 
caused by the simultaneous changes in cadmium.28   

In column (5) estimates are reported from a specification where the 
natural log of exposure has replaced the baseline linear exposure measure in 

 
27 For example, Moon et al. (2003) calculate the ratio of the dietary route uptake over the sum 
of the uptake via dietary and respiratory routes in a sample of non-smoking 
non-occupationally exposed mothers and their children. Cadmium intake was almost 
exclusively from food (98%), both in children and mothers. Dietary cadmium intake of 
children significantly correlated with that of their mothers. Dietary lead intake in children, 
however, did not correlate with that of their mothers. Lead uptake from ambient air tended to 
be higher (50%) in children than in their mothers (35%). 
28 The parameter estimates for cadmium are almost exclusively insignificant, and almost 
always point in an unexpected direction; i.e. higher cadmium improves adult outcomes. The 
discrepancy between the impact of Cd found for infant health in Currie and Schmeider (2009) 
and the lack of effects on long run outcomes found here could be due to that Currie and 
Schmeider examine releases of large doses at critical periods in utero. The changes in 
cadmium exposure in this setting potentially reflect more subtle changes at low levels in Cd 
exposure. Therefore the evidence here should not be taken as evidence that a temporary large 
dose of air cadmium exposure does not have an effect on long-run outcomes. The cadmium 
exposure estimates are retained due to space limitations, but are available upon request from 
the author. 
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order to investigate to what extent the model is sensitive to changes in 
functional form. A somewhat counter intuitive feature of the lin-log model, 
given the suggested nonlinear effect with the strongest effect at the highest 
exposure, is that it imposes decreasing marginal effects at the highest levels 
of exposure. Still the effects on GPA and IQ remain highly significant while 
the impact on schooling outcomes no longer is significant. However, the 
point estimates suggest effects of similar size as the baseline estimates. This 
could potentially indicate that exposure at the highest levels are particularly 
important for the later adult outcomes, while the more subtle effects on IQ 
and GPA remain even at lower levels of exposure. 

Column (6) assess to what extent the exclusion of children growing up in 
the three largest cities (Stockholm, Göteborg and Malmö) affects the 
parameter estimates. For various reasons one may suspect that the lead 
exposure measure in these areas is a less good predictor of the children’s 
blood lead levels than in other less densely populated areas. For example, 
exposure to motor vehicle exhaust is likely higher and at the same time the 
moss sampling sites may differ significantly from other areas. However, as 
shown in column (6) restricting the sample in this way only has limited 
effects on the precision and the magnitude of most of the estimates. 

Approximately simultaneous with the sharp phase-out of leaded gasoline 
there was also a strong expansion in the public day-care system in Sweden. 
Hence, a concern is that the impact of the reductions in lead exposure could 
partly be confounded by increased day-care enrollment (see e.g. Baker, 
Gruber and Milligan, 2009). However, first of all a regression of the 
day-care enrollment rates on childhood lead exposure suggests no significant 
association between the two variables. Still, to make sure that the increase in 
day-care enrollment rates is not biasing the baseline estimates, column (7) 
reports the results from a model where cohort-municipality specific day-care 
enrollment rates (averaged over ages 0-6) has been included as additional 
controls.29 Again as seen in column (7) the baseline results are in general not 
sensitive to this change in specification. 

Finally in column (8) I have aggregated the data to the municipality level 
in order to address the concerns of biased inference due to the regression of a 
municipality level explanatory variable (lead exposure) on individual 
outcome data.30 This alternative and conservative method in general provides 

 
29 Moreover, since left-wing local governments were more likely to expand public day-care, 
additional controls for the number of years during the index person’s childhood that the 
municipal council had a left-wing majority is also added. Note that the ideological orientation 
of the municipality council potentially captures many different hard to observe characteristics 
of the parents and the municipalities besides childcare. The data on childcare exposure and 
municipality level political majorities were kindly provided by Per Pettersson-Lidbom.  
30 I follow Bertrand et al. (2004) and first regress all individual variables on the outcomes and 
then use the average residuals as the outcome variable in a regression on the municipality 
level controls and fixed effects. The reported standard errors are robust to within municipality 
correlation.  The observations are weighted by the number of children in each municipality-
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fairly similar results as the baseline model does which is reassuring. The 
estimates for the outcomes which no longer remain significant after 
aggregating the data are typically not significantly different from the 
baseline estimates.  

To summarize, the weight of the evidence presented in this section first of 
all clearly displays the robustness of the main results to various specification 
changes. Several tests of alternative explanations for the observed effect of 
lead on adult outcomes suggest that neither observed nor unobserved 
changes in other important factors such as other pollutants, unobserved 
parental characteristics, or municipality specific factors seem to be able to 
explain the main results. 

5.4 Heterogeneity 
The analysis now proceeds by investigating the heterogeneity of the main 
effects. In section 5.4.1 the potential redistributive role that environmental 
policies may play is examined by checking if low SES and high SES 
children are differentially affected by the phase-out of leaded gasoline. 
Section 5.4.2 assess to what the extent there exists any difference in the 
susceptibility or impact of lead exposure early in life between boys and girls. 
Finally, in section 5.4.3 the sharp inter-temporal differences in lead exposure 
is exploited in order to test the validity of the assumption that early 
childhood lead exposure is more harmful than lead exposure later on in 
childhood.  

 

5.4.1 Can differences in pollution exposure early in life explain parts of 
the SES-gap in economic outcome later in life? 

Parental resources may potentially help mitigate some of the negative effects 
of adverse conditions in early life (see e.g. Currie and Hyson, 1999; Case et 
al., 2002; Cunha and Heckman, 2007). Moreover, several studies have found 
that low SES children are under higher risks of being exposed to 
environmental hazards; either through residential segregation or by less care 
taken by polluters in reducing the risk of exposure in neighborhoods with 
families of low political and/or economic influence.31 Information 
differentials about the health effects of pollution exposure between low and 
high SES households could also result in differential childhood lead 
exposure even within the same localities, since it can induce differential 
avoidance behavior across social groups (c.f. Neidell, 2004). A SES gradient 

 
period cell, rather than municipality year of birth cell which explains the differences between 
the individual level estimates and the estimates from the aggregated data. 
31 See e.g. Davidson and Anderton (2000) or Szasz and Meuser (1997) for a review of the 
environmental justice literature. 
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in the long-term effects of early childhood lead exposure could also be 
expected if parents from different social groups have different preferences 
for or possibilities to compensate the impact of lead on subsequent 
outcomes. Finally, since children from poorer backgrounds more often suffer 
from other health problems, a SES gradient in the effect of early childhood 
lead exposure could result from interactive effects of lead exposure and other 
health problems (c.f. Currie et al. 2009). In either case environmental policy 
initiatives that improve air quality are bound to benefit children in the 
poorest household the most.32

To assess whether the phase-out of leaded gasoline improved long term 
outcomes particular for low SES children, Table 8 report results from 
separate regressions by parents earning (below/above the median in 1990), 
and by parental education attainments (at least one of the parents has 
completed high school or not). As expected the parameter estimates are 
systematically larger and more precisely estimated for low SES children 
suggesting that the benefits of the reductions in lead exposure are 
particularly beneficial for the relatively disadvantaged children. 

 Given the data at hand, it is not possible to fully differentiate between the 
relative importance of the competing underlying mechanism behind the SES 
gradient. However, since the data also contain information on the parish of 
birth it is possible to examine if the same SES-gradient persists even if fixed 
parish of birth effects (2500 parishes) are included as additional controls.33 A 
parish on average corresponds to the size of a US census tract (≈ 4.500 
individuals). Hence, the parish of birth fixed effects regression compares 
children growing up in the same “neighborhood” within the municipality, 
and thereby the importance of differential exposure between low and high 
SES children induced by residential segregation within municipalities should 
be reduced. While parishes are not an ideal measure of the relevant 
neighborhood, it is the finest locality of birth data available and can be 
assumed to work as a decent proxy for it.34

 

 
32 Chay and Greenstone (2003b) find suggestive evidence of a SES gradient in the impact of 
Total Suspended Particulates (TSP) on infant mortality.   
33 Unfortunately, I do not have access to polygons for parish of birth, and hence can not 
calculate exposure levels for the parishes. However, it should be noted that even if they were 
available it is not evident that parish exposure would be a preferable measure compared to 
municipality exposure since parish boarders are likely to be crossed in regular day to day 
activities to a higher extent than municipality boarders.  
34 A better neighborhood definition than the parish of birth would be to use the SAMS areas 
(9,000 locations), which are very well defined neighborhoods. However, unfortunately 
information on the SAMS of residence are not available before 1985, and therefore the parish 
of birth was preferred in order to minimize the risk of attaining biased estimates due to 
endogenous parental migration between the year of birth and 1985. However, I have also 
estimated the same models using SAMS fixed effects instead and the results were highly 
similar.  



Table 8 Estimates by socioeconomic status 
Specification (1) (2) (3) (4) 

Sample: Low  
education 
parents  
(no high 
 school) 

Educated 
 parents  

Below  
median 

 earnings 

Above 
median 

 earnings 

OUTCOMES N=196,359 N=472,550 N=329,076 N=339, 847 
GPA -.0425** 

(.0166) 
-.0329** 
(.0144) 

-.0469*** 
(.0152) 

-.0249* 
(.0151) 

Low GPA .0007*** 
(.00024) 

.0005** 
(.0002) 

.0008*** 
(.0002) 

.00034* 
(.0002) 

High GPA -.0003 
(.0002) 

-.00025 
(.00020) 

-.0004** 
(.0002) 

-.0002 
(.0002) 

IQ (Men)   -.0613*** 
(.0165) 

-.0156 
(.0113) 

-.0307 
(.0193) 

-.0378** 
(.0144) 

Low IQ  (Men) .0006** 
(.00026) 

.0002 
(.00016) 

.00061* 
(.00034) 

.00006 
(.0002) 

High IQ  (Men) -.00039** 
(.00017) 

-.00016 
(.00015) 

-.00008 
(.00022) 

-.00043* 
(.00023) 

High School   -.00034 
(.0002) 

-.0003* 
(.00016) 

-.00038* 
(.00019) 

-.00017 
(.00014) 

University -.0004 
(.00025) 

-.00017 
(.00026) 

-.00041 
(.00026) 

-.00009 
(.00025) 

Yrs of schooling -.0028** 
(.0012) 

-.0016 
(.0012) 

-.0024** 
(.0012) 

-.0011 
(.0009) 

Welfare .00022 
(.00015) 

.00010 
(.00007) 

.00018 
(.00011) 

.00005 
(.00006) 

Earnings -.0018*** 
(.0006) 

-.0009 
(.00065) 

-.00073* 
(.00040) 

-.0012** 
(.0005) 

Teenage mother -.00011 
(.00014) 

.00020 
(.00007) 

.00008 
 (.0001) 

.00012* 
(.00007) 

Individual char. Yes Yes Yes Yes 
Parental char. Yes Yes Yes Yes 
Year of birth FE Yes Yes Yes Yes 
Mun. of birth FE Yes Yes Yes Yes 
Notes: Each row and column represent a separate regression. The reported estimates 
is the marginal effect of a (1) unit (1 µg/Kg) increase in municipality of birth lead 
exposure during early childhood. The IQ and GPA variables are percentile ranked for 
each graduation/ enlistment cohort. */**/*** indicate significance at the 10/5/1 
percent levels.  Standard errors are clustered at the municipality level (except for the 
IQ outcomes regressions that only uses two timeperiods and hence adjust standard 
errors at the timperiod-municipality level). Parent’s characteristics include maternal 
education (7-levels) and indicators for quintile of total parental earnings in 1990. The 
IQ (GPA) outcomes also control for year of enlistment (Graduation) specific effects.  
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The estimated differences in the impact of lead exposure early on between 
children of differential socioeconomic background persist even if they grew 
up in the same neighborhood. The point estimates generally decrease 
somewhat but not to the same extent as would have been expected if 
residential segregation would be the main cause of the SES-gradient (not 
reported). Next I limited the sample to children with parental earning more 
or less than the median earnings but, with and without having parents with a 
college/high school education. The parameter estimates from this matched 
comparison provide suggestive evidence that the income of parents seems to 
matter more than education of parents (not reported). The differences in the 
impact of lead on children in the two parental income groups are still large 
even after conditioning on parental educational attainments. Hence, although 
parental earnings seem to matter a lot for the influence of lead exposure on 
child outcomes an obvious candidate mediating mechanism for this income 
gradient, residential sorting within municipalities, does not seems to be the 
main mechanism at work. In addition, even after conditioning on parental 
education, the parental income gradient remains almost as strong. 

Under the assumption that university education of the parents is indicative 
of a higher awareness of potential negative effects of air pollution (and 
thereby a higher degree of avoidance behavior), these two auxiliary results 
suggest either i) that children with parents with low earnings are more 
heavily affected by air lead levels, potentially due to heightened sensitivity 
(e.g. due to co-morbidities); ii) that poorer parents lack the resources needed 
to compensate for the initial insult to the child’s development, or iii) that low 
and high SES parents have different preferences regarding the value of  
remedying investments in their children. 

 Whichever of the suggested reasons that are most valid, these results 
clearly indicate that environmental policies such as the ban of leaded 
gasoline not only has the ability to reduce the intergenerational transmission 
in economic outcomes. However, they also indicate that public and/or 
private resources/initiatives may potentially be effective in reducing the 
impact of early life insults on long-term outcomes, particularly among low 
SES children. 

5.4.2 Effects of lead exposure by gender 
Studies investigating gender differences in the impact of lead exposure has 
typically not detected differential effects of early childhood lead exposure on 
behavioral or cognitive outcomes among boys and girls (see e.g. Burns et al 
1999). But again these studies typically focus on children with relatively 
high levels of exposure. It has been suggested that in general male fetuses 
and infants are more susceptible to damage from early insults to health. 



Since boys tend to develop more slowly than girls, this could imply that 
exposure to lead may lead to greater damage in boys.35 

To assess this notion Table 9 and 10 present the OLS estimates (except IQ 
and teenage pregnancies) on all outcomes from separate regressions on the 
male and the female samples respectively. In general the point estimates are 
highly similar for both boys and girls. The precision is somewhat better for 
the girls (particularly for the educational attainments) potentially reflecting 
the lower variance in these outcomes among girls.  

 

Table 9 Women 
Specification (1) (2) (3) (4) (5) 
 Women Women Women Women Women 
Outcomes: High 

school 
Ever in 
 College 

Yrs. in 
 School 

Log 
 earnings Welfare 

Sample ALL ALL ALL ALL ALL 
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35 It is also interesting to highlight the fact that studies that have investigated gender 
differences in blood lead levels has found that up until around age 10 the blood lead levels in 
boys and girls are generally highly similar, and then starts to diverge (see e.g. Strömberg et 
al., 1995). 

Lead exp. 
(µg/Kg) 

-.00033** 
(.00014) 

-.0003 
(.00026) 

-.0023** 
(.0011) 

-.00085 
(.0006) 

.00014 
(.00009) 

R-squared 0.06  0.17 0.19 0.06 0.03 
Mean of  
dep. var. 

.91 .38 12.9 141,437 .037 

Outcomes: (6) 
GPA 

(7) 
LOW 
GPA 

(8) 
HIGH 
GPA 

  

Lead exp. 
(µg/Kg) 

-.0334** 
(.0160) 

.00043*** 
(.00019) 

-.00038 
(.00025) 

  

R-squared 0.19 0.09 0.13   
Mean of 
 dep. var. 

56 .18 .31   

Indiv. Char. yes yes yes yes yes 
Yr of birth FE  yes yes yes yes yes 
Muni. F.E: yes yes yes yes yes 
# Obs. 324,694 324,694 324,694 291,002 324,694 
Notes: The table reports results for separate regression on females.  The IQ and 
GPA variables are percentile ranked for each graduation/ enlistment cohort. 
Standard errors are clustered at the municipality level. */**/*** indicate significance 
at the 10/5/1 percent levels.



 
 
Table 10 Men 
Specification (1) (2) (3) (4) (5) 
 Men Men Men Men Men 
Outcomes: High 

school 
Ever in 
 College 

Yrs. in 
 School 

Log 
 earnings Welfare 

Sample ALL ALL ALL ALL ALL 
Lead exp. 
(µg/Kg) 

-.0002 
(.0002) 

-.0002 
(.00025) 

-.0020 
(.0014) 

-.00098* 
(.00055) 

.00011 
(.00009) 

R-squared 0.06 0.17 0.20 0.14 0.03 
Mean of  
dep. var. 

.87 .27 12.5 211,095 .037 

Outcomes: (6) 
GPA 

(7) 
LOW 
GPA 

(8)  
HIGH 
GPA 

 

Lead exp. 
(µg/Kg) 

-.0380** 
(.0161) 

.00065*** 
(.00023) 

-.00022 
(.00019) 

  

R-squared 0.03 0.09 0.11   
Mean of 44.8 .31 .18   
 dep. var. 
Indiv. Char. yes yes yes yes yes 
Yr of birth FE  yes yes yes yes yes 
Muni. F.E: yes yes yes yes yes 
# Obs. 371,996 371,996 371,996 310,772 371,996 

 

Notes: The table reports results for separate regression on females.  The IQ and 
GPA variables are percentile ranked for each graduation/ enlistment cohort. 
Standard errors are clustered at the municipality level. */**/*** indicate significance 
at the 10/5/1 percent levels.

 

5.4.3 Early childhood (age 0-2) vs. pre-primary school (age 5-7) lead 
exposure 

In line with the epidemiological literature the analysis so far has assumed 
that children’s development should be most strongly affected by early 
childhood lead exposure. As discussed above the motivation for the focus on 
this age period is that lead take up is higher and the rate of development is 
particularly rapid and critical in early life. Moreover, when it comes to 
insults to children’s development it has been suggest that earlier insult 
should have a stronger effect than later insults on subsequent outcomes due 
to the potentially dynamic complementarities of human capital 
accumulation; that is if skills beget skills (Cunha and Heckman, 2007). 
Hence, disadvantages early on may induce children to fall behind and not 
catch-up to their healthier peers. If either of these notions is true then early 
exposure should play a greater role than exposure to lead later on.  
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On the other hand since the brain continues to develop until around age 
20, and children potentially recover from early insults, more recent exposure 
to air pollutants might be more important (Currie et al., 2009). Indeed a few 
recent studies have suggested that lead exposure in ages 5-7 are more 
strongly correlated with IQ than early childhood exposure (c.f. Hornung et 
al., 2009) and the references cited therein).36 Moreover, it has been suggested 
that for cognitive skills the most sensitive period is early childhood while the 
most sensitive period for noncognitive skills occur later in childhood (c.f. 
Heckman, 2007). Further evidence on the age of greatest vulnerability to 
lead is moreover of clear policy relevance. If later exposure is shown to 
produce the same effects as early exposure efforts to reduce blood lead 
levels should continue through out childhood (Hornung et al., 2009). 

In order to differentiate between the impact of early and late childhood 
lead exposure one would ideally like to have measures of the lead exposure 
from birth until the outcome of interest is realized. But, since lead exposure 
at different ages will be highly correlated, a distinction between the impacts 
of early vs. late childhood exposure is difficult in most settings. With these 
caveats in mind with my data it is however still possible to estimate a horse 
race model between early childhood (ages 0-2) and the pre-school age (age 
5-7) exposure since for the present cohorts the changes in lead exposure 
between the different ages are substantial.37

The estimates for the impact of lead at the different ages on adult 
outcomes are presented in Tables 11 and 12. From the results in these tables 
a clear pattern emerges. For all outcomes the baseline estimates for early 
exposure is highly similar to the baseline model estimates and in most cases 
significant. For virtually all outcomes the estimated impact for exposure later 
in childhood is smaller than the age 0-2 exposure, and not statistically 
significant. The only two exceptions to this rule is the estimated impact on 
welfare dependency and earnings where the point estimates is higher for 
later childhood exposure than early childhood exposure. 

Moreover, in most cases the standard errors are not any larger for the later 
childhood estimates than for the early childhood estimates. Hence, it does 
not seem as if the later childhood exposure estimate is insignificant just 
because the precision decreases due to collinearity between the two 
measures of exposure. However, before concluding that early is much worse 
than later exposure, it should be kept in mind that there are at least two 
additional factors which potentially hamper the validity of this interpretation. 
First, the  

 
36 However, again previous studies in general investigate children with much higher lead 
exposure than the children in this setting, use small samples, typically look at cognitive test 
administered only in childhood and are susceptible to omitted variable bias. 
37 In order to implement this exercise data on lead exposure from the 1990 moss survey was 
added to the last three cohorts. 



 
 

Table 11  Age of greatest susceptibility,  GPA and cognitive test scores 
Specification (1) (2) (3) (4) (5) (6) 
Outcomes: GPA 

 
Low GPA High 

GPA 
IQ Low  

IQ 
High  
IQ 

Sample All All All Males Males Males 
Lead exp. 
 (age 0-2) 

-.0461*** 
(.0164) 

.0007*** 
(.0002) 

-.0004* 
(.0002) 

-.0264* .0002 
(.0150) .0002) 

-.00023 
(.00018) 

Lead exp. 
(age 5-7) 

-.0162 
(.0185) 

.00018 
(.0002) 

-.00013 
(.0002) 

-.0020 
(.0177) 

-.0001 
(.0003) 

-.00019 
(.00027) 

R-squared 0.21 0.12 0.14 0.17 0.09 0.1 
Mean of dep. 
var. 50 0.25 0.25 49.8 0.22 0.26 

Individual &  
parental char.. 

yes yes yes yes yes yes 

Yr of birth 
FEs 

yes yes yes yes yes yes 

Muni  FEs yes yes yes yes yes yes 

Observations 668,909 668,909 668,909 220,498 220,498 220,498 
Note: The IQ and GPA variables are percentile ranked for each graduation/ enlistment 
cohort. Standard errors are clustered at the municipality level. */**/*** indicate 
statistical significance at the 10/5/1 percent levels.  

Table 12  Age of greatest susceptibility,  alternative long-run outcomes 
Specification (1) (2) (3) (4) (5) (6) 
Outcomes: High 

school 
Ever in 
College 

Yrs. in 
School 

Log  
earnings 

Welfare Teen 
mother 

Sample 
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All All All All All All 
Lead exp. 
 (age 0-2) 

-.00027* 
(.00015) 

-.0001 
(.0003) 

-.0015 
(.0010) 

-.0013*** .00016 
(.0005) (.0001) 

.00014* 
(.00008) 

Lead exp. 
(age 5-7) 

.0002 
(.0002) 

.0004 
(.0003) 

.0021 
(.0016) 

-.0021*** 
(.0008) 

.00027* 
(.00015) 

.00007 
(.0001) 

R-squared 0.06 0.18 0.21 0.13 0.03 0.03 
Mean of dep. 
var. 

0.89 0.32 12.7 177,283 0.037 0.042 

Individual &  
parental char. 

yes yes yes yes yes yes 

Yr of birth 
FEs 

yes yes yes yes yes yes 

Muni  FEs yes yes yes yes yes yes 

Observations 668,909 668,909 668,909 601,774 668,909 325,010 
Note: see Table 11 
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exposure measure used is local exposure rather than individual blood lead 
levels. Since lead uptake is higher in early childhood the differences in the 
impact on long run outcomes could be due to differential blood lead levels at 
the different ages. Second, the nonlinearity of the relationship between 
childhood lead exposure and adult outcomes suggested above could also 
provide a similar pattern since the lead exposure in the pre-primary school 
years typically has decreased below the relevant level of concern as 
estimated above. 

Although definite conclusions regarding the most sensitive period is 
difficult to make with the data at hand at least the results in this section do 
not provide any direct support for the hypothesis that later childhood lead 
exposure should be more detrimental than earlier exposure. Instead, the 
weight of the evidence suggests that early childhood lead exposure is more 
influential than later exposure which is in line with most the theoretical 
mechanisms suggested in the literature and the previous empirical evidence. 

6 Economic significance and policy implications 
In order to attain a rough estimate of what blood lead level the critical moss 
lead levels correspond to, I use the model estimated in Nilsson et al. (2009) 
for the pre-ban of leaded gasoline period.38 This yields an estimate 
suggesting that for the children aged 7-10 a local moss lead level of 50µg/kg 
(i.e. lower end of the 4th quartile of exposure used in section 5.2) correspond 
to a blood-lead level of around 3µg/dL under a log-normal distribution. After 
adjusting the blood-lead moss-lead elasticity using the age specific 
blood-lead gasoline-lead elasticity estimated in Reyes (2007) (30% higher 
for children aged 0-6 than for children aged 6-12) and under the additional 
assumption that the additive separable specification used in the estimation 
holds for both populations, the relevant blood lead level in this setting would 
correspond to about 4.8µg/dL. 

This estimate suggests that the average early childhood blood lead level 
among children in more than 50% of the Swedish municipalities in the 
period 1972-1974 were high enough to affect their adult outcomes. Since 
these municipalities also are the most densely populated, a majority of the 
children in Sweden born in the late 1960s and early 1970s likely suffered 
from blood lead levels high enough to potentially affect their future adult 
outcomes. However, since this study use the average municipality lead levels 
as exposure measure, the average effects on cognitive ability are associated 
with a municipality average blood lead level above 4.8µg/dL. It is thus in 
principle possible that the entire effect could solely be caused by large 
effects on cognitive development among a few children with very high blood 

 
38 Evaluated at the mean of the explanatory variables 
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lead levels. However, since that the standard deviation in childhood blood 
lead levels is not extremely large this seems less likely. Still, the preciseness 
of this blood lead level “threshold” remains to be confirmed in future 
research using individual childhood blood lead levels and a credible 
empirical strategy that takes unobserved confounders into account. At the 
very minimum the evidence provided in this study gives a clear indication 
that while the current acceptable blood lead limit (10µg/dL) is set at a level 
above which acute effects of lead might be avoided, it is clearly not low 
enough to prevent more subtle damage on child development. 

 With these caveats in mind it is interesting to consider the effects on 
future GPA and earnings if early childhood blood lead levels would decrease 
from 10µg/dL to 5µg/dL. By combining the estimated average impact on 
GPA in the upper quartile (see Table 5 & 6) and assuming that the estimated 
elasticity between lead in moss and lead in children is constant in this 
interval (i.e. 0.57) a decrease in a child’s blood lead level from 10 µg/dL to 5 
µg/dL would imply an average increase in 9th grade GPA by 2.2 percentiles 
and an increase in the high school graduation rate by 2.3 %. In terms of labor 
market outcomes the same decrease would imply an estimated increase in 
earnings (average for ages 20-32) by 5.5%. 

 Although due to the strong life-cycle variations in income, concurrent 
earnings measured below age 30 is typically not a very accurate measure of 
life time earnings, and hence the earnings estimate should be interpreted 
with care (c.f. Haider and Solon, 2006; Lindqvist and Böhlmark, 2006). If 
instead regressing age 30-32 earnings (i.e. only for those born in 1972-1974) 
on a high school graduation dummy (or grade 9 GPA), gender, year of birth 
and family fixed effects, the Swedish high school premium is estimated to be 
about 17%, and a one (1) percentile rank increase in GPA is associated with 
on average 0.54% higher earnings at age 30-32.39 If combining these 
estimates with the estimated effects of lead exposure on GPA and high 
school graduation rates, the effect of reducing early childhood blood lead 
levels from 10 to 5µg/dl implies that life time earnings would increase by 
1.2% (2.2*0.54) using the GPA/earnings estimate and around 0.4% 
(17*0.023) using the high school graduation premium estimate.40 Of course 
these alternative estimates only capture the part of the lead exposure effects 
on earnings that goes through educational attainments. 

 With these estimates it is for example possible to calculate the 
hypothetical gains of reducing the blood lead levels of the 310,000 children 
in the US (c.f. CDC, 2005) with a blood lead above 10µg/dL to 5µg/dL. 

 
39 In Sweden the life cycle bias in earnings are found to be minimal after age 33 which is why 
I estimated the impact of the educational attainments on earnings for the earliest cohorts only; 
see further Böhlmark and Lindqvist, (2006). 
40 The lower estimate for high school likely reflects that part of the earnings effects which 
goes through the impact of increased university completion (which is too early to estimate). 
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Since general equilibrium effects most likely is not an issue, under the 
assumption that the earnings effects are directly translatable to the US 
setting, and given an annual income of 30,000 USD, the benefits in terms 
increased labor market earnings from reducing the blood lead level in these 
children would hence be around USD $112 million annually after age 32 
(30,000*310,000*0.012) using the GPA/earnings estimate, and around USD 
$37 million annually using the high school graduation/earnings estimate.41 

This reflect the effect on the average population of children, but since 60% 
of all children with blood lead levels above 10µg/dL are Medicaid eligible 
(see Currie, 2009) the expected effects on individual earnings could be 
larger. 
 

7 Concluding remarks 
This study use a new measure of early childhood lead exposure to estimate 
the long run effects of the rapid reductions in lead exposure following the 
phase out of leaded gasoline. The results are robust to a number of 
specification changes and suggest that in Sweden the reduction in children’s 
blood lead levels that occurred between 1972 and 1984 has improved young 
adult outcomes for a majority of the population.  

The main policy implication of the results concerns the evidence of the 
nonlinear effect of municipality air lead levels in early childhood on young 
adult outcomes. This nonlinear relationship provides suggestive evidence of 
the existence of a threshold below which further reductions in early 
childhood blood lead levels no longer improves long term outcomes. Given 
the wide use of heavy metal moss monitoring throughout Europe, the finding 
that reductions in lead exposure below 49µg/kg moss no longer seems to 
affect long-term outcomes is of clear policy relevance in itself. However, 
this study also provides an estimate suggesting that the critical moss lead 
level corresponds to an early childhood blood lead level of approximately 
5µg/dL. This is well below the current blood lead limit of concern (10µg/dL) 
suggested by the US Center for Disease Control and Prevention (CDC). 
Since the CDC estimates that more than 310,000 children aged 1-5 in the US 
alone have blood lead levels exceeding 10µg/dL, and WHO estimate that 
globally 40% of the urban children suffer from blood lead levels that exceed 
5µg/dL (Fewtrell et al., 2003), reductions in the recommended limit of 
concern and implementations of further programs designed to reduce lead 
exposure could potentially be cost effective 

 
41 Note that this calculation assumes that the lead levels in all the children are lowered from 
10µg/dL to 5µg/dL, which implies that the gain is underestimated since a non-negligible share 
of the children has higher levels than 10µg/dL.  
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A second key result of this study is that while low SES children seem to 
suffer more heavily from lead exposure in early childhood, the SES 
differences does not seem to be solely caused by differences in pollution 
exposure due to residential segregation. The SES-gap persists even when 
comparing children growing up in the same neighborhood. This result 
indicate not only that environmental policies, such as the ban of leaded 
gasoline, could function as social policy, but also that public or private 
investments may mitigate some of the detrimental effects of early life 
exposure to lead. 

In planned future work the same strategy will be used to investigate if 
early childhood lead exposure at low levels can yield similarly sized effects 
on violent crime rates as Reyes (2007) finds for considerably higher levels of 
exposure. Other relevant health outcomes such as birth outcomes will also be 
considered. 
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Appendix A: The relationship between lead exposure 
and blood lead among children 
This section briefly review the results from Nilsson, Skerfving, Stroh and 
Strömberg (2009) that provide the estimated elasticity between lead levels in 
moss and blood-lead levels in children. The interested reader is referred to 
that study for further details on the data and execution.  

The moss samples Nilsson et al. (2009) use was collected at 55 sites in the 
municipality of Landskrona in 1983, 1995 and 2006, following the same 
principles as in the national bio-monitoring program. These data where then 
matched to the blood lead measurements from about 420 children aged 
between 7 and 10 collected by Strömberg et al. (1995, 2003) in the year prior 
to that during which the mosses where sampled. Using the coordinates of the 
children home address each child is assigned an average lead exposure level 
using the 5 nearest moss sampling sites.42 The raw correlation between this 
lead exposure measure and children’s blood lead level is 0.75, which 
compares very well with findings in previous studies linking ambient air 
pollution to actual population exposure. 

Table A1 report the estimated elasticity between lead in moss and 
children’s blood lead levels using six different versions of the following 
specification,  

 

ln( _ ) ln( ) 'it it c t itblood lead exposure Xα γ β θ θ ε= + + + + +

                                                

      (A1) 

In the first column of Table A1 the elasticity between B-Pb and M-Pb using 
the full sample is shown without any additional control variables added to 
the model. The estimated coefficient suggest that for an 10% increase in the 
lead level in moss the blood lead level increases with on average 3%. In 
column (2)-(5), individual characteristics, fixed community, year of 
sampling and finally year*community fixed effects is stepwise introduced. 
The year fixed effects seem to be the only control which influence on the 
estimated elasticity. 
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42 Following Currie and Neidell (2003), in order to assess the accuracy of the air pollution 
measure Nilsson et al., compare the actual level of pollution at each moss sample site with the 
level of pollution that they would have assigned using the implemented method (i.e. using the 
five closest measuring sites), if the actual moss sample was not in fact available. The 
correlation of the actual and estimated level is high for Pb (r=.88), suggesting that it is an 
accurate measure for the air pollution exposure for the children’s home address. Also note that 
as long as the measurement errors in assigned and actual exposure are not systematic, the 
relationship between the children’s blood-lead levels and our air pollution measure will be 
biased towards zero. 
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Table A1 The relationship between blood lead and moss lead levels 
Dependent variable: ln 

(B-Pb) 
ln 

(B-Pb) 
ln 

(B-Pb) 
ln 

(B-Pb) 
Ln 

(B-Pb) 
ln 

(B-Pb) 
Specification: (1) (2) (3) (4) (5) (6) 
Time period: ALL ALL ALL ALL ALL Before 

1995 
(ln) Lead exposure .303*** 

(.034) 
.333*** 
(.035) 

.383*** 
(.037) 

.250** 
(.095) 

.287*** 
(.099) 

.440*** 
(.111) 

Individual controls no yes yes yes yes yes 
Community F.E. no no yes yes yes yes 
Year F.E. no no no yes yes yes 
Year*community FE no no no no yes yes 
R-squared 0.55 0.69 0.74 0.92 0.92 0.92 
Nr of children 410 410 410 410 410 249 
Notes: The table reports regression results from of OLS estimations of equation (A1). 
All in all there are 410 children in 50 cells (249 children and 30 cells in column (6)). 
The dependent variable is the average blood-lead level at each monitoring point and is 
weighted with the number of children in each cell. The blood lead is measure in µg/L 
blood. The lead exposure is µg/kg of moss. The controls are gender, whether the child’s 
practicing any lead exposing hobbies, and ln(hemoglobin) level. The data has been 
trimmed so to leave out children with blood lead values below the 1st  and above the 
99th percentiles in each year (7 children in total). Standard errors are reported in 
parenthesis and are robust with respect to heteroscedasticity. */**/*** reflects 
significance at the 10/5/1 percent levels respectively. Source: Nilsson, Skerfving, Stroh 
and Strömberg (2009)  
 
The first five columns report the estimated elasticity using the full 

sample. However, from 1995 lead in gasoline was banned. Hence as the 
relative contribution of air lead for total body burden decreases, the 
predictive power of the moss samples is likely to decrease as mosses only 
take up lead from the air. This is mirrored in Figure 1 which show that while 
the moss in lead continued to decrease throughout the observation period, 
the children blood-lead levels leveled off at around 2 µg/dL after the ban on 
leaded gasoline. This is pattern is clearly in line with a shift away from air-
borne sources as the major source of lead exposure in children after lead was 
phased out of gasoline. In column (6) we test this notion by estimating the 
full model, only on the two cohorts sampled before the ban on leaded 
gasoline, i.e. in 1984 and 1994. When using this restricted sample the 
estimated elasticity increases to 0.44 while the standard errors increase only 
marginally. This result suggests that the relative importance of air-lead 
exposure indeed was stronger in the period prior to the ban than after, as 
expected. The pre-ban period is also the one focused on in this paper. The 
final result also provides suggestive evidence on the validity of using mosses 
as monitors of air pollution. 
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Appendix B: Tables 
 

Table B1: Descriptive statistics 
Outcome variables Definitions Mean Std. 

dev. 
GPA Grade point average (percentile 

ranked) 
50.09 28.8 

Low GPA =1 if GPA in bottom 25%, 0 otherwise .25 .43 
High GPA =1 if GPA in top 25%, 0 otherwise .25 .43 
IQ IQ test score (percentile ranked) 50.0 28.5 
Low IQ =1 if IQ in top 25%, 0 otherwise .25 .43 
High IQ =1 if IQ in bottom 25%, 0 otherwise .25 .43 
Schooling Year of schooling (imputed) 12.7 1.9 
High School =1 if completed high school, 0 

otherwise 
.89 .31 

University =1 if ever attended Higher education, 
 0 otherwise 

.33 .47 

Earnings Natural log Labor market earnings  7.2 1.14 
Welfare =1 if receiving welfare, 0 otherwise .04 .19 
Parental characteristics   
% with at least one parent graduated from High school 60 41 
% with at least one parent graduated from College  32 47 
Sum of parent earnings: SEK 100 (measured in 1990) 2584 1379 
Family size  1.5 0.6 
Mothers year of birth  1950 0.6 
Municipality of birth characteristics:   
Lead exposure (µg/kg) 35 16 
Cadmium exposure (µg/kg) .54 .19 
% in childcare average (age 0-6) share of cohort in daycare 13.5 6.9 
   

 



 

 

Table B2: Cross-sectional estimates 
Specification (1) (2) (3) (4) 
Sample: 1975 1980 1985 All years 

OUTCOMES N=291,539 N=255,587 N=250,763 N=797,889 
GPA -.0094 

(.0122) 
-.0298 -.0591 
(.0235) (.0402) 

-.0168 
(.0144) 

Low GPA .00023 
(.00016) 

.00055* .00042 
(.0003) (.00047) 

.0003* 
(.00018) 

High GPA .00006 
(.00015) 

-.00015 -.0009* 
(.00027) (.0005) 

-.0001 
(.00017) 

IQ (Men)   -.0258** -.0395 
(.0131) (.0257) 

- -.0297* 
(.0153) 

Low IQ  (Men) .00025 .00035 
(.00016) (.00025) 

- .00029* 
(.00017) 

High IQ  (Men) -.00024 -.00043 
(.00016) (.00034) 

- -.00029 
(.00019) 

High School   -.00034*** 
(.0001) 

.00009 -.00004 
(.00028) (.00025) 

-.00017 
(.00011) 

University -.0002 
(.0002) 

-.00035 -.0001 
(.00045) (.0004) 

-.00024 
(.00023) 

Years of schooling -.0017 
(.0011) 

-.00106 -.00059 
(.0022) (.0015) 

-.00136 
(.0009) 

Welfare -.00006 
(.00004) 

-.00006 -.0008 
(.00014) (.00019) 

-.00012 
(.00008) 

Earnings .00024 
(.0002) 

.0014*** .00321 
(.00041) (.00102) 

.00105 
(.0002) 

Teenage mother -.000016 
(.00007) 

-.0001 
(.0001) 

-.00004 
(.00012) 

-.00005 
(.00006) 

Individual characteristics Yes Yes Yes Yes 
Parental characteristics Yes Yes Yes Yes 
Year of birth fixed effects Yes Yes Yes Yes 
Municipality of birth F.E. No No No No 
Mean lead level (µg/Kg) 49.41 30.81 22.77 35.08 
Notes: Each row and column represent a separate regression. The reported 
estimates is the marginal effect of a (1) unit (1 µg/Kg) increase in municipality of 
birth lead exposure during early childhood. The IQ and GPA variables are 
percentile ranked for each graduation/ enlistment cohort. */**/*** indicate 
significance at the 10/5/1 percent levels.  Standard errors are clustered at the 
municipality level (except for the IQ outcomes regressions that only uses two time-
periods and hence adjust standard errors at the timperiod-municipality level). 
Parent’s characteristics include maternal education (7-levels) and indicators for 
quintile of total parental earnings in 1990. The IQ (GPA) outcomes also control for 
year of enlistment (Graduation) specific effects. 
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Table B3 Baseline estimates for municipalities above 25%-tile initial (1975) 
lead exposure: Grade point averages and cognitive test scores. 
Specification (1) (2) (3) (4) (5) (6) 
Outcomes: GPA 

 
Low 
 GPA 

High 
GPA 

IQ Low 
 IQ 

High  
IQ 

Sample ALL ALL ALL Males Males Males 
Lead exp. 
(µg/Kg) 

-.0356** 
(.0143) 

.0006*** -.0003 -.0336*** 
(.0002) (.0002) (.0128) 

.0003** 
(.00015) 

-.00026** 
(.00012) 

R-squared 0.22 0.12 0.14 0.17 0.09 0.1 
Mean of 
dep. var. 50 025 0.25 49.8 022 0..26 

Individ. 
controls 

Yes Yes Yes Yes Yes Yes 

Y. of birth 
F.E. 

Yes Yes Yes Yes Yes Yes 

Muni. F.E.  Yes Yes Yes Yes Yes Yes 

# Obs. 668,909 668,909 668,909 220,324 220,324 220,324 
Notes: The IQ and GPA variables are percentile ranked for each graduation/ enlistment 
cohort. Standard errors are clustered at the municipality level. */**/*** indicate 
significance at the 10/5/1 percent levels.  
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Table B4 Baseline estimates for municipalities above 25%-tile initial (1975) 
lead exposure: Educational attainments and other long-term outcomes 
Specification (1) (2) (3) (4) (5) (6) 
Outcomes: High 

 School 
Ever in 
 College 

Yrs. in 
 School 

Log 
 earnings 

Welfare Teen 
 mother 

Sample ALL ALL ALL ALL ALL ALL 
Lead exp. 
(µg/Kg) 

-.00033* 
(.00017) 

-.0002 
(.0002) 

-.0022* 
(.0012) 

-.0009** 
(.0005) 

.00014 
(.00009) 

.0001 
(.0001) 

R-squared 0.06 0.18 0.20 0.1301 0.03 0.03 
Mean of  
dep. var. 

0.89 0.32  12.7 177,283 0.037 0.042 

Individ. 
 charact. 

yes yes yes yes yes yes 

Year of birth  yes yes yes yes yes yes 

FE muni. yes yes yes yes yes yes 

# Obs. 696,690 696,690 696,690 601,774 696,690 325,010 
Notes: The IQ and GPA variables are percentile ranked for each graduation/ enlistment cohort. 
Standard errors are clustered at the municipality level. */**/*** indicate significance at the 10/5/1 
percent levels.  
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Table B5 Alternative sample restrictions  
Specification (1) (2) (3) (4) 
Sample: Exclude 

<25%-tile 
initial 
lead 

exposure 

Exclude 
<25%-tile 
change in 

lead 
exposure 

Exclude 
>75%-tile 
initial lead 
exposure 

Exclude 
>75%-tile 
change in 

lead 
exposure 

OUTCOMES N=696,690 N=665,116 N=572,019 N=565,758 
GPA -.0356** 

(.0143) 
-.0326** .0120 
(.0143) (.0171) 

.0121 
(.0157) 

Low GPA .0006*** 
(.0002) 

  .00052*** -.0003 
(.0002) (.0002) 

-.0003 
(.0002) 

High GPA -.0003 
(.0002) 

-.00025 -.0001 
(.0002) (.0002) 

-.00016 
(.0002) 

IQ (Men)   -.0336*** 
(.0128) 

-.0322** .0265 
(.0129) (.0190) 

.0248 
(.0186) 

Low IQ  (Men) .0003** 
(.00015) 

.0003 -.0002 
(.0002) (.0003) 

-.0001 
(.0003) 

High IQ  (Men) -.00026** 
(.00012) 

-.0003 .0004 
(.0002) (.0003) 

.0004 
(.0003) 

High School   -.00033* 
(.00017) 

-.00025* -.0001 
(.00015) (.0002) 

-.0001 
(.0002) 

University -.0002 
(.0002) 

-.00028 .00005 
(.00024) (.00046) 

-.0001 
(.0004) 

Yrs. of schooling -.0022* 
(.0012) 

-.0019* .0011 
(.0010) (.0020) 

.0002 
(.0018) 

Welfare .00012 
(.0001) 

.0001 .0001 
(.0001) (.0001) 

.0001 
(.0001) 

Earnings -.0009** 
(.00045) 

-.0009*** .0023*** 
(.0005) (.0007) 

.0021*** 
(.0007) 

Teenage mother .0001 
(.0001) 

.0001 
(.0001) 

-.0003*** 
(.00013) 

-.00014 
(.0001) 

Yes Yes Yes Yes Individ. char. 
Parental & muni. 
characteristics 

Yes Yes Yes Yes 

Y. of birth F.E. Yes Yes Yes Yes 
Mun. of birth F.E. Yes Yes Yes Yes 
Notes: Each row and column represent a separate regression. The reported estimates 
is the marginal effect of a (1) unit (1 µg/Kg) increase in municipality of birth lead 
exposure during early childhood. The IQ and GPA variables are percentile ranked for 
each graduation/ enlistment cohort. */**/*** indicate significance at the 10/5/1 
percent levels.  Standard errors are clustered at the municipality level (except for the 
IQ outcomes regressions that only uses two timeperiods and hence adjust standard 
errors at the timeperiod-municipality level). Parent’s characteristics include maternal 
education (7-levels) and indicators for quintile of total parental earnings in 1990. The 
IQ (GPA) outcomes also control for year of enlistment (Graduation) specific effects.  
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