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Abstract

We study an in�nite horizon bilateral bargaining model in which negotiators can
make strategic commitments to durable o�ers. Commitments decay stochastically. In
the model's unique stationary Nash equilibrium, agreement occurs when the �rst negotia-
tor's commitment decays. As commitments decay more quickly, disagreement is shorter
and the terms of the agreement become more equal. Conversely, as the rate of decay
tends to zero, the expected duration of disagreement tends to in�nity and the eventual
agreement gives all the surplus to one party.
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1 Introduction

Thomas Schelling (1956, 1960, 1966) pioneered the analysis of bilateral bargaining as a game
of strategic commitment. By committing to an irrevocable bargaining position, a negotiatiator
aims to force concessions from the opponent. As Schelling (1960, Appendix B) emphasizes,
there is no a priori reason to expect that the outcome of such a struggle for dominance will
be symmetric, or even e�cient. Instead, the outcome depends on the available commitment
technologies.
Schelling's view of bargaining as a struggle for commitment has had a deep impact on

the analysis of conict and cooperation by political scientists (e.g., Snyder and Diesing, 1977;
Fearon, 1998). Yet, despite notable contributions by Crawford (1982), Fershtman and Seidman
(1993), Perry and Reny (1993), Muthoo (1996), and Li (2007), it is still true that formal
bargaining theory has paid scant attention to strategic commitments (Binmore, Osborne, and
Rubinstein, 1992, p. 200). Instead, the study of dynamic bargaining has revolved around models
that admit only the minimal commitment necessary to make credible short-lived contract o�ers,
as in St�ahl (1972) and Rubinstein (1982).1
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1There is also a literature on strategic bargaining in which players may be inherently (i.e., exogenously)
committed to some bargaining stance, and where this commitment is not directly observable to the opponent;
see Kambe (1999), Abreu and Gul (2000), and Compte and Jehiel (2002).
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Building on the two-stage model of Crawford (1982), as modi�ed by Ellingsen and Miettinen
(2008) (henceforth E-M), we here seek to formalize Schelling's argument within an in�nite
horizon framework. The model yields precise and simple predictions concerning the e�ect of
commitment possibilities and patience on the outcome of bargaining.
Bargaining proceeds as follows. Each period is split into two stages. In the �rst stage,

players can make binding contract o�ers, unless they are already committed to an earlier o�er.
In the second stage, players can sign on to their opponent's o�er, unless they have committed
themselves to an incompatible o�er.
Our analysis rests on two key assumptions. The �rst assumption is that, in each period, a

commitment only sticks with some probability q < 1. With probability 1� q the commitment
decays completely. As long as the own commitment has not decayed, a player cannot accept
any incompatible o�er by the opponent, but after such a decay the player is free to accept or
reject any o�er by the opponent. After a rejection, the exible player may either commit to a
new o�er or remain exible.
The possibility of highly asymmetric equilibrium outcomes arises because players who dis-

count the future are better o� accepting a small share than by waiting a long time in order to
get a large share.
The second key assumption is that, everything else equal, players prefer not to make an

own o�er. That is, it is better to sign on to the opponent's o�er than to have the opponent
sign on to an own o�er of the same deal. This assumption can be defended on several grounds.
The most direct interpretation is that there are (lexicographically) small costs associated with
formulating and conveying a �rm o�er.2 As a consequence of this assumption, there cannot
be a stationary equilibrium in which players commit to exactly compatible o�ers with positive
probability, because one player is then better o� by remaining exible and sign on to the
opponent's o�er.
We consider two solution concepts { stationary Nash equilibrium and subgame perfect Nash

equilibrium. In alternating o�er bargaining games between players who have a weak (lexico-
graphic) preference for simple strategies, Binmore, Piccione, and Samuelson (1998) show that
evolutionary stability favors stationary over non-stationary Nash equilibria.3 The set of sta-
tionary Nash equilibria in their model is small and collapses on the (unique) subgame perfect
equilibrium in the limit as the time between periods tends to 0.4 In this limit of their model, the
bargaining solution obtained by Rubinstein (1982) is thus chosen by both the solution concepts
that we consider.5

Our in�nite horizon bargaining game has a unique stationary Nash equilibrium, which
\nests" the insights of previous models in a natural way. In the limit as the time between
periods tends to zero, the stationary equilibrium is characterized by a simple formula: When

2A less direct interpretation is that it is good to retain some exibility in case the opponent makes another
o�er than one had expected, although such trembles should ideally be modeled directly. Ellingsen and Miettinen
(2008) and Asheim and Perea (2009) show that various equilibrium re�nements, including trembling hand
perfection, have much cutting power in the single-period version of our model.

3As they write (p. 260): \The evolutionary process contains no forces favoring backward-induction reasoning.
However, the evolutionary advantages of simple strategies ensure that evolutionarily successful strategies are
stationary and prescribe the same behavior no matter what role the player �lls."

4Since Binmore, Piccione, and Samuelson (1998) do not distinguish time discounting from the time between
periods, they state their result in terms of players'discount factor tending to 1.

5In the �rst paper on the evolution of bargaining behavior, Young (1993) applies evolutionary stability
criteria to a one-shot Nash Demand game in which players are able to observe some past play by others.
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the two players have identical payo� functions, both of them start out o�ering the opponent a
share k=(2k + r); where k is the rate at which commitments decay and r is the discount rate.
(The probability that a commitment sticks for a time period of length t is q = e�kt; and the
discount factor is � = e�rt:) Thus, as the rate of decay tends to in�nity, the o�ers converge to
an equal split and agreement is almost immediate, just as in Rubinstein (1982). On the other
hand, as the rate of decay tends to zero, o�ers converge to zero and the expected duration of
disagreement tends to in�nity, mimicking the outcome in Ellingsen and Miettinen (2008).
The game also has e�cient non-stationary subgame perfect equilibria. When commitments

decay fast, these subgame perfect equilibrium payo�s are all in the vicinity of the equal split. On
the other hand, as commitments decay more slowly, the set of non-stationary equilibrium payo�s
grows, eventually coinciding with the feasible set { that is, the same solution set as Nash's (1953)
demand game. Thus, the old sceptic view that anything may happen in bargaining in our model
requires both highly durable commitments and coordination on non-stationary strategies.

2 Model

There are two negotiators, henceforth called players. Players are indexed i = A;B and bargain
over a �xed surplus of size 1. For simplicity, we initially assume that players have identical
preferences and technologies, relegating a complete characterization of asymmetric cases to
Section 4.
The size of the surplus and the rationality of the players are common knowledge. A player's

utility is assumed to be linear in the player's share of the surplus. Players are impatient, with
per period discount factor �:

2.1 Timing and actions

The bargaining game, call it G1, has in�nite horizon. In each period t, actions are taken in two
stages { the proposal stage and the response stage. At the proposal stage, players can make
long-lived o�ers; at the response stage, they accept or reject o�ers. If the players arrive at the
response stage without any o�er on the table, each player has an equal chance of being picked
to make a short-lived o�er that the opponent may either accept or reject. In between the two
stages, no new action can be taken, but time passes and commitment to o�ers may decay. No
time passes between the end of a period and the start of a new period.6

2.1.1 Period 1

The �rst period is special, since players have not been able to make previous commitments. In
period 1, the available actions and payo�s are the following.
(a) The proposal stage. Each player i chooses either to make a speci�c proposal for how to

split the surplus or to wait and remain uncommitted. Speci�c proposals are fully characterized
either by the amount o�ered to the opponent or by the amount demanded by the proposer. Our
formulas are shorter in the former case. Thus, we let si1 2 [0; 1] denote an o�er made by player i
to player j in period 1. Denote the waiting action by w, and let the set of proposal stage actions

6It is straightforward to generalize the model to the case in which time passes between periods, but it
complicates the analysis without generating new insight.
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be denoted S = [0; 1][fwg: The set of randomized o�ers is the set of probability distributions on
S. Let �i denote a randomized o�er of player i, and let pi(s) denote the associated probability
that player i takes the action s, and let P denote the set of all probability distributions on S.
As in E-M, we assume that it is costly to make speci�c proposals. Initially, we assume that any
o�er s 2 [0; 1] entails a small positive cost c, whereas w is free. Subsequently, we will simplify
by assuming that c is of second order magnitude (lexicographically small).
(b) Delay. Some time passes between the making of an o�er and the opportunity to respond.

During this time, a player's commitment to the o�er can potentially decay. Speci�cally, if player
i makes an o�er si 2 [0; 1], the o�er survives until the response stage with probability q � 1:
With probability 1� q, player i instead enters the response stage with si = w. The cost
(c) The response stage. Each player now observes the o�ers made at the proposal stage; if

a player made a mixed o�er, only the realization is observed by the opponent. If only player
i is committed, player j either (i) accepts the o�er, getting a share si1 while leaving a share
1� si1 to player i, or (ii) rejects the o�er. After a rejection, Period 1's negotiation is over, and
players must wait for bargaining to resume next period. If both players are committed, the
outcome depends on whether the commitments are compatible or not. If sA1 + s

B
1 < 1, o�ers

are incompatible, there is no agreement in period 1, and bargaining resumes next period. If
sA1 +s

B
1 � 1; one of the players is randomly picked to make an accept or reject decision. If player

i is picked and accepts, player i gets the share sj1 and player j gets the remainder. If player
i is picked and rejects, bargaining resumes next period. Finally, if no player has a surviving
o�er, i.e., if sA = sB = w, each player has an even chance of being picked to make a short-lived
take-it-or -leave-it o�er. Let such short-lived o�ers be denoted esi1: It does not matter whether
it is costly to make a short-lived o�er, as long as the cost is su�ciently small; for simplicity we
assume that it is costless. Let randomized short-lived o�ers be denoted e�i1, and let eP denote
the set of all probability distributions on [0; 1]. If the o�er is accepted, the game ends and
players get the corresponding payo�s. If the o�er is rejected, and it is not the last period, the
game continues to the next period where both players will be initially uncommitted.7

Observe that the set of opponent o�ers that player i can choose to accept is A(si) = fsj 2
[0; 1] j si+sj � 1g: Formally, player i's response is thus a function zi : A(si)! fY;Ng; where Y
denotes acceptance and N denotes rejection. A mixed response is a function �i : A(si)! [0; 1]
yielding for each o�er sj the probability that player i accepts it.

2.1.2 Period t

Suppose negotiations did not end before period t. Suppose moreover that in the beginning of
period t � 1 player i was committed to the o�er sit�1 2 [0; 1]. Then, unless the commitment
subsequently decayed, player i remains committed to sit�1 at the proposal stage of period t:
That is, sit = s

i
t�1:

As before, the o�er decays with probability 1 � q before the response stage, implying that
o�ers decay exponentially. After having observed surviving o�ers, any uncommitted player
chooses a (possibly mixed) o�er �t. The remainder of period t is analogous with period 1.
In the following, we refer to sit as player i's o�er at the end of period t's commitment stage

and sit+ 2 fsit; wg as player i's (surviving) o�er at the beginning of period t's response stage.
7The latter assumption is of minor importance. In the main case of interest, in�nite horizon bargaining with

brief time intervals, the speci�cation of what happens in the (w;w) case is altogether irrelevant.
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2.2 Histories and strategies

For simplicity, we assume that any randomization is only privately observable, and that players
condition their strategies only on the public history (if at all). The public history of the
game comprises the actual o�ers and responses as well as the observed decays of previous
commitments.
Let H be the set of all possible �nite histories. Players have perfect recall, and subject

to the constraints imposed by current commitments, they can condition their actions on all
previous events. Allowing mixed strategies, a commitment strategy for player i is a function
�i : H ! P . Similarly a short-run o�er strategy is a function e�i : H ! eP , and a response
strategy is a function �i : H ! [0; 1]: Accordingly, a complete strategy for player i can be
written xi = (�i ; e�i ; �i):
2.3 Remarks

The model is essentially an extension of E-M to the multi-period case, but there are slight
di�erences in exposition and technical detail. We now �nd it more natural to speak about
\o�ers" than \demands". The formulation \I o�er s" suggests that the proposer will get
exactly 1 � s if the proposal succeeds, whereas the seemingly similar formulation \I demand
1 � s" could be interpreted as saying that the proposer will get at least 1 � s if the proposal
succeeds. Whereas E-M assumed that any excess surplus would go to the exible player in case
less than all the surplus is demanded by a committed opponent, our new formulation gets to
the same outcome more directly.
Another change is that we here explicitly model the negotiators' opportunity to reject the

opponent's proposal.
Finally, we are now explicit about the delay that occurs between o�ers and responses within

a period. If there were no delay between the two stages, it would be di�cult to justify the
assumption q < 1 in the single period case.

3 Analysis

After a brief recapitulation of the single-period analysis of E-M, we go on to characterize the
unique stationary Nash equilibrium of the in�nite bargaining game.8 We then describe the set
of non-stationary subgame perfect equilibria. In Section 4, we generalize all results with respect
both to player asymmetries and the process of commitment decay.

3.1 One period

Let us start by analyzing a single-period bargaining game, call it G1. Suppose the cost of
making a speci�c proposal is c 2 (0; �(1� q)2=2):

Proposition 1 There is a unique subgame perfect Nash equilibrium of G1. At the proposal
stage, each player i commits to the o�er si = 0: In case both commitments decay and player i is
chosen to be the proposer, player i makes the o�er si = 0. If only player i's commitment decays,

8The case of a long but �nite bargaining game is quite complicated, so we leave it aside.
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or if both commitments decay and player i is chosen to be responder, player i accepts any o�er
sj 2 [0; 1]. Since the commitments are incompatible, there is disagreement with probability q2.

The result corresponds closely to part (i) of Proposition 3 of E-M, but since the model is
slightly di�erent, the Appendix provides a modi�ed proof.
Proposition 1 says that each player o�ers the smallest amount that a exible opponent is

willing to accept. The existence of such a bad equilibrium is unsurprising; the Nash Demand
Game (NDG) too has similarly ine�cient equilibria. The surprise is that no other equilibria
exist. In the NDG there is a continuum of e�cient equilibria, so why are there no e�cient
equilibria here? As indicated above, a key di�erence is the cost of making o�ers. The e�cient
equilibria in the NDG have the property that players make exactly compatible demands. In our
model, compatible o�ers cannot arise in equilibrium because a player is better o� by deviating
to being exible and accepting the opponent's o�er.9

3.2 In�nitely many periods

Let us now consider the in�nite horizon game, G1. From now on, we assume that the commit-
ment cost c is lexicographically small.

3.2.1 Stationary equilibria

We say that a strategy is stationary if any proposal decision �it only depends on known fea-
tures of the opponent's current commitment status sj(t�1)+, and if any acceptance decision only

depends on the opponent's current proposal sjt . That is, �
i
t : S ! P; and �it : S ! [0; 1]:

When we consider stationary equilibria, we can without loss of generality con�ne attention to
pure strategies, �it : S ! S and �it : S ! f0; 1g:10 The construction of a stationary equilibrium
in pure strategies involves �ve steps.
Step (i): In a stationary equilibrium, if player i is prepared to accept an o�er sj = s, then

the player is also prepared to accept all better o�ers sj > s. (A rejection of a better o�er
could only be rational if that rejection would induce another continuation equilibrium than the
rejection of s, and by de�nition di�erent continuation equilibria violate stationarity.) It follows
that, in a stationary equilibrium, response strategies are represented by a constant acceptance
threshold.
Step (ii): A stationary o�er si is an equilibrium o�er only if it equals j's acceptance thresh-

old: If j were to strictly prefer accepting, it would be optimal for j to accept a slightly lower
o�er too, and thus i should make a lower o�er. If j were to strictly prefer rejecting, then it
would be better for i not to make the o�er (given the assumed stationarity of j's strategy).

9If we introduce a cost of making demands in the NDG, together with a rule that unclaimed surplus goes to
the player making no demands, then this modi�ed NDG would also have a unique and ine�cient equilibrium.
10There cannot be an equilibrium in which an indi�erent player, j, mixes between rejecting and accepting

the opponent's o�er: Suppose player j is indi�erent between accepting and rejecting share xj , rejecting with
probability p. Given j's indi�erence, the upper bound of the expected payo� of player i is (1 � p)(1 � xi) +
p�(1� xj

� ) < (1� (xi + ")) for some " > 0 su�ciently small. Thus the player i can deviate and propose xi + ",
which the responder strictly prefers to accept, contradicting the supposition. With players not randomizing
their acceptance decisions, it also follows that there cannot be an equilibrium in which a player is indi�erent
between two o�ers on the equilibrium path, but will make the lowest o�er that is accepted.
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Step (iii): It cannot be an equilibrium in which sA + sB � 1, because in this case a player
would bene�t from not making an o�er and sign on to the other's o�er instead. (Observe that
this claim is only true because stationarity of strategies implies that the continuation in the
event that both players are exible is independent of previous commitment attempts.)
Step (iv): There cannot be a stationary equilibrium in which only one player ever makes

o�ers. Since the exible opponent is better o� by accepting immediately than by rejecting and
facing the same o�er in the future, the only candidate stationary equilibrium with one-sided
o�ers is s = 0. However, if player i o�ers nothing, player j can pro�tably make an own o�er
sj 2 (�; 1), which player i accepts in case i's own commitment has a loophole.
Step (v): Suppose both make o�ers, and that sA + sB < 1, implying that the o�ers are

incompatible. Let V idenote player i's equilibrium payo�. Thus, si = V j: Thus,

V i = �

�
q2V i + q(1� q)(1� V j) + (1� q)qV i + (1� q)21� V

j + V i

2

�
; (1)

where the �rst term in the bracket corresponds to the case that both commitments stick,
the second term corresponds to the case that only player i's commitment sticks, the third term
corresponds to the case that only player j's commitment sticks, and the fourth term corresponds
to the case that neither player's commitment sticks. The unique solution to these two equations
yields the equilibrium payo�s

V AS = V BS =
� (1� q2)
2(1� �q2) : (2)

Finally, we investigate the equilibrium as the period length tends to zero. Let r be the in-
stantaneous discount rate, and let k be the instantaneous rate of decay. That is, � = e�rt and
q = e�kt: Taking the limit of (2) as t tends to 0+ yields, after an application of L'Hôpital's rule,

V AS = V BS =
k

2k + r
: (3)

Proposition 2 The symmetric game G1 has a unique stationary Nash equilibrium. In the
limit as period length goes to zero, both players immediately make the o�er k=(2k+ r), and the
�rst player to have a decaying commitment accepts the opponent's o�er.

Since the sum of o�ers is smaller than 1, there is always some conict. Since o�ers are
accepted by the �rst player who has a loophole, the duration of the conict is driven entirely
by the rate of decay of commitments. To compute the expected conict duration, note that
at any time t, the probability that players have reached agreement is 1 � q2, which in the
continuous time limit equals 1� e�2kt. The rate at which players reach agreement is given by
the derivative, 2ke�2kt: Thus, conict duration is given by the exponential distribution.11 The
expected conict duration is,12

D(k) =

1Z
0

t � 2ke�2ktdt = 1

2k
:

11Interestingly, durations of actual labor conicts are often claimed to be approximately exponentially dis-
tributed; see for example Kiefer (1988).
12Integrate by parts and use L'Hôpital's rule to get the second equality. (Of course, the equality is a well

known property of the exponential distribution.)
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For example, if t and k are measured on a yearly scale, and the instantaneous rate of decay
corresponds to one breakdown per year (k = 1), then the expected duration of conict is half
a year.

3.2.2 Non-stationary subgame perfect equilibria

Let us now consider whether there are e�cient non-stationary subgame perfect equilibria, with
or without commitment on the equilibrium path.
In an e�cient non-stationary equilibrium with commitment, one player { say player B {

initially chooses to be exible, whereas the other player, player A, initially commits. E�ciency
dictates that B immediately agrees to A's o�er. In case there are several such equilibria, we
focus on the equilibrium that maximizes player A's payo�, call this payo� V :
The o�er V = 1 � V ; must satisfy two conditions. First, it must be su�ciently large to

keep player B from deviating and making an own commitment. Call this the lower bound
condition: V � VL: Second, the o�er V must be su�ciently small to induce a rejection by
player B whenever player A deviates and o�ers b < V : Call this the upper bound condition:
V � VU :We have found an e�cient equilibrium if these bounds are consistent, i.e., if VU � VL:
Let us now derive the two bounds.
Step (i): Deriving the lower bound. The lower bound condition is found by computing

the expected payo�, VL; that player B can ensure herself by deviating to the smallest o�er
that player A is willing to accept in case A's commitment decays. In order to minimize B's
incentive to deviate, continuation equilibria induced by A's rejection of an o�er by B should
be as favorable as possible to A, thus raising the o�er that B has to make. Since the best o�er
that B will ever accept in equilibrium is VL; it follows that if A rejects B's (deviating) o�er, A's
best policy is to renew the commitment to VL.
Letting VH denote the expected payo� of player A in case of rejection and renewal, as

evaluated from the beginning of the next period, it follows that the optimal deviation by player
B is to o�er exactly VH . Thus, VL is given by

VL = �

�
q2VL + q(1� q)(1� VH) + (1� q)qVL + (1� q)2

VL + (1� (1� VL))
2

�
(4)

= �[q(1� q)(1� VH) + (1� q(1� q))VL]:

The �rst term on the right hand side of the �rst equation is B's payo� in case both players'
commitments stick. The second term is B's payo� in case only A has a loophole, the third term
is B's payo� in case only B has a loophole, and the fourth term is B's expected payo� in case
both players have loopholes. In the latter case, each player is proposer with probability 1=2,
and the proposer o�ers exactly the opponent's expected continuation payo�.
Analogously, we have

VH = �

�
q2VH + q(1� q)(1� VL) + (1� q)qVH + (1� q)2

1� VL + (1� VL)
2

�
(5)

= �[qVH + (1� q)(1� VL)]:
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For (�; q) inside the unit square, the unique solution to this pair of equations is

bVL =
�q(1� q)
1� �q2 ;bVH =
�(1� q)
1� �q2 :

Comparing bVL to V B reveals that bVL is smaller. Thus, we have indeed found the lower bound.
Step (ii): Deriving the upper bound. Consider a deviation to a more aggressive commitment

than V = 1 � VU by player A. To prevent such a deviation, it must be pro�table for player
B to reject A's proposal, and propose the continuation equilibrium that is best for player B
{ namely, that in which B eventually gets 1 � bVL. Player B's maximum expected payo� to
rejection is

VU = q
2�VU + q(1� q)�(1� bVL) + (1� q)q�VU + (1� q)2�(1� bVL);

yielding the solution bVU = �(1� q)
1� �q2 :

Note that bVU = bVL=q > bVL:Thus, there are generally multiple e�cient equilibria.
However, we are interested in the outcome as the time between periods approaches zero, in

which case q approaches 1. Recalling that � = e�rt and q = e�kt; and taking the limit as t tends
to 0+, we see that if only one player commits, there is a unique pair of equilibrium payo�s.
The exible player obtains a payo�

lim
t!0+

bVL = lim
t!0+

bVU = k

2k + r
:

and the committed player obtains the remainder, (k + r)=(2k + r).
With this result in hand, it immediately follows that all e�cient outcomes that yield a more

even payo� distribution can also be sustained in a subgame perfect equilibrium: Let players
make exactly compatible commitments that yield each player more than k=(2k + r). Because
a player who deviates from this strategy by waiting may be \punished" in case the opponent's
o�er decays and both are exible at the response stage (by selection of the worst continuation
equilibrium from then onwards), it is not worth attempting to save the lexicographically small
commitment cost.

Proposition 3 In the continuous time limit, any e�cient outcome yielding each player a payo�
of at least k=(2k+r) can be sustained in a (non-stationary) subgame perfect equilibrium of G1.

As the rate of decay goes to in�nity, there di�erence between the stationary and the non-
stationary outcomes vanish; there is immediate agreement on the equal split in both cases.
However, for su�ciently slow decay rates, non-stationary strategies admit virtually any out-
come.
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4 Extension: Asymmetries and correlation

To what extent do our previous results depend on our assumptions that players have identical
utility functions and that commitments decay independently? As we shall now show, the
results generalize naturally. (In the expressions below, superscripts are used according to the
conventions i 2 fA;Bg and j 6= i:)
Let the discount factor of player i be denoted �i. We retain the assumption that decay

rates are constant. Let qi be the probability that player i's commitment sticks if only player
i commits. If both players are committed, let pI be the probability that both commitments
survive this period, and let pi be the probability that only player i's commitment survives. If
decay rates are independent of whether the opponent commits, we thus have pi = qi(1 � qj):
However, here we do not assume independence.
For brevity, we only consider the stationary equilibrium of the general game.
Generalizing (1) yields the two equations

V i = �i
�
pIV i + pi(1� V j) + pjV i + (1� pI � pi � pj)V

i + (1� V j)
2

�
; (6)

which have the solution

V i� =
�i
�
1 + pi � pj � pI

�
(1� �j)

2 + 2�j�ipI � (�i + �j) (1 + pI)� (�j � �i)(pi � pj)
: (7)

To obtain the payo�s in the continuous time case, insert �i = e�r
it, pI = e�(k

I+ki+kj)t; pi =
e�(k

I+ki)t(1� ekjt): Taking the limit as t tends to 0+ yields

V i� =
rj
�
2kj + kI

�
2rirj + (ri + rj)kI + 2(rikj + rjki)

: (8)

Inspection reveals that player i's expected payo�, V i; is an increasing function of the opponent's
decay rate, kj; and the opponent's discount rate rj, while it is a decreasing function of the
own rates of decay and discount, ki and ri. In other words, a player bene�ts from increases
in own patience and commitment, and su�ers from increases in an opponent's patience and
commitment.
The impact of correlated decay is slightly more subtle. Di�erentiation of V i with respect to

kI yields an expression which is positive if and only if ri > kj � ki: Thus, a greater probability
of joint decay always improves the payo� for player i if i is relatively weakly committed (ki �
kj), but not necessarily otherwise. When the own commitment is stronger, it may be better
to wait for a larger expected share than to increase the probability of settling early with a
smaller expected share. The result thus suggests that it will be the weaker parties who most
enthusiastically welcome the presence of mediators as well as of external pressure for exibility
in negotiations.
Note �nally that when decay rates go to in�nity we obtain Rubinstein's result that payo�s

are determined by the relative patience ri=(ri + rj).
Of course, these characterization results are only of interest if a stationary equilibrium

continues to exist in the general case. To derive an existence condition, we must consider
players' incentive to deviate from the posited equilibrium strategies. Since we have already
characterized the optimal commitment strategies, the only relevant one-step deviation is for
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one of the players to refrain from making a commitment, instead waiting in order to agree to
the opponent's proposal.13 For player i; making an own commitment is then strictly preferable
to staying exible if and only if

V i > �i
�
qjV i + (1� qj)V

i + (1� V j)
2

�
:

Inserting for V i from (6) and simplifying, the condition becomes�
pi � pj + qj � pI

�
(1� V i � V j) > 0:

Thus the ine�cient stationary commitment equilibrium (with V i�+V
j
� < 1) exists if p

i�pj+qj�
pI > 0 for i = A;B. If we assume that pj = qj(1� qi) (so that decay rates are independent),
then pI = qiqj; and the condition becomes qj � qjqj > 0, which is trivially satis�ed. When
pi = pj, it is only when a player can powerfully reduce the opponent's commitment power by
refraining to commit (and thereby bring qj below pI in the formula above) that the incompatible
commitment equilibrium fails to exist.

5 Related literature

As noted by several game theorists, subgame perfect equilibria of bargaining models with short-
lived commitment tend to display a large sensitivity to minor changes in negotiation protocols.
This is troubling. In the words of Aumann (1989, p 9): \there is a feeling that procedures
are not really all that relevant; that it is the possibilities for coalition forming, promising
and threatening that are decisive, rather than whose turn it is to speak. [...] even when
the procedures are speci�ed, non-cooperative analyses of a cooperative game often lead to
highly non-unique results". Although Aumann originally made the statement in promotion
of cooperative game theory, Perry and Reny (1993, p 51) instead see it as a call for a non-
cooperative study of strategic commitments { promises and threats { in models with permissive
protocols regarding who may speak when. Binmore, Piccione, and Samuelson (1998) instead
suggests that we focus attention on equilibria in simple (stationary) strategies. Following the
advice of both teams, we study strategic commitments and focus most of our attention on
equilibria in stationary strategies.
Let us now elaborate in a little more detail on other related work. As noted in the Intro-

duction, Crawford (1982) is the seminal formal treatment of strategic commitment in bilateral
bargaining.14 Subsequent work includes Perry and Reny (1993), Muthoo (1996), Ellingsen
(1997), G�uth, Ritzberger and van Damme (2004), and Ellingsen and Miettinen (2008). With
the notable exception of Perry and Reny (1993), a shortcoming of this literature is that it
con�nes attention to two-period models. By construction, negotiators have only one shot at
�nding an agreement. Since it is impossible to continue negotiations after an impasse, it is
unclear to what extent the asymmetries and impasses predicted by these models carry over to

13As usual, if there is no pro�table one-step deviation, there is no pro�table many-step deviation.
14Crawford also studies cases in which there is asymmetric information about commitments. We shall neglect

asymmetric information here. For subsequent contributions to this literature, see especially the analysis of
dynamic bargaining games with unobservable commitments by Kambe (1999), Abreu and Gul (2000), and
Compte and Jehiel (2002).
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more realistic settings. For example, will a negotiator really accept to get a small fraction of
the surplus if a rejection today entails the opportunity to reopen negotiation at some point in
the future? Therefore, we have here studied the role of strategic commitment in in�nite horizon
bargaining.
Our contribution is particularly closely related to Perry and Reny (1993), who study a

model in which each o�er has a �xed duration, preventing the proposer from accepting any
countero�er before the own o�er expires. In addition to such deterministic waiting time, Perry
and Reny also allow for positive response time. When the response time is shorter than the
waiting time, players may use their own waiting time for strategic advantage, with the range of
equilibria narrowing towards the equal split as waiting times tend to zero. However, as waiting
times increase, the set of equilibria grows and in the limit any e�cient outcome is sustainable
as an equilibrium.15;16

The two major features of our predictions concern outcome asymmetry and disagreement.
Let us therefore also briey relate our contribution to alternative models of these two phenom-
ena.
Outcome asymmetry is a typical feature of models with alternating o�ers and a �nite hori-

zon. However, in models such as Rubinstein (1982) the asymmetry vanishes in the in�nite
horizon limit, at least if the time between o�ers is short. On the other hand, asymmetry
can be sustained if players can delay their own moves, because there is then a \last-proposer"
advantage (Ma and Manove, 1993). An objection is that the alternating move structure is
exogenous and that the resulting asymmetries are arti�cial. G�uth, Ritzberger and van Damme
(2004) study a two-stage model with simultaneous moves in which the equilibrium outcomes
are strongly asymmetric. They assume that the size of the surplus is initially uncertain, and
that each player can choose to move either before or after the uncertainty resolves. In any
strict equilibrium, one player moves before and the other moves after. Note that the outcome
is e�cient despite the short horizon, whereas in our model strongly asymmetric outcomes are
associated with substantial average delay.17

Disagreement, or delayed agreement, is often ascribed to the existence of asymmetric infor-
mation. In Crawford (1982, Section 5), disagreement is due to uncertain and privately known
costs associated with revoking a commitment.18 Myerson and Satterthwaite (1983) show quite
generally that disagreement is bound to arise with positive probability when negotiators are
uncertain about the opponent's private valuation. Abreu and Gul (2000) consider a bargaining
model in which players may be irrational and where uncertainty about the opponent's ratio-
nality can be a source of ine�ciency. In their model, as in that of Myerson and Satterthwaite,

15A natural question is whether it is possible to re�ne the set of equilibria in the Perry-Reny model, like
Ellingsen and Miettinen (2008) and Asheim and Perea (2010) re�ne the set of equilibria Crawford (1982).
16In recent independent work, Li (2010) considers a dynamic bargaining model that is complementary to ours.

His key assumption is that observable commitment attempts are easy to make, but that it is di�cult to make
commitments stick. When the strategy sets are the same (the simultaneous moves case), this model has a vast
range of equilibria, including the perpetual disagreement outcome. Again it is possible that re�nements could
help to select between these equilibria.
17Strongly asymmetric outcomes can also occur in the model of Perry and Reny (1993), but at least with

their solution concept these outcomes belong to a larger set of equilibria.
18Muthoo (1996) assumes that the cost of revoking depends on the demand and how much the player backs

o�. The marginal costs of backing o� determines the bargaining outcome. (In�nite marginal costs bring the
model back to the case where commitment is fully irrevocable.) With common knowledge of the cost of revoking
the model predicts an e�cient outcome in which the allocation depends on players' relative cost of revoking.
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ine�ciencies disappear as the amount of private information tends to zero; see also Kambe
(1999) and Compte and Jehiel (2002).
In bilateral perfect information bargaining over a single trade, it is known that delay may

occur if the negotiation is subject to a deadline. The logic is easiest to see when players take
turns to make o�ers, but may delay their moves. If the discount factor is large, the �rst
mover may then wait to make the o�er until just before the deadline.19 If the negotiators have
imperfect control over the timing of their o�ers, for example due to imperfect communication
channels, Ma and Manove (1993) show that deadlines may induce not only delays, but also
o�ers that are rejected with positive probability and disagreements. In a sense, this model
introduces asymmetric information about valuations through the random delay; when making
an o�er, the proposer does not know what the responder's valuation will be when the o�er
arrives.
Reference-dependent preferences may also entail disagreement. If negotiators are unwilling

to accept any o�er that they have previously turned down, Fershtman and Seidman (1993) show
that such reference-dependence can delay agreement if there is a deadline. Li (2007) strengthens
the result. If players are unwilling to accept o�ers that do not improve on rejected o�ers in net
present value terms, then delay is unavoidable even without a deadline. One way to view this
result is that players have a particular technology for making commitments, namely rejecting
the opponent's proposal.
Despite these results, it is fair to say that the mainstream view among economic theorists has

been that disagreement among rational individuals who can engage in unrestricted bargaining
is typically due to asymmetric information.20 Or as Kennan and Wilson (1993, p.101) put it:
\The hypothesis that private information is an underlying source of conict is currently the
only one based on the usual test of rationality, namely relentless maximizing behavior." In other
words, to the extent that commitments matter at all, disagreement is caused by exogenous and
unobservable commitments. We think that our paper lends credence to Schelling's view that
disagreement can also be caused by rationally chosen observable commitments.

6 Conclusion

Like Perry and Reny (1993), we seek to integrate two major strands of bargaining literature.
The �rst strand, associated with Schelling (1956, 1960) and Crawford (1982) focuses on strategic
commitments. That is, it emphasizes the role of inexibility. The second strand, associated
with St�ahl (1972) and Rubinstein (1982) focuses on the opportunity for continued negotiation
in the absence og agreement. That is, it emphasizes the role of exibility.
By admitting strategic commitment as well as opportunities for continued negotiation, our

model illuminates how equilibrium outcomes vary with the available commitment technology.
When commitments decay swiftly, the model's predictions closely resemble the e�cient and
relatively symmetric outcome derived by Rubinstein. When commitments decay slowly, pre-
dictions instead resemble the ine�cient and asymmetric outcomes alluded to by Schelling.

19Ma and Manove (1993) credit Martin Hellwig with making this point.
20Observe the quali�er that bargaining is feasible. Of course, when players cannot negotiate side-transfers,

dynamic games of chicken have war of attrition equilibria.
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7 Appendix A

7.1 Proof of Proposition 1.

It is trivial that no player i has an incentive to deviate from the proposed equilibrium: Rejection
of sj = 0 yields the payo� 0. Since this is identical to the payo� under acceptance, there is
nothing to gain by rejecting at the response stage. Consider the o�er stage. Given sj = 0;
any own o�er si 2 [0; 1] yields an expected payo� �[(1� si)(1� q)q + (1=2)(1� q)2]� c; where
the �rst term is the payo� in case the own commitment sticks and the opponent's commitment
decays, and the second term is the expected payo� in case both commitments decay (in which
case the random proposer will make an o�er of 0). The expression is maximized by the o�er
si = 0: The remaining strategy, w; yields an expected payo� �(1=2)[(1� q)q + (1� q)2]; which
is smaller than �[(1� q)q + (1=2)(1� q)2]� c under our condition on c.
Let us next prove that G1 has no other subgame perfect equilibrium. We do this by showing

that if player j plays optimally at the response stage, all o�ers si 6= 0 are iteratively strictly
dominated. Observe �rst that player i strictly prefers w to any o�er si 2 [1=2; 1]: The latter
commitment strategy gives player i a payo� �(1 � si) � c < 1=2 when player j chooses w: It
gives at most �sj � c < sj when player j chooses a compatible commitment sj 2 [1 � si; 1].
Finally it gives �c < �sj when player j chooses an incompatible commitment.
After these strategies are eliminated, for any o�er si 2 (0; 1=2); there exists some � > 0 such

that si is strictly dominated by the mixed strategy �i = (pi(�) = 1� si; p1(w) = si): If player j
plays w, player i's payo� to the pure strategy si is �[q(1�si)+(1�q)(1�si)=2]�c; whereas under
the mixed strategy �i he gets �[q(1�si)(1��)+((1�q)(1�si)+si)=2)]�(1�si)c; which is greater
for su�ciently small �. If player j plays sj 2 [0; 1=2), then the payo� to a pure commitment
strategy si 2 (0; 1=2) is �[q(1� q)(1�si)+(1� q)qsj+(1� q)2=2]� c; whereas the payo� to the
mixed strategy is �[q(1� q)(1� si)(1� �)+ (1� q+ qsi)qsj +(1� q+ qsi)(1� q)=2]� (1� si)c;
which is again greater for su�ciently small �:
The only remaining proposal strategies are 0 and w. Could there be a subgame perfect

equilibrium in which player j plays w with probability pj(w) > 0 and o�ers 0 otherwise? No:
In this case, player i would optimally o�er 0 (or some small �), and the unique best response
to si = 0 is sj = 0. That is, pj(w) = 0; a contradiction:
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