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Abstract

The paper illustrates how one may assess our comprehensive un-
certainty about the various relations in the entire chain from human
activity to climate change. Using a modified version of the RICE
model of the global economy and climate, we perform Monte Carlo
simulations, where full sets of parameters in the model’s most impor-
tant equations are drawn randomly from pre-specified distributions,
and present results in the forms of fan charts and histograms. Our
results suggest that under a Business-As-Usual scenario, the median
increase of global mean temperature in 2105 relative to 1900 will be
around 4.5 ◦C. The 99 percent confidence interval ranges from 3.0 ◦C
to 6.9 ◦C. Uncertainty about socio-economic drivers of climate change
lie behind a non-trivial part of this uncertainty about global warming.
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1 Introduction

Uncertainty about future climate change is an unavoidable fact. It is com-
monplace to gauge this uncertainty by simulations with different climate
models. This is the approach taken, e.g., by the International Panel on
Climate Change (IPCC, 2001, 2007) to highlight our imprecise knowledge
about the relation between specific atmospheric concentrations of green-
house gases (GHGs) and global temperature. These model simulations typ-
ically rely on a small set of common and deterministic emission scenarios,
so-called SRES-storylines (Nakićenović et al, 2000), which are not related to
the processes underlying economic growth and energy use in an explicit and
reproducible way.1 The approach is thus a partial one, focusing on specific
biogeophysical relations in the complicated chain from human activity to
climate change (and back). However, the socioeconomic relations behind
regional and global economic growth, energy use and emissions are equally
fraught with uncertainty as the biogeophysical relations.

A comprehensive assessment of the uncertainties about the important
links in the chain from economic conditions to climate change is obviously a
monumental task, and this paper is merely a first pass at the problem. Our
approach is to simultaneously introduce uncertainty about a number of pa-
rameters that shape exogenous variables and endogenous relationships in the
same simple, but comprehensive, model of the global climate and economy.
We then perform Monte Carlo simulations, i.e., we make a large number of
random draws of the full set of parameters and simulate the entire model
for each such draw to derive probability distributions at different points in
time for the variables of most interest. Climate sensitivity (the effect on
global mean temperature of a doubled GHG concentration) remains the sin-
gle most important determinant of uncertainty about global warming, but
well-identifiable socioeconomic developments – such as population growth,
and improvements of overall technology and energy efficiency – drive a non-
trivial part of that uncertainty. Closing down uncertainty about climate
sensitivity altogether, there remains an uncertainty range of temperature a
hundred years from now of about 3 ◦C.

Conceptually, our analysis is similar to that of Wigley and Raper (2001)
who derive a probability distribution for future global mean temperature in a
simple climate model, by introducing uncertainty through assigned probabil-
ity density functions (p.d.f.) for the main drivers of temperature. However,
their study stresses uncertainties in the biogeophysical and biogeochemical
systems, while emissions are given by a (uniform) p.d.f. over alternative
SRES scenarios, rather than alternative socioeconomic developments. A
similar analysis is performed in the PAGE model (Hope, 2006) used in the

1For a broad, and critical, discussion of the SRES methodology see McKibbin, Pearce
and Stegman (2004) or Schenk and Lensink (2007). Webster et al. (2002) and Mastrandrea
and Schneider (2004) discuss the use of scenarios vs. a probabilistic approach.
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Stern Review (Stern, 2006). Analogously, Murphy et al. (2004) derive a
probability distribution for climate sensitivity from the Hadley Centre cli-
mate model, by drawing alternative values of the parameters that govern
the model’s important relations. Mastrandrea and Schneider (2004) use the
DICE model, an aggregated version of the RICE model used in this pa-
per, to produce probability distributions for temperature increase. Aspects
of their methodology is close to ours, but the analysis concerns optimal
climate policy and focuses on uncertainty about climate sensitivity rather
than socio-economic drivers of climate change. Nordhaus and Popp (1997)
do consider uncertainty about socioeconomic drivers of climate change, but
their purpose is again different (to gauge the value of different types of sci-
entific information). Finally, Webster et al. (2002) derive GHG emission
scenarios in a probabilistic manner, by introducing uncertainty over impor-
tant variables in an economic model.

Our analysis relies on a slightly modified version of RICE, an integrated
model of climate and growth, developed and described by Nordhaus and
Boyer (2000). Section 2 gives a short description of that model and our
modifications of it. Section 3 explains how we introduce uncertainty about
model parameters. Section 4 presents results for variables of interest in two
forms: fan charts, which illustrate how uncertainty develops over time, and
histograms, which illustrate uncertainty at a point in time 100 years from
now. Section 5 concludes.

2 The modified RICE model

We need a model that incorporates the global economy as well as the climate
system and allows us to parametrically vary assumptions about important
relations. For these reasons, we use an adapted version of the RICE–99
model, as formulated in Appendix D of Nordhaus and Boyer (2000).2 Next,
we provide an overview of this model and our modifications. Equation num-
bers, variables, and parameters in brackets refer to a formal description of
the model in the Appendix.

General description of RICE–99. The world is divided into eight re-
gions (indexed by J) on the basis of geography as well as levels of economic
development: United States (USA), OECD Europe (EUR), Other High In-
come countries (OHI), Russia and Eastern Europe (REE), Middle Income
(MI), Lower Middle Income (LMI), China (CHI) and Lower Income (LI).3

Neither trade nor investments flow between regions. Time (indexed by t) is
measured in 10-year periods, starting in 1995. In each period, each region

2This monograph gives a general description of the RICE model (chapter 2), and its
appendix (pp. 179-187) includes all equations and parameter values of the baseline model.

3See Nordhaus and Boyer (2000) pp. 28–38 for definitions of regions.
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produces a homogeneous good with a neoclassical production technology
based on capital and labor, but augmented by “energy services” reflecting
the carbon content of energy inputs (see equation A.4). Regional damages
from climate change are modelled as an output loss proportional to the value
of GDP.

Economic growth in each region is driven by growth of population (A.5)
and total factor productivity (TFP) (A.6). Higher economic growth im-
plies more rapidly increasing regional demand for energy. How much this
translates into use of exhaustible carbon resources depends on carbon-saving
technological change (A.7), as well as regional energy prices. These prices
have a regional component, reflecting regional taxes and distribution costs,
and a global component, reflecting gradual exhaustion of the finite global
supplies of oil, coal and natural gas (A.10–A.12). Naturally, higher prices
curtail energy use.

Energy use in each region and time period creates industrial CO2 emis-
sions that, together with emissions from changes in land use and changes in
the properties of the biosphere, end up in the global atmosphere (A.13). The
model incorporates a simple carbon cycle, i.e., carbon flows between atmo-
sphere, biosphere (cum shallow oceans), and deep oceans (A.14). Any CO2

not absorbed in the ocean sinks adds to atmospheric concentration. Via
increased radiation (A.15) more CO2 raises global-mean surface tempera-
ture (A.16) in an amount depending on climate sensitivity.4 Changes in
climate create damages reflecting e.g., lower agricultural productivity, more
frequent storms, or resettlements due to coastal flooding (A.17 and A.18).
Damages, as a proportion of gross GDP, are region-specific quadratic func-
tions of global temperatures in the period relative to 1900. Larger damages
imply lower welfare. They also create a negative feedback effect, whereby
lower output growth leads to less energy use ultimately reducing tempera-
ture.

Along an equilibrium time path of the model, consumers and producers
in each region make decentralized utility and profit-maximizing decisions,
adjusting savings and investments to the incomes, interest rates, technolo-
gies, and market prices they observe and rationally expect to prevail in the
future. In particular, producers adjust their use of carbon-based energy
to available technologies and regional energy prices. Regional and global
welfare functions (A.1–A.3) are maximized in equilibrium.

RICE can be programmed and solved in two ways. The usual way is to
maximize welfare, taking regional damages explicitly into account, so as to
derive optimal uses of carbon-based energy, given their adverse effects via
global temperature, and to calculate optimal carbon prices. Since our pur-

4The climate-sensitivity parameter (κ) captures, in a very simple way, the compli-
cated interactions in the earth system that produces a warmer climate as the atmospheric
concentration of GHGs goes up.
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pose is different, we do not take damages into account in the maximization.
This way, we illustrate future paths in the absence of additional mitigation
measures: Business As Usual (BAU) in the jargon of the climate-change
literature.

Modifications We make a few adjustments to the RICE model, as follows.
Data for most variables entering the model are now available for the

period 1996–2005 so we update initial values by one (ten-year) period and
start off in 2005 rather than 1995. Atmospheric temperature for 2005 (T (0)
in A.16) comes from the UK Met Office, and atmospheric concentration
of CO2, (M(0) in A.14) is obtained from the Carbon Dioxide Information
Analysis Center5 (CDIAC) and converted into a stock. The concentration of
CO2 in the upper oceans (MU (0) in A.14) is derived from the latter figure.
Initial population figures for 2005 (LJ(0) and gL

J (0) in A.5) come from the
UN World Population Prospects: The 2004 Revision Population Database.
GDP figures for 2005 are collected from the World Bank’s World Develop-
ment Indicators (WDI) database. These are used to calibrate initial levels
of TFP, capital stocks, and energy services (AJ(0), KJ(0), and ESJ(0) in
A.6–A.9), assuming that investments and energy service inputs were chosen
optimally in all regions between 1995 and 2005. Finally, we estimate current
values of the TFP and energy efficiency growth rate parameters (equations
A.6 and A.7), using data from the Penn World Tables (Heston, Summers
and Aten, 2002) and the World Bank’s WDI database. The precise numbers
assigned to parameters and initial conditions are given in Tables 1 and 3 in
the Appendix.

RICE assumes that the rate (all) consumers use to discount the utility
of future consumption declines over time; we reset it to a constant. Spe-
cific assumptions about the discount rate are very important when using a
climate model for the normative (prescriptive) purpose of finding optimal
paths of mitigation (because abatement costs close in time are traded off
against benefits of lower damages much further away in time).6 For our
specific positive (descriptive) purpose to illustrate uncertainty about future
outcomes under BAU assumptions, the discount rate is much less important.

Finally, we try to incorporate scientific findings that the biosphere’s abil-
ity to absorb CO2 might change with climate.7 At some level of CO2 con-
centration in the atmosphere, the biosphere will likely switch from being a
CO2 sink to a CO2 source. (Oceans too may absorb less CO2 as climate

5The latest available figures for CO2 concentration refer to 2004; linear extrapolation
was used to get an estimate for the 2005 value.

6The specific assumptions about the discount rate have indeed been one of the major
points in the public discussion about the conclusions in the Stern Review (Stern, 2006);
see, e.g., Nordhaus (2006), Dasgupta (2007) and Weitzman (2007).

7This alteration of the model is based on personal communications with Will Steffen
and on Friedlingstein et al. (2006).
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changes, but these effects are smaller and less certain.) It is estimated that
this terrestrial biosphere effect may contribute an additional 40–400 Giga-
tons of carbon (GtC) into the atmosphere by 2105, most models predicting
a number between 100 and 200 GtC.

Ideally, the terrestrial biosphere effect should be added as an additional
module to the climate part of the model. We have chosen a simpler so-
lution: we just add an additional flow of emissions into the atmosphere in
every period, calibrated to yield an average additional concentration in 2105
corresponding to 150 GtC. However, this value is highly uncertain, so we
impose a probability distribution on it, as we do for many other model pa-
rameters.8 The specification of such parameter uncertainties is the topic of
the next section.

3 Introducing Uncertainty

We express the uncertainty about individual parameters and exogenous vari-
ables in the model as statistical distributions on the forms summarized in
Tables 1 and 3. Most distributions are assumed to be Gaussian; the un-
certainty about the terrestrial biosphere effect is deemed to be asymmetric
and therefore a beta-distributed random variable is used to generate this
process. The probability distribution for the climate-sensitivity parameter
is a special case derived from a truncated normal distribution, as discussed
below.

Means for most parameters are close to the specific parameter values
used in RICE, except that we raise the means of initial TFP growth rates
to correspond more closely to the growth experience in the last ten years.

Using the p.d.f. of each one of the assumed distributions, we conduct a
Monte Carlo simulation with 10001 independent random draws of the full
set of parameters. For each of these draws, we carry out a full dynamic sim-
ulation for 400 years: an equilibrium time path of the model, as described
above. These 10001 equilibrium paths generate different levels of GDP, emis-
sions, temperatures, etc., which we use to describe the uncertainty about
these outcomes.

Of course, each assumption regarding the distribution of an underlying
parameter is a subjective assessment, made by ourselves or some collective
of scientists. Most of the many relations that contribute to the climate prob-
lem are highly uncertain, however, and our objective is to illustrate a way

8Specifically, these additional emissions are modelled with the following process:

TBE (t) = (τ1 + τ2γ)(t + τ3t
2),

where scalars τ1, τ2 and τ3 and random variable γ have been calibrated so that the
terrestrial biosphere effect, on everage, adds 150 GtC in the atmosphere by 2105, with
values falling between 40 and 400 GtC.
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to take this comprehensive uncertainty into account. We believe that the
exercise meaningfully gauges the magnitude of uncertainty at different time
horizons. Moreover, it helps illustrate the effects of favorable or unfavorable
— from the viewpoint of climate change — circumstances, and which cir-
cumstances matter the most. Next, we provide details on the various sources
of uncertainty.

Population Population growth is a major source of uncertainty about fu-
ture output growth. In RICE, regional population trajectories are pinned
down by two parameters: initial population growth rates, and the decline
rates for population growth (gL

J (0), and δL
J in A.5). To calibrate these pa-

rameters, we rely on the UN World Population Prospects: The 2004 Revision
Population Database, which contains country-level population forecasts in
five-year intervals up until 2050 in the form of three different scenarios: low,
median and high. We aggregate these country scenarios up to RICE regions,
and estimate growth parameters gL

J (0) and δL
J based on the median scenar-

ios. Uncertainty about these parameters is estimated using the variability
between scenarios, assuming that high and low represent ±2 standard devi-
ations around the median.9

Figure 1 shows the median population trajectories for all regions and
confidence bands around them in the form of fan charts.10

TFP Along with population growth, productivity growth is the most im-
portant determinant of future output levels. Our estimated TFP growth
rates, which are higher than in RICE–99, are calculated in the following
manner. Country-level investment data from the Penn World Tables and
the perpetual inventory method are used to construct a series for capital
stock. These figures, along with data on GDP11 and population, allow us to
calculate past TFP levels using a standard Cobb-Douglas production func-
tion. In these calculations, we use data for countries where data is available
for the whole period 1960–2000, except for REE where no data is available
before 1992; here we use 1992–2000.

We then aggregate these data up to RICE regions and five year-periods,
and use these to form statistical estimates of TFP growth processes on the
functional form used in RICE.12 Specifically, we estimate initial growth

9For most regions, the UN forecasts and their implied uncertainty can be approximated
very closely with model parameters. However, for EUR, OHI and CHI, population levels
are projected to first rise and then fall. Mean population forecasts and the uncertainty
around them are therefore entered manually up until 2045 for these regions.

10Throughout the paper, we choose to focus on the time period between now and 150
years ahead in the charts presented; however, the model simulations run through 40 time
periods, i.e., 400 years.

11Throughout the paper, PPP-adjusted GDP figures have been used.
12We perform the statistical analysis on data for five-year periods, for several reasons.

First, we are interested in long-term trends in TFP rather than year-to-year changes.
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Figure 1: Forecasts for regional population levels, LJ(t)

rates of TFP (gA
J (0)) along with two location parameters, using nonlinear

least squares. We then draw gA
J (0) from normal distributions with mean

and variance obtained from our statistical estimates. We also impose un-
certainty about the steady-state levels for TFP, drawing them from normal
distributions, whose means are the steady-state values used in RICE-99, and
whose variance is the one we estimate from the data. In each draw under-
lying our simulations, we use the initial growth rate and the steady state
value to back out the implied decline rate for TFP (δA

J ). 13

One qualification to the above is that no estimates for gA
J (0) were ob-

tained for REE: the functional form in RICE doesn’t fit the data for this re-
gion, since TFP fell throughout most of the 1990s and only recently started

Second, using yearly data would give higher precision in the estimates — but this would
be false precision. We only have data for roughly half the countries, and we only observe
one history, which makes the TFP process look more smooth and predictable: percieved
precision is likely false. Using five-year data helps take this greater uncertainty into
account. (For REE, data availability necessitates the use of two-year data.)

13The decline rates, δA

J , were arrived at as follows. Initial growth rates and the associ-
ated decline rates are (empirically) highly correlated, and, more importantly, they jointly
determine the steady-state level of TFP. In particular, the expression

exp
(

gA

J (0)/δA

J

)

defines the steady-state TFP level. Given values for gA

J (0) and the steady-state level, we
can thus back out the implied decline rate δA

J .
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to rise. Instead, values close to those for China were used for REE.
The regional TFP growth processes are modelled as independent of each

other — i.e., in a particular model simulation, say, the US, may have rapid
TFP growth while Europe’s is slow. If technology spreads easily across
countries and regions, one might think that technology shocks should be
positively correlated. To address this concern, we have also run a version
of the model where the TFP and energy efficiency processes have a (domi-
nating) global component, alongside (less important) regional components.
This specification made little difference to the results, but increased sub-
stantially the running time of the program. For this reason, we only report
results for the simpler specification with independent technological growth
processes across regions.

Figure 2 illustrates our TFP forecasts in the form of fan charts (note the
different scales on the y-axes).

0
5

10

0
5

10

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10

0
20

40

0
5

10
15

2005 2055 2105 2155 2005 2055 2105 2155 2005 2055 2105 2155

A.  US B.  Western Europe

C.  Other high income D.  Russia & Eastern Europe E.  Middle income

F.  Lower middle income G.  China H.  Low income

99% confidence band

90% confidence band

median

T
F

P
 (

in
de

x,
 2

00
5 

=
 1

)

Year

Figure 2: Forecasts for regional TFP levels, AJ(t)

Energy efficiency Energy efficiency in production is modelled with pa-
rameter ZJ(t), which is set at 1 in all regions in the initial period. Z then
declines following a process similar to population and TFP growth, with an
initial (negative) growth rate, gZ

J (0), and a decline parameter, δZ
J . A lower

value of Z means higher energy efficiency: less CO2 is emitted for the same
amount of carbon energy used. Since energy efficiency is modelled with the
same type of process as TFP, we estimate its parameters in an analogous
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manner. Exploiting data on the ratio of CO2 emissions to GDP, carbon in-
tensity, from the World Bank World Development Indicators database, we
estimate means and standard deviations of initial-period growth rates, as
well as uncertainty about steady-state levels, using nonlinear least squares.
Data exists from 1980 until 2004, and we use three-year data in our estima-
tions, starting in 1982 (for REE data again exists only from 1992, here we
use two-year data starting in 1992).

This works well for all regions except for MI, LMI and LI, where carbon
intensity has been rising up until recently. For these regions, a logistic-
type functional form is fitted in order to estimate the initial growth rates,
gZ
J (0), and uncertainties about the steady-state levels are assigned roughly

the same values as for China. The means of the probability distributions
for steady states for all regions are again the same as the ones implied in
RICE–99, and we back out the implied δZ

J in the same way as for TFP.
Figure 3 shows the forecasts for the energy efficiency parameter ZJ(t).

As the figure shows, energy efficiency improvements are expected to be asym-
metric in some regions. This is due to truncation of some of the steady-state
uncertainty distributions — carbon intensity can never fall below 0.
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Figure 3: Forecasts for regional energy efficiency, ZJ(t)

Land use Emissions of CO2 due to changes in land use arise mainly from
deforestation: carbon of burnt biomass is released as carbon dioxide. In
RICE, this process is modeled in similar fashion to other growth processes.
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Each region has an initial rate of emissions due to land use changes, and
these rates then decline slowly at a rate set at 10% per decade.

We update initial emission rates and introduce uncertainty over them,
based on figures in Chapter 7 of the WG1 contribution to the fourth IPCC
Assessment Report (IPCC 2007). In particular, we use the disaggregated
(Tropical Americas, Africa and Asia) AR4 estimates for the 1990s given in
Table 7.2, interpreting the uncertainty ranges as ±3 standard deviations.14

The figures for the Lower Middle Income and especially Lower Income re-
gions are revised upwards; for the other regions, changes are minor. Exact
figures are reported in Table 3 in the Appendix.

Climate sensitivity The climate sensitivity parameter, κ, measures the
rise in temperature following a doubling of atmospheric CO2 concentrations.
Many estimates of this parameter lie in the region around 3.0, but uncer-
tainty about the true value is substantial and many climate models generate
an asymmetric distribution. As explained by Roe and Baker (2007), a dis-
tribution with a pronounced right tail is a natural outcome of uncertainty
about the various feedback processes whereby higher temperatures raise the
level of radiative forcing. Examples of such feedbacks are changes in the for-
mation of water vapor and clouds, or in the earth’s albedo (ability to reflect
solar radiation). In the RICE model framework, it is natural to portray the
uncertainty about such feedbacks as uncertainty about climate sensitivity.
We generate the latter following the same reduced-form approach as Roe
and Baker. In their notation, we set (the average value and standard de-
viation of the feedback parameter) f = 0.65 and σ = 0.10, and in order to
avoid extremely high (even infinite) values for κ, we truncate the distribu-
tion by cutting off 1% in the upper tail.15 Passing this truncated normal
through the highly nonlinear transformation illustrated in Roe and Bakers’s
Figure 1, we obtain a p.d.f. similar in shape to the weighted p.d.f. reported
in Figure 3 of Murphy et al. (2004).16 The mean and median of this theo-
retical distribution are about 3.71 and 3.41 respectively. Figure 4 plots the
frequency of draws, the realized p.d.f. for κ, used in our simulations.

Other uncertainties As mentioned above, we use a constant rate of time
preference (ρ). The discount rate is assumed to have a normal distribution

14We take Lower Income countries to correspond to Tropical Africa and most of Tropical
Asia, attributing the remaining fractions of the figure for Asia to Malaysia, which counts
as Middle Income, and to China. The figure for Tropical Americas is divided equally
between Middle Income (Brazil) and Lower Middle Income (most other Latin American
countries).

15This means that we are excluding the possibility of “runaway climate change”— where
feedback effects reinforce each other, resulting in a chaotic and entirely unpredictable
climate. Such futures are not readily incorporated into the RICE framework.

16For Roe and Baker’s ∆T0, which they refer to as climate sensitivity in the absence of
feedbacks, we use the value 1.2 ◦C.
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with standard deviation 0.33 around an average value of 3% (the initial rate
in RICE). This way, random draws almost always fall within the range [2, 4]
with most outcomes within [2.5, 3.5].

Uncertainties about the regional coefficient on carbon-energy in the pro-
duction function (βJ), the damage function parameters (θ1,J and θ2,J), and
the global carbon supply parameters (ξ2, ξ3 and CMAX) were found to play
a very minor role the exercise carried out here. To keep matters simple,
these parameters were assigned normal distributions with standard devia-
tions 20% of their mean values.

4 Results

This section reports on selected results from our Monte Carlo simulations.
To keep the presentation short, we focus here on the global variables of most
interest.

World GDP Figure 5 shows future values of (the logarithm of) world
GDP, measured in trillion USD (in 1990 prices).

Panel A illustrates the uncertainty with a fan chart, showing the median
realization plus 90 and 99% confidence bands over the coming 150 years.
Panel B shows a histogram of estimated world GDP 100 years ahead, which
corresponds to an (unsmoothed) p.d.f. for that variable. Most of the un-
certainty about future GDP levels stems from variability in TFP growth.17

But variability in population growth and other exogenous parameters mat-

17A Regression of world GDP in 2105 on the realizations of all 16 TFP growth param-
eters within the same Monte Carlo draw gives an adjusted R-square of 0.567

12



3
4

5
6

7

W
or

ld
 G

D
P

 (
tr

ill
io

n 
U

S
D

 (
19

90
),

 lo
g 

sc
al

e)

2005 2055 2105 2155
Year

99% confidence band

90% confidence band

median

A.  Fan chart: 2005 to 2155

0
1

2
3

D
en

si
ty

5.5 6 6.5 7
World GDP (trillion USD (1990), log scale)

B.  Distribution in 2105

Figure 5: World GDP projections

ters too, as does the fact that we report word GDP net of damages caused
by rising global temperatures (as defined in A.17 and A.18).

Inspection of the simulation data reveals that the realizations in the
right tail of the world GDP distribution are due to some combination of
high growth rates in the US, China or low-income countries; the US because
of its high initial GDP level, and the latter two because of their population
size.

Industrial emissions Since production requires carbon energy as an in-
put, higher GDP generally means higher industrial CO2 emissions. However,
substantial gains in energy efficiency allow incomes to grow without corre-
sponding growth in emissions. Figure 6 illustrates future carbon emissions,
measured in GtC. As the fan chart shows, uncertainty increases steadily over
time, reflecting the increasing uncertainty about economic growth and en-
ergy efficiency. Annual emissions in the median BAU realization reach their
maximum some fifty years ahead, at about three times their current level
just below 10 GtC per year. Emissions then start to decline slowly, because
carbon-saving technological change and the effect of higher carbon prices
eventually outweigh the increased demand from higher world production.
The upper part of the fan chart shows that in 500 of our 10001 simulations
(i.e., 5%) industrial emissions peak at more than five times their current
level.
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The 2105 histogram illustrates an upward skew in the emissions distri-
bution. The data shows that the extreme realizations in the right tail come
about when either China or the group of low-income countries experience
large increases in GDP growth but little improvement in energy efficiency.
This is intuitive, given the population size of these regions, and their rela-
tively poor initial energy efficiency.

Atmospheric CO2 concentration Because emissions, even in the low-
growth BAU paths, are far larger than the earth’s natural absorption capac-
ity, they keep adding to the atmospheric concentration of CO2 measured in
parts per million (ppm). This is illustrated in Figure 7.

In the model, industrial CO2 emissions are closely linked to atmospheric
concentration of carbon dioxide. The two are not perfectly correlated, how-
ever, given the uncertain terrestrial biosphere effect and uncertain regional
changes in land use. Nevertheless, extreme values for CO2 concentrations
reflect the same causes as high industrial emissions. Since the carbon cycle
is a slow process, the atmospheric concentrations adjust to emissions only
with a long time lag, so we do not see a slowdown in CO2 concentration
growth following the peak in emissions within the time frame of the fan
chart.

14



50
0

10
00

15
00

20
00

A
tm

os
ph

er
ic

 G
H

G
 c

on
ce

nt
ra

tio
n 

(p
pm

)

2005 2055 2105 2155
Year

99% confidence band

90% confidence band

median

A.  Fan chart: 2005 to 2155

0
.0

01
.0

02
.0

03
.0

04

D
en

si
ty

600 800 1000 1200 1400 1600
Atmospheric GHG concentration (ppm)

B.  Distribution in 2105

Figure 7: Projections for atmospheric GHG concentration

Global warming Figure 8 shows future increases in global mean surface
temperatures, relative to the year 1900, measured in Centigrades (◦C). A
century from now, the median realization of temperature is around 3.8 ◦C
above today’s temperature, which, in turn, is 0.71 ◦C above the 1900 level.
Such median temperature hike is broadly consistent with the median 2.5 fold
increase of CO2 concentration in Figure 7, and a median climate sensitivity
of approximately 3.4.18

What causes variability of global temperature in our simulations? The
climate sensitivity parameter, κ, is the most important source of uncer-
tainty.19 This reflects the fact that climate sensitivity is the last link (in
the RICE model) in the chain from human activity to global warming. In
2105, the 99% confidence interval for temperature is almost 4 ◦C wide. This
range of warming for the next century is of the same magnitude as the range
reported elsewhere, but derived with very different methods (see e.g., IPCC

18Climate sensitivity refers to the long-run effect on temperature of a doubled CO2

concentration, which is reached only with considerable time lag. This makes the actual rise
in temperature between 2005 and 2105 fall short of 4.2 ◦C even though the concentration
of CO2 would increase by a factor of 2.5 in that time. On the other hand, the model’s
temperature hike from 2005 to 2105 also incorporates lagged reactions to higher CO2

concentrations before 2005. This adds an additional boost to 2105 temperature, above
the value implied by the addition to CO2 concentration between 2005 and 2105.

19A regression of temperature increase in 2105 on values of draws on κ gives an adjusted
R-square of 0.76.
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Figure 8: Projections for temperature increase

2001, 2007).
Notice that already the 5th percentile in Figure 8 lies clearly above 2 ◦C

of warming in fifty years’ time. Indeed, the histogram in panel B shows that
all of the 10001 temperature realizations a century from now lie above 2 ◦C,
which is considered by the European Union as the upper limit for such a
manageable climate change as referred to in Article 2 of the UNFCCC. Even
the most optimistic realizations in the leftmost tail for temperature should
thus be a matter of grave concern.

Anyone who pays close attention to the optimistic tail, should seriously
consider also the pessimistic tail of the distribution for climate change. As
the histogram in Figure 8 shows, the highest temperature realizations by
2105 involve a rise above 7 ◦C. As is well-known the effects of such tem-
perature changes are very hard to predict, but may include eventual sea
levels high enough to threaten major cities as London, Shanghai, or New
York, and substantial risks of large-scale shifts in the Earth system, such as
collapses of the Gulf Stream or the West Antarctic ice sheet.

What realizations of the future lie behind the most severe instances of
global warming? As already mentioned, climate sensitivity above its mean
is a very important one. But other reasons are more squarely rooted in
the human system. One is lower than expected improvements of energy
efficiency in regions with high production and dirty technologies: chiefly the
US and China. Another root is higher than expected economic growth in
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very populous regions, in particular the current low-income countries that
host about half of the world population. To put it bluntly, futures in which
today’s unfortunate manage to permanently break out of poverty (without
large improvements in energy-saving technologies) have substantially higher
global warming. Ironically, resolution of one of today’s most pressing global
problems aggravates another one.

Figure 9 illustrates the interplay between different sources of climate
change.20 Panel D plots the temperature increase a hundred years from
now against the randomly drawn value of the climate-sensitivity parameter
(κ). A log curve approximates the relationship well, but the variability
around this curve stems from variation in other parameters. We use the
four highlighted observations, labeled 1 through 4 in all plots, to discuss how
(sources of) GDP growth and energy efficiency matter for climate change.
(Note that the temperature axis has the same scale in all four plots.)
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Figure 9: Illustration of sources of variability.

Observation 1 is the most extreme outlier on the upside, and has the
second-highest temperature increase, around 8.9 ◦C. Climate sensitivity is
high, but temperature is still well above the fitted curve in the bottom
right plot. This result is driven mainly by relatively low improvements in
energy efficiency in several of the world’s poorer regions (MI, LMI, CHI)
— China’s carbon intensity, shown in panel C, is at the 87th percentile

20To make it easier to see the density of the scatterplots, Figure 9 displays a random
draw of 2001 (out of 10001) observations.
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among the 10001 simulations (recall that less pollution corresponds to lower
values of carbon intensity). Observation 2 has a temperature more than
6.5 ◦C above pre-industrial. This is due to how China develops: relatively
high Chinese TFP growth interacts with one of the lowest improvements in
Chinese energy efficiency (98th percentile). Low-income countries’ TFP is
also well above average. The low temperature increase in observation 3 is
due to relatively low GDP growth in the world’s two most populous regions,
China and the group of low-income countries. In the latter region this is
due to low population growth; in China the reason is low improvements in
TFP. Observation 4 has about 2 ◦C lower temperature than what climate
sensitivity predicts — and about 3 ◦C less than observation 1, with roughly
the same climate sensitivity. The reasons are substantial improvements in
energy efficiency in most regions, along with below-average TFP growth in
China and especially low-income countries (7th percentile).

These alternative futures illustrate that alternative socioeconomic de-
velopments contribute a great deal to the uncertainty about future global
warming. Figure 10 illustrates this further, by showing the result of a Monte
Carlo simulation with 10001 draws, where climate sensitivity is held constant
at its mean value. A hundred years from now, the range for temperature
outcomes is about 3 ◦C wide and the highest temperatures are well above
6 ◦C. The 99% confidence interval is 1.8 ◦C wide, to be compared with a
corresponding confidence interval of 3.9 ◦C when we allowed for uncertain
climate sensitivity in Figure 8.

Figure 10: Temperature projections under certain climate sensitivity
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5 Conclusions

On the methodological side, our paper illustrates a way forward in analyzing
uncertainty about future climate change, which includes the most important
determinants in the human system as well as the natural system. Our re-
sults suggest that uncertainties about relations in the economic system can
play a major role. More research, with less stylized assumptions and more
comprehensive climate-economy models, should follow.

On the substantive side, our simulations rely on BAU assumptions re-
garding energy taxes and other means of mitigating climate change. Absent
future mitigation efforts, global warming will be substantial even under very
favorable circumstances.

Appendix

This Appendix begins with a list of the full set of equations in the underlying
RICE model. It also includes a list of all the model’s variables and the
distributions for the parameters we use in the Monte Carlo simulations.

19



RICE model equations

(A.1) WJ =
∑

t U [cJ(t), LJ(t)]R(t)
(A.2) R(t) =

∏

t [1 + ρ]−10t

(A.3) U [cJ(t), LJ(t)] = LJ(t){log[cJ(t)]}
(A.4) QJ(t) = ΩJ(t)

{

AJ(t)KJ(t)αLJ(t)1−βJ−αESJ(t)βJ − cE
J (t)ESJ(t)

}

(A.5) gL
J (t) = gL

J (0) exp(−δL
J t), gL

J (0) given

LJ(t) = LJ(0) exp
[

∫ t

0 gL
J (t)

]

, LJ(0) given

(A.6) gA
J (t) = gA

J (0) exp(−δA
J t), gA

J (0) given

AJ(t) = AJ(0) exp
[

∫ t

0 gA
J (t)

]

, AJ(0) given

(A.7) ESJ(t) = ZJ(t)EJ(t)
gZ
J (t) = gZ

J (0) exp(−δZ
J t), gZ

J (0) given

ZJ(t) = ZJ(0) exp
[

∫ t

0 gZ
J (t)

]

, ZJ(0) = 1

(A.8) QJ(t) = CJ(t) + IJ(t)
cJ(t) = CJ(t)/LJ(t)

(A.9) KJ(t) = KJ(t−1)(1 − δK)10 + 10×IJ(t−1), KJ(0) given
(A.10) cE

J (t) = q(t) + mkupE
J

(A.11) CumC(t) = CumC(t−1) + 10×E(t)
E(t) =

∑

J EJ(t)

(A.12) q(t) = ξ1 + ξ2 [CumC(t)/CMAX]ξ3

(A.13) LUJ(t) = LUJ(0)(1 − δLU )
ET (t) =

∑

J(EJ(t) + LUJ(t)) + TBE (t)
TBE (t) = (τ1 + τ2γ)(t + τ3t

2)
(A.14) M(t) = 10×ET (t−1) + φ11M(t−1) + φ21MU (t−1), M(0) given

MU (t) = φ12M(t−1) + φ22MU (t−1) + φ32ML(t−1), MU (0) given
ML(t) = φ23MU (t−1) + φ33ML(t−1), ML(0) given

(A.15) F (t) = η
{

ln[M(t)/MPI ]/ ln(2)
}

+ O(t)
O(t) = −0.1965 + 0.13465t t ≤ 10

= 1.15 t > 10
(A.16) T (t) = T (t−1) + σ1

{

F (t) − η
κ
T (t−1)−

σ2[T (t−1) − TL(t−1)]} , T (0) given
TL(t) = TL(t−1) + σ3[T (t−1) − TL(t−1)], TL(0) given
κ = 1.2/f

(A.17) DJ(t) = θ1,JT (t) + θ2,JT (t)2

(A.18) ΩJ(t) = 1/ [1 + DJ(t)]
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List of variables and parameters

Exogenous variables and parameters
LJ(t) Population (millions)
R(t) Social time preference discount factor
ρ Social time preference discount rate
α Elasticity of output w. r. t. capital
βJ Elasticity of output w. r. t. energy services
AJ(t) Total factor productivity (TFP)
gL

J (t) Population growth rate (per decade)
gL

J (0) Population growth rate in initial period
δL
J (t) Rate of decline of gL(t)

gA
J (t) TFP growth rate (per decade)

gA
J (0) TFP growth rate in initial period

δA
J (t) Rate of decline of gA(t) (per decade)

SSA
J Steady-state level of TFP (2005 = 1)

ZJ(t) Energy efficiency
ZJ(0) Energy efficiency in initial period
gZ

J (t) Energy efficiency improvement rate (per decade)
gZ

J (0) Energy efficiency improvement rate in initial period
SSZ

J Steady-state level of energy efficiency (2005 = 1)
δA
J (t) Rate of decline of gZ(t) (per decade)

δK Rate of depreciation of capital (per year)
KJ(0) Initial capital stock
mkupE

J Carbon services markup (1000 USD (1990) per ton carbon)
ξ1 Marginal cost of carbon extraction in 1995
ξ2, ξ3 Parameters in cost-of-extraction function
CMAX Point of diminishing returns in carbon extraction (GtC)
LUJ(t) CO2 emissions from land-use changes (GtC per year)
LUJ(0) Emissions from land-use changes in initial period
δLU Rate of decline of LUJ (t) (per decade)
TBE (t) Emissions due to the terrestrial biosphere effect
τ1, τ2, τ3 Parameters in terrestrial biosphere process
γ Random term in terrestrial biosphere process
η Increase in forcing due to doubling of CO2 concentrations
κ Climate sensitivity parameter
f Parameter in the process generating κ (Roe and Baker)
σ1 Speed of adjustment for atmospheric temperature
σ2 Coefficient of heat loss from atmosphere to deep oceans
σ3 Coefficient of heat gain from atmosphere to deep oceans
θ1,J Coefficient on linear component in damage function
θ2,J Coefficient on quadratic component in damage function
Initial conditions (temperatures relative to 1900):
M(0) Initial stock of carbon in the atmosphere (GtC)
MU (0) Initial stock of carbon in the upper ocean (GtC)
ML(0) Initial stock of carbon in lower ocean (GtC)
MPI Preindustrial stock of carbon in atmosphere (GtC)
T (0) Initial atmospheric temperature (◦C)
TL(0) Initial ocean temperature (◦C)

21



Carbon cycle transition coefficients (percent per decade):
φ11 Atmospere to atmosphere
φ12 Atmosphere to upper box
φ21 Upper box to atmosphere
φ22 Upper box to upper box
φ23 Upper box to lower box
φ32 Lower box to upper box
φ33 Lower box to lower box
Endogenous variables:
WJ (Regional) Welfare
UJ(t) (Regional) Utility
cJ(t) Per-capita consumption
QJ(t) Output (trillion 1990 USD per year)
KJ(t) Capital stock (trillion 1990 USD)
ESJ(t) Energy services from fossil fuels (GtC per year)
EJ(t) Industrial CO2 emissions (GtC per year)
CJ(t) Consumption (trillion 1990 USD per year)
IJ(t) Investment (trillion 1990 USD per year)
q(t) World market price of carbon energy
CumC(t) Cumulative industrial carbon emissions (GtC)
ET (t) Total global carbon emissions (GtC per year)
M(t) Atmospheric CO2 concentration (GtC)
MU (t) CO2 stock in the upper oceans and biosphere (GtC)
ML(t) CO2 stock in the upper oceans (GtC)
F (t) Increase in forcing relative to preindustrial (W/m2)
T (t) Atmospheric temperature increase since 1900 (◦C)
TL(t) Temperature increase in lower oceans since 1900 (◦C)
DJ(t) Climate change damages (proportion of output)

Table 1: Global parameters: updated values and imposed uncertainty

name original value updated value standard deviation1

ρ 3.00 — 0.33
ξ2 700 — 140
ξ3 4.00 — 0.80
CMAX 6000 — 1200
γ — 2 2

f — 0.65 0.103

κ 2.9078 4 4

M(0) 735 811 —
MU (0) 781 820 —
T (0) 0.43 0.71 —
1 Probability distributions are standard normals unless indicated.
2 Distributed as Beta(1.5, 3.5), which gives a mean value of 0.3.
3 The distribution is truncated in the right tail; see discussion in Section 3 above.
4 See discussion in Section 3 and Figure 4 above.
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Table 2: Unchanged and deterministic global parameters

name value name value name value
α 0.30 η 4.10 φ11 0.66616
δK 0.10 σ1 0.226 φ12 0.33384
ξ1 113 σ2 0.440 φ21 0.27607
δLU 0.10 σ3 0.02 φ22 0.60897
τ1 0.07 ML(0) 19230 φ23 0.11496
τ2 0.64 MPI 596.4 φ32 0.00422
τ3 0.10 TL(0) 0.06 φ33 0.99578

Table 3: Regional parameters: updated values and imposed uncertainty

name USA EUR OHI REE MI LMI CHI LI
LUJ (0) 0 0 0 0 .40 .35 .05 1.00

(0) (0) (0) (0) (.058) (.05) (.0083) (.15)

LJ (0) 298.2 397.1 203.6 327.4 351.9 663.1 1315.8 2906.5
(–) (–) (–) (–) (–) (–) (–) (–)

gL
J (0) 0.0989 -0.0126* -0.0082* -0.0427 0.1453 0.1312 -0.0287* 0.1960

(0.0045) (0.0234) (0.0227) (0.0046) (0.0054) (0.0056) (0.0277) (0.0052)

δL
J 0.2223 0.15 0.15 0.1566 0.3652 0.3148 0.15 0.23

(0.075) (0.05) (0.05) (0.05) (0.09) (0.09) (0.05) (0.0506)

gA
J (0) 28.46 27.72 22.23 50.00 21.49 19.65 67.81 33.05

(3.36) (2.24) (11.42) (10.00) (13.71) (8.57) (8.63) (4.85)

SSA
J 12.60 15.38 13.46 15.64 14.39 11.52 20.09 20.09

(0.79) (0.72) (0.95) (0.32) (1.55) (1.08) (10.52) (1.67)

gZ
J (0) -0.2340 -0.1821 -0.0183 -0.2657 -0.1454 -0.1002 -0.2459 -0.1459

(0.1022) (0.0046) (0.0043) (0.1219) (0.1399) (0.0489) (0.1123) (0.0712)

SSZ
J 0.2706 0.2019 0.0838 0.0973 0.2592 0.1818 0.0064 0.2479

(0.1193) (0.0614) (0.001) (0.0865) (0.15) (0.15) (0.1218) (0.15)

βJ 0.091 0.057 0.059 0.08 0.087 0.053 0.096 0.074
(−−−−−−−−−−−−−−− 20% of the mean value −−−−−−−−−−−−−−−)

mkupE
J 300.0 400.0 350.0 -38.12 250.0 -2.63 -41.09 18.78

(–) (–) (–) (–) (–) (–) (–) (–)

θJ,1 -0.0026 -0.001 -0.007 -0.0076 -0.0039 -0.0022 -0.0041 .01
(−−−−−−−−−−−−−−− 20% of the mean value −−−−−−−−−−−−−−−)

θJ,2 0.0017 0.0049 0.003 0.0025 0.0013 0.0026 0.002 0.0027
(−−−−−−−−−−−−−−− 20% of the mean value −−−−−−−−−−−−−−−)

Mean values are reported, standard deviations (where applicable) in parentheses. The values of LJ (0),

gL

J
(0) and gA

J
(0) have been updated; original values are not reported. All parameters follow

normal distributions, truncated when necessary. All rates are per decade.
∗ “Initial” growth rates here refers to 2045, see Section 3 for details.
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