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Abstract

We investigate the influence of weather anomalies on net migration in the Eastern United
States using a county-level panel for the period from 1970 to 2009. There is a significant
weather-migration relationship in the Corn Belt, but not outside of it. We present evidence
that weather affects migration through its influence on agricultural productivity using an
instrumental variables approach. Our preferred model uses the seasonality of the sensitivity
of corn yields to extreme heat over the growing season, which peaks during corn flowering,
as instrument. The reduced-form estimate of the migration response to extreme heat closely
mirrors the seasonality of corn yield. Our estimated semi-elasticity ranges imply that a
one percent change in yields leads to an opposite 0.3-0.4 percentage point change in the
net migration rate in rural counties of the Corn Belt. Since climate change is predicted to
adversely affect US yields, rural areas might see an increase in outmigration. On the other
hand, if yield losses from climate change in the US are not offset by other countries, the
accompanying price increase would offset the decrease in productivity.
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We investigate the effect of weather variability on migration patterns of the U.S. population,
especially through its impact on agricultural productivity. The associations among changes in
climatic conditions, agricultural productivity, and human migration have been most vividly
illustrated by the famous “American Dust Bowl,” one of the greatest environmental catas-
trophes in U.S. history. In the 1930s, exceptional droughts (Schubert et al. 2004), amplified
by human-induced land degradation (Cook, Miller & Seager 2009), greatly depressed agricul-
tural productivity in the Great Plains and led to large-scale and persistent net outmigration
from those regions. Between 1935 and 1941, around 300,000 people migrated from the south-
ern Great Plains to California (McLeman 2006). Hornbeck (2009) compares counties with
different levels of soil-erosions in the Great Plains, and finds that the 1930s Dust Bowl gen-
erated persistent population loss in the following decades. In addition, the overall decline
in population did not occur disproportionately for farmers, but had ramifications beyond
the agricultural sector. This suggests a general economic decline that extends beyond the
direct effect on agriculture. Many other businesses in agricultural areas, e.g., banking and
insurance, are directly linked to the agricultural sector as they serve the agricultural com-
munity. Hornbeck (2009) argues that the economy mainly adapted through outmigration,
not adjustment within the agricultural sector or increases in industry.

The “American Dust Bowl” happened under very different conditions from today’s. It
overlapped the Great Depression and a lack of credit may have limited the local capacity for
adaptation. Since then, the American agricultural sector has undergone immense changes.
On the one hand, it is much more mechanized and uses great amounts of chemical fertilizer
and pesticides. As a result, it now accounts for a much smaller part of the overall economy
and a smaller fraction of the population directly depends on agricultural outcomes. On
the other hand, better communication and transportation networks may make the present
generation of Americans more mobile. In either case, one might expect today’s relationship
between migration and agricultural productivity to be different from the 1930s. To assess
the possible magnitudes of migration flows under future climate change, it is necessary to
base empirical work on more recent experience, which we do in this paper.

In particular, we examine whether net migration rates over five year intervals between
1970 and 2009, defined as the fraction of people leaving a county net of new arrivals and
deaths, are related to contemporaneous observed weather variations for rural counties, i.e.,
counties with a total population less than 100000. We find a significant relationship in
counties of the Corn Belt (which include all Midwestern states and Kentucky), but not out-

side the Corn Belt. We show that the main mechanism for the observed weather-migration



relationship in the Corn Belt is through agricultural productivity, and not a direct prefer-
ence for climate. If anything, people tend to dislike climate outcomes that are conducive
to agricultural productivity, which will downward bias our migration-yield relationship to-
wards zero. This poses a challenge to using traditional weather variables as instruments,
such as degree days and precipitation over the growing season (Schlenker & Roberts 2009).
To circumvent such a problem, our preferred model uses novel instruments based on the
seasonally varying sensitivity of corn yields to extreme heat over the growing season, which
is highest during corn flowering. Unless people’s distaste for heat peaks the same time that
corn flowers, changes in agricultural productivity rather than some unobserved confounders
drive the observed climate-migration relationship. Moreover, we find that the relationship
inside the Corn Belt is driven mainly by young adults, while senior citizens, who are often
believed to be more responsive to climatic conditions show no responsiveness.

Based on our preferred model specification, we find a statistically significant semi-elasticity
of -0.3 to -0.4 between the net outmigration rate and yields for the population aged 15 to 59.
For every percent average corn yields during a five-year interval were below the historic nor-
mal, on net, 0.3-0.4 percent of a county’s population left the county. In view of the relatively
small proportion of people directly employed in agriculture,! our estimated elasticity may
seem large. However, there might be considerable spillover effects from agriculture to other
sectors of the economy, similar to what Hornbeck (2009) observed in the Dust Bowl era.
To shed further light on this issue, we examine the responsiveness of overall employment to
crop yields. Consistent with the literature on the “Dust Bowl,” we find that weather-induced
yield shocks significantly impact non-farm employment. During years when agriculture is
doing well, non-farm employment is also expanding, while years with bad yields coincide
with contractions in non-farm employment. The semi-elasticity for non-farm employment is
larger than for farm employment and statistically significant. Farm labor is shielded from
agricultural losses as we find an almost one-to-one increase in subsidy payments for weather-
induced reduction in agricultural yields. Additionally, decreasing yields lead farms to merge,
which might result in efficiency gains in the sense that less services or machinery are required,
including the labor to sell, finance, and maintain them.

The estimated reduced form climate-migration relationship in this paper is specific to the
period of 1970-2009 and may change in the future depending on many factors, such as the

structures of the economy, demographic profiles, and government policies. Nevertheless, we

!For counties in the Corn Belt, the median fraction of employment in agriculture is 4.6% according
to the 2000 decennial Census, based on data from Table QT-P30 of the Census 2000 summary file 3
(factfinder.census.gov).



believe it is an informative exercise to use the best estimate available to make projections,
in order to illustrate the possible magnitudes of future outmigration flows for counties of the
Corn Belt, as further warming is expected to directly affect these agricultural areas in the
United States. We conduct two thought experiments: a partial equilibrium analysis where
prices are assumed to remain constant and a specification that also adjusts for global corn
prices. Since the US produces 40% of the world’s corn, production shocks impact global
prices. In a partial equilibrium analysis, predicted yield declines in the Corn Belt will lead
to significant migration out of rural areas in the Corn Belt. This scenario requires that US
production losses are offset by increases in other countries, e.g., Canada or Northern Russia.
In case there is no such offset, we include a specification that not only account for yield
shocks in a county, but global yield shocks that have been shown to be a good instrument
for global prices (Roberts & Schlenker 2013). In this specification, the positive effect of a
decrease in productivity on net outmigration is offset by the implied price increase.

The rest of the paper is structured as follows. Section 1 reviews general internal U.S.
migration patterns and the role of U.S. agriculture. Section 2 introduces our empirical
methodology and data sources. The main estimation results are reported in Section 3.
Section 4 presents projections of future migration flows, and is followed by our conclusions

in section 5.

1 Background

Migration is a defining feature in the history of the United States, not just in terms of
arrival of immigrants, but also in terms of internal population movements. During the
last century, the mean center of the U.S. population moved about 324 miles west and 101
miles south (Hobbs & Stoops 2002) and the fraction of the population living in rural areas
decreased significantly. One of the most important determinants of migration flows has
been identified as relative economic opportunities in source and destination regions (see e.g.,
Borjas, Bronars & Trejo (1992)). For example, during the Great Migration between 1910-
1970, millions from the South were attracted to the Northeast and Midwest, as farm and
non-farm economic opportunities dwindled in the South while demand for labor increased
in the industrializing destination regions (Eichenlaub, Tolnay & Alexander 2010). Empirical
research also studied the effects of industry composition (Beeson, DeJong & Troesken 2001),
natural characteristics such as oceans and rivers (Beeson, DeJong & Troesken 2001), and

weather (Rappaport 2007, Alvarez & Mossay 2006) on domestic migration flows.



Agriculture has traditionally been an important driver of U.S. domestic migration flows.
Early internal migrants were typically farmers seeking better farming opportunities, e.g.,
those who moved to the Ohio River Valley in the late eighteenth century and to the Great
Plains before the middle of the nineteenth century (Ferrie 2003). Later on, developments in
the manufacturing and service industries, together with technological changes in the agri-
culture sector, have prompted sustained rural-to-urban migration. Consequently, the rural
proportion of the U.S. population has declined from 60% in 1900 to around 20% in 2000
(Hobbs & Stoops 2002).

Besides all the urban “pull” forces such as increased availability of employment oppor-
tunities in non-agricultural sectors and the possibly more attractive urban lifestyle, several
“push” factors in the agricultural sector have been important in shaping this rural flight.
First of all, long-run increases in farm productivity due to changes in the economic structure,
technological progress, and better access to domestic and international markets, have dimin-
ished demand for labor in farms. Since the late 19th century, subsistence farming gradually
gave way to commoditized agriculture, with increased access to credit and transportation
(for example, railroads). This trend was further accelerated by mechanization starting in
the 1940s, and more recently, the use of chemical fertilizers and pesticides. Previous studies
showed that mechanization has had a significant impact on the relationship between agricul-
ture and migration. For example, White (2008) studied the Great Plains region for the period
of 1900-2000, and found that counties that witnessed an increased dependence on agriculture
were also more likely to experience positive population growth in the pre-mechanization era,
but the relationship reversed in the post-mechanization era (post-1940s).

Second, agricultural policy has also played an important role in rural-to-urban migration.
New Deal policies in the 1930s, such as the Agricultural Adjustment Act (AAA), the Works
Progress Administration (WPA) and the Civilian Conservation Corps (CCC) were critical
in preventing even larger outmigration in certain areas of the Great Plains (McLeman et al.
2008). Even after the 1930s, income support programs have likely slowed the movement of
labor out of the agricultural sector (Dimitri, Effland & Conklin 2005). On the other hand, the
risk-reduction effects of price supports and the planting rigidities imposed by supply controls
encouraged specialization, and may have facilitated outflow of farm labor. Since there has
been a long history of interventionist policies to manage migration patterns, policy makers
may be able to utilize migration forecasts under climate change to enhance local adaptive
capabilities to reduce unnecessary outmigration and manage any remaining migration flows
(Adger 2006, McLeman & Smit 2006).



Last but not least, variations and changes in environmental and climatic conditions affect
agricultural productivity and can induce significant migration responses. The most extreme
case we have witnessed so far occurred during the Dust Bowl in the 1930s. In those years,
productivity in the Great Plains dropped precipitously because of sustained droughts. This
triggered significant and sustained outmigration from the affected regions (Hornbeck 2009).
At the same time, local adaptive capacity was already at a very low level before the Dust
Bowl because of falling commodity prices and a general economic depression (McLeman
et al. 2008). Adjustments within the agricultural sector and between different economic sec-
tors were very limited due to a lack of credit, and the economy adjusted primarily through
mass outmigration (Hornbeck 2009). Nevertheless, it is important to note that people with
different demographic and socio-economic characteristics experienced very different levels of
vulnerabilities and exhibited different adaptation responses. For example, McLeman (2006)
found that migrants from rural Eastern Oklahoma to California in the 1930s were dispro-
portionately young tenant farmers.

While the Dust Bowl experience may be unique in American history, the extreme climatic
conditions witnessed in the 1930s may become more frequent in the current century as a
consequence of global climate change. Recent researches suggests that climate change is
expected to have significant negative impacts on crop yields in the United States. Lobell &
Asner (2003) report that for each degree increase in growing season temperature, both corn
and soybeans yields would decline by roughly 17%. Similarly, Schlenker & Roberts (2009)
identify serious nonlinearities in the temperature-yield relationship. Increasing temperatures
are beneficial for crop growth up to a point when they switch to becoming highly detrimental.
These breakpoints vary by crop: 29°C or 84°F for corn, 30°C of 86°F for soybeans and
32°C or 90°F for cotton. The effect of being 1 degree above the optimal breakpoint is
roughly ten times as harmful as being 1 degree below it. Area-weighted average yields
are predicted to decrease by 30-46% before the end of this century under the slowest (B1)
warming scenario and by 63%-82% under the most rapid warming scenario (A1F1) based on
the Hadley III model. These newly available estimates were considerably larger than what
previous modeling studies have suggested (Brown & Rosenberg 1997, Reilly 2002, Cline
2007).2 Tt should also be noted that these estimates are based on the existing statistical

2To assess the impact of climate change on U.S. agriculture, three different approaches have been used
in the literature, each with its own merits and shortcomings. The first one is the production function
approach, in which the impact of weather/climate on crop yields is derived using controlled laboratory or field
experiments. Some sort of CGE (Computed General Equilibrium) model is sometimes used to incorporate
price feedbacks. This approach is usually adopted by agronomists, see for example Rosenzweig & Hillel
(1998). The second one is the so called Ricardian approach, which estimates a cross-sectional relationship



relationship between yield and climate/weather, and have not incorporated CO, fertilization
effects and adaptation possibilities beyond what is already embodied in the historic time
series. At the same time, recent evidence suggests that the actual CO, effect on crop yield
is still uncertain and may be considerably less significant than previously thought (Long
et al. 2006). Assuming no breakthroughs in technology, potential gains from adaptation
may also be limited and may require considerable financial investments.

The magnitudes of the possible impact of changing climate conditions on yields war-
rant careful examination of the weather-migration and yield-migration relationship. The
emerging empirical literature on climate-driven migration, as reviewed by Leighton (2009),
is interdisciplinary in nature. Most studies rely on qualitative analyses of fairly small scale
local phenomena. This paper contributes to the existing literature by utilizing a statis-
tical approach to estimate the semi-elasticity of outmigration with respect to crop yields.
Our approach is similar to Feng, Krueger & Oppenheimer (2010) who examine the effect of

climate-driven yield declines in Mexico on Mexico-U.S. cross-border migration.

2 Methodology and Data

2.1 Empirical Methodology: Reduced Form Regression

We start by linking the net outmigration rate m;;, defined as the fraction of people leaving a
county net of new arrivals and deaths, in county ¢ during the five-year interval started with
year t to observed weather outcomes. Consecutive observations in our panel are five years

apart as the population data is reported every five years.
my = TWy + f(t) + ¢ + € (1)

Our baseline model examines the ratio m;, of all people that were aged 15-59 at the beginning

of interval t that outmigrated over the next five years, net of any new arrivals. If weather

between land values and climate while controlling for other factors. The underlying assumption is that the
value of farmland reflects the sum of discounted expected future earnings. This approach was originally due
to Mendelsohn, Nordhaus & Shaw (1994). It utilizes the fact that farmers have adapted to local climatic
conditions. The third and more recent approach is to use time series variations in climate to identify effect
of climate on agricultural profit (Deschénes & Greenstone 2007) or crop yields (Schlenker & Roberts 2009).
The advantage of this approach is that identification comes only from within variation. Other determinants
of yield, such as soil quality and land management practices, which are usually correlated with climate and
difficult to measure, would not bias the estimated weather-yield relationship.



W, explains migration, the coefficients 7 should be jointly significant.® A set of unrestricted
county dummy variables, represented by ¢;, are included to capture time-invariant county
factors, such as proximity to urban centers and natural amenities. Time controls f(t) cap-
ture all aggregate-level factors that affect migration trends, such as technological progress
in agriculture, changes in agricultural policies, as well as changes in overall economic funda-
mentals in both source and destination counties. We use four time trends f(¢): (a) a linear
time trend common to all counties; (b) a quadratic time trend common to all counties; (c)
state-specific quadratic time trends; and (d) county-specific time trends that allow for the
fact that the economic conditions might be trending differently in each location. The error
term €; might be spatially and serially correlated, and we cluster it at the state level in
the baseline regressions, which adjusts for arbitrary within-state correlations along both the
cross-sectional and time-series dimensions.* In a sensitivity check, we also present results of
an unweighted regression where we use a grouped bootstrap routine and draw entire 5-year

intervals with replacement, i.e., all counties that report in a given 5-year interval.

2.2 Empirical Methodology: IV Regression

To investigate our hypothesis that the weather-migration relationship are driven by changes

in agricultural productivity, we use an instrumental variable approach:

mie = Pryg+ f(t)+c+ e (2)
T = ”)/Wzt -+ g(t) + ]{32 + Vi (3)

We now regress the net migration ratio m;, of all people that were aged 15-59 at the beginning
of interval ¢ on the average log yield during the same 5-year period z;.° Our key parameter
of interest is (3, the semi-elasticity of net outmigration with respect to log yields. Similar
to equation (1), we use a set of unrestricted county dummy variables, represented by ¢; and
time controls f(t). Error terms are clustered at the state level unless otherwise noted.
Because x; may be correlated with €;;, we only use yield shocks that are due to presum-

ably exogenous variation in weather.’ In equation (3), we again include county fixed effects

3The exact weather measures are further explained in the next section where we outline the instrumental
variable approach for yields.

4In a yearly panel regression of yields on weather, clustering by state or adjusting for spatial correlation
using Conley’s (1999) nonparametric routine gives comparable estimates (Fisher et al. 2012).

SWe first take the log of annuals yields (or adjusted average of more than one crop, see below) and then
average over the five years of each interval.

SFor comparison, Table 1, we present results from a simple OLS regression, which are strikingly different



k; to control for baseline differences as well as time trends g(t) as yields have been trending
upward over time. The coefficient [ is identified by deviations of the weather variables W,
from their time trends, which are presumably exogenous since we use the same time controls
in both the first and second stage. Figure A3 in the appendix displays annual corn and
soybean yields for the 13 states in the Corn Belt.” The figure displays actual yields as well
as predicted yields using our preferred instrument, the effect of degree days above 29°C,
which is allowed to vary over the growing season.®

Yield growth is approximately piecewise linear in temperatures: Moderate heat, as mea-
sured by degree days 10-29°C for corn and degree days 10-30°C for soybeans, is beneficial
for plant growth. Extreme heat, as measured by degree days above 29°C for corn and degree
days above 30°C for soybeans are very harmful for crops. The best single predictor of yield
is extreme heat. The effect of extreme heat varies over the growing season for corn, as corn
is most damaged by heat during flowering (Berry, Roberts & Schlenker 2013). Our baseline
model therefore uses a model that only relies on extreme heat (degree days above 29°C for
corn), interacted with a restricted cubic spline with 5 knots in the phase of the growing
season that is normalized to length 1, i.e., 0 corresponds to the planting date and 1 to the
harvest date (see the data section 2.3 below). The effect of an extra degree day above 29°C
is allowed to vary smoothly over time. As will show below, the seasonality in the effect of
extreme heat on corn yields is closely mirrored in the reduced form relationship between
migration and extreme heat. In other words, people only seem to care about extreme heat
when it is detrimental to corn, but not otherwise. Unless people’s preference align with corn
flowering, this suggest that migration is not driven by a direct preference for climate.

Our empirical analysis uses log corn yields in the baseline regression, since it is the crop
with the largest growing area in the Corn Belt, which gave rise to the region’s name. In
a sensitivity check in the appendix we use log soybean yields, and the log of the adjusted
average of the two. Both corn and soybean yields are measured in bushels/acre, with corn
yields on average roughly three times as high as soybean yields. Since changes in average
yields should not be driven by changing compositions of soybean and corn production, we
adjust the yields to make them comparable. Regressions that use the log of the adjusted

average yield therefore transform soybean yields into corn equivalents by multiplying them

from the IV regression.

"We aggregated to the state level as it is impossible to display the time series for each county.

8Degree days are simply truncated daily temperature variables summed over the growing season. For
example, degree days above 29°C measure temperatures above 29°C (84°F), i.e., a temperature of 32°C
would give 3 degree days. The daily measure is summed over all days of the growing season.



with the soybean to corn price ratio.® This makes the two crops comparable on a dollar /acre
basis. Ultimately, agricultural returns are the difference between revenues and cost. By
prorating yields with the average price ratio, we make them comparable on a revenue/acre
basis, which would be an exact conversion under the assumption that the revenue/cost rato
is comparable for the two crops. After making the yields comparable, we take the area-
weighted average of the equivalent yields. Similarly, we take the area-weighted average of
the crop-specific weather variables W;.

We estimate the model separately for (i) counties in the Corn Belt; and (ii) counties in
the eastern United States outside the Corn Belt and the state of Florida. In both instances
we focus on rural counties, which we define to be counties with a total population of less
than 100000. Areas in the Corn Belt predominately grow corn and soybeans. Our null
hypothesis is that g is negative for the Corn Belt, but approximately equals zero for areas
outside the Corn Belt, where corn and soybean production are less important as a fraction of
the overall economic activity. Eastern areas outside the Corn Belt serve as a control group in
our research design - if changes in climate affect changes in outmigration through channels
other than crop yield (i.e., the error term ¢ is correlated with the instrument W), then
would also be non-zero for the sample of counties outside the Corn Belt.

If people have a preference for warmer and drier climate as suggested by the establishment
of retirement communities in the South, our estimate for § would be biased as people might
migrate for reasons that are detrimental/beneficial to crop growth. This poses a serious
challenge to the exogeneity assumption of the instruments. On the other hand, for the
instruments used in our baseline model, we can compare the seasonality of the sensitivity
of corn yield to extreme heat to the seasonality of the reduced form relationship between
migration and extreme heat. If migration is most sensitive to extreme heat when corn yield
is most sensitive, the response is most likely driven through the agricultural channel unless
humans dislike heat the most when corn flowers, which seems unlikely as the exact flowering

time varies year-to-year.

2.3 Data and Summary Statistics

Since there is no accurate count of number of people migrated at the county level for the

40-year time period that we are focusing on, we use the residual approach to derive the

9We use average prices over our sample period 1970-2009, so there is no endogenous price feedback.



outmigration ratio m; for each county for each five-year period between 1970 and 2009.°

For example, for the 15-59 age group, in the baseline model in our analysis, we use
Mis,60):  Det outmigration rate for those aged [15,60) at time ¢ in county 4.

Pafis.60): total population aged [15,60) in county ¢ at the beginning of the
5-year interval that started in ¢.
Pift+5)[20,65):  total population aged [20,65) in county ¢ at the end of the 5-year
interval that started in ¢.
dups,e0):  number of people aged [15,60) in county ¢ at the beginning of the

5-year interval t that died by the end of it.
To construct the net outmigration ratio

Mitf15,60) = Pit[15,60) pz}[;t:jl]:;)(;f)ﬁ) dzt[15,60) ( 4)
We use publicly-available population data from U.S. Census Bureau for pi[i5 60) and piji+5]120,63)
and state- and age-group-specific mortality data from National Center for Health Statistics
to estimate djqi5 60)-

Annual yields for corn and soybeans between 1970 and 2009 are from the U.S. Depart-
ment of Agriculture’s National Agricultural Statistical Service (USDA-NASS), where yields
equal county-level production divided by harvested acres. For our main analysis, we use log
corn yields, and the appendix gives results for soybeans. Climate variables are constructed
over the growing season. We calculate total growing-season degree days instead of mean
temperatures to capture the nonlinear effect of temperature on crop yields. More details on
the sources and reliabilities of yield and climate data can be found in Schlenker & Roberts
(2009), which are extended beyond 2005 in Berry, Roberts & Schlenker (2013). We follow
the latter and allow the effect of the extreme heat to vary over the growing season in our

1.11

baseline mode The phase of the growing season is defined from state-level planting and

harvest dates that are available from USDA-NASS. We define the beginning of the growing

10T here are two alternative approaches: First, the Census Bureau has county-level migration information
in each Decadal Census. Individuals are asked where they lived 5 years ago. Since the Census occurs every
10 years, there is no migration information for the 5-year period directly following the previous Census.
The Census data hence is not a full panel but misses every other 5-year interval. Second, the Internal
Revenue Service has yearly migration data between pairs of counties. The advantage of this data is that
it has information on the destination county. The downside is that the data are only available since 1992
(Duquette 2010). Moreover, it is based on tax returns, and hence might under-represent the poor and the
elderly.

'We use the four weather variables of Schlenker & Roberts (2009) as and instrument in the appendix. The
reduced form regression between migration and moderate heat suggests that people have a direct preference
for moderate heat that would bias our results towards zero.

10



season as the Monday of the week by the end of which at least 50% of the corn area in a state
had been planted. Similarly, the end of the growing season is the last day of a week when
at least 50% of the growing area had been harvested in a state.!? Since there are hardly
any degree days above 29°C towards the end point, we allow the effect of extreme heat to
vary according to a restricted cubic spline with 5 knots between 0.1 and 0.75 of the growing
seasomn.?

We exclude all counties west of the 100 degree meridian and the state of Florida, as
agriculture in those areas is heavily dependent on subsidized irrigation (see Reisner (1993)
and Schlenker, Hanemann & Fisher (2005)). Figure 1 graphically displays all counties in
our study with corn data.'* We label counties in the following 13 states Corn Belt counties:
[llinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North
Dakota, Ohio, South Dakota, and Wisconsin.!® Counties outside these states that lie east of
the 100 degree meridian except Florida are labeled the “non-Corn Belt” areas.

Table Al presents sample summary statistics for the counties with planting and harvest
dates for corn. We exclude all counties with more than 100,000 population in 2000 in our
baseline analysis as those counties are more likely to be urban centers and less dependent

6

on agriculture.!® There are 1,336 counties in our sample, 892 in the Corn Belt sample

and 746 in the non-Corn Belt sample.!” For comparison purposes, we have averaged all

121f a planting or harvest date is missing for a year in a county, we replace it with the average planting and
harvest date for that county. Yearly planting dates are reported for major corn producing states, which by
definition fall almost exclusively within the Corn Belt. Most Eastern states outside the Corn Belt therefore
do not report annual planting and harvest dates. Our baseline specification fixes the growing season for
Eastern counties outside the Corn Belt and Florida to equal the average planting and harvest dates for
Eastern states outside the Corn Belt and Florida that report it. A sensitivity analysis of how the definition
of the growing season impacts the results is given in Table A6, but none of our main results changes.

13The average exposure to extreme heat over the growing season is shown in Figure A2. Note that there
is almost no occurrence of temperatures above 29°C outside the interval [0.1,0.75], i.e., in spring or late fall.

MFigure Al gives the results for soybeans. Our baseline model requires that yields are reported for at
least half the years, i.e., there are at least 21 yield observation in our 40-year period. The sensitivity of our
results to what counties are included is give in Table A9.

15 According to USDA National Agricultural Statistics Service (http://quickstats.nass.usda.gov/), the fol-
lowing states have the largest combined planted acreages of corn and soybeans in 2000: Iowa (23 mil), Illinois
(21.7 mil), Minnesota (14.5 mil), Nebraska (13.15 mil), Indiana (11.2 mil), South Dakota (8.7 mil), Missouri
(8 mil), Ohio (8 mil), Kansas (6.4 mil), Wisconsin (5.05 mil), Michigan (4.25 mil), Arkansas (3.53 mil),
North Dakota (2.98 mil), and Kentucky (2.51 mil), i.e., we include all with the exception of Arkansas, which
is not part of the Corn Belt. However, our results are robust if we include Arkansas in the Corn-Belt sample.

16We present sensitivity checks where counties with more than 100,000 inhabitants are included in Ta-
ble A8. The results are unchanged in unweighted regressions, but do change if we weight by the population
in a county.

1"Tn some alternative specifications we use either soybean yields or the average of corn and soybeans yields,
which results in a different number of counties in our sample as sometimes only one of the two crops is grown.

11



variables over each five-year period during 1970-2009. Panels A and B present sample means
and standard deviations for the Corn Belt and non-Corn Belt samples, respectively. There
is substantially more net outmigration for the Corn Belt sample than the non-Corn Belt
sample as the Midwest has lost population over the last 40 years. Average county-level
crop acreages in the Corn Belt states are also larger, especially for corn, as are average crop
yields. For example, during the most recent recent 5-year period (2005-2009), both corn and
soybean yields are around 30% higher in the Corn Belt sample than in the non-Corn Belt
sample. This likely reflects effects of various factors such as geographic/climatic conditions,
technology, and policies. Non-Corn Belt areas experience more extreme heat above 29°C

and more precipitation.

3 Results

3.1 The Yield-Migration Relationship

We start with a panel of net outmigration rates and yields that are not instrumented with
weather in Table 1. This should be seen as a comparison table to motivate the importance
of our IV strategy. The table includes eight columns: columns (la)-(1d) give the results
for counties in the Corn Belt as shown in blue in Figure 1, while columns (2a)-(2d) give
results for Eastern counties outside the Corn Belt as shown in red in Figure 1. Columns (a)-
(d) vary the included temporal controls, ranging from the least flexible (one common time
trend in columns (a)) to the most flexible (country-specific linear time trends in column
(d)). Panel A uses corn yields, while panel B uses soybean yields, and Panel C uses the
average of the two as described in the data section. The estimated semi-elasticities are
generally small in magnitude and only a few are significant, but sometimes of opposite signs
depending on what crop is used, for example, in column (2d). The big drawback of such an
uninstrumented regression is that there is a clear endogeneity problem: if a productive work
force leaves a county, yields might decline, leading to a possible positive correlation between
yields and outmigration rates. A bias in the opposite direction is also possible: higher oil
prices negatively impact agriculture (higher input cost of both fuel and fertilizer prices,
which a er linked to oil prices) and also negatively effects the overall economy, which could
speed up the rural-urban migration trends, leading to negative correlation between yield
shocks and outmigration rates. Our subsequent analysis therefore relies on an instrumental
variable approach where we instrument log corn yields with extreme heat. In either case,

government policies that help to stabilize the local economy when yield declines might lead
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to a migration-yield relationship that is closer towards zero.

3.2 The Weather-Migration Relationship

One potential concern might be the exclusion restriction, i.e., don’t people migrate as a
response to observed weather due to a direct preference for weather, and not changes in
agricultural productivity. While we can’t test this directly, we can provide some evidence
that suggests that this is likely not the case. Our baseline model uses only extreme heat as
measured by temperatures above 29°C (84°F) and how the sensitivity varies over the growing
season. Figure 2 shows the reduced form relationship between migration and extreme heat
in the top row, where the four columns again vary the included time trend. Regressions are
population-weighted by the total population in a county in 2000 and our sample includes
all rural counties in the Corn Belt that reported corn yields for more than half of the years
1970-2009.

Recall that our migration data is reported in 5-year intervals. Each graph shows how
net-outmigration in a county responded to observed amount of extreme heat during the same
five year interval. The black line shows the results for a model where the effect is allowed to
vary over the truncated growing season and the 95% confidence band is given in grey. Point
estimates of models that force the effect to be the same throughout the season ar shown
as red and blue horizontal lines. In the time-varying model, a county with a higher than
usual amount of heat early or late during the corn-growing season had no significant increase
in outmigration rates. A higher amount of extreme heat around 40% of the time between
planting and harvest of corn resulted in people leaving the country more frequently than
usual. This is the mirror image of the relationship between corn yields and extreme heat,
as shown in the next section, i.e., people are most sensitive to extreme when corn is most
sensitive.

We replicate the analysis for counties outside the Corn Belt in the top row of Figure 3.
The reduced form relationship between migration and extreme heat shows no significant
relationship: the grey 95% confidence band includes zero throughout the season. For the
exclusion restriction to be violated, we would have individuals to be sensitive to extreme
in rural counties within the Corn Belt in the middle of the growing season when corn is
sensitive to extreme heat, yet people in rural area outside the Corn Belt never exhibit any
sensitivity to extreme heat during the entire growing season. While there might be reasons
that individuals are more sensitive to extreme heat during part of the year, e.g., summer

break when kids play outside, it seems odd why this would only be the case in areas where
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corn is grown but not outside the area where it is grown. We believe the likely explanation
why the migration-weather relationship mirrors the one for corn inside the Corn Belt but

not outside is that it works through the channel of changes in agricultural productivity.

3.3 First Stage: The Weather-Yield Relationship

The bottom row of Figure 2 shows the corresponding relationship between corn yields and
the seasonality of extreme heat that has been observed in previous studies (Berry, Roberts
& Schlenker 2013). Note the mirror image in timing to the migration-heat relationship in
the top row: corn is most sensitive to extreme heat around 40% of the time between planting
and harvest. Corn outside the Corn Belt shoes the same seasonality in the bottom row of
Figure 3.

The seasonality of extreme heat over the truncated growing season is a strong instrument.
Table 2 gives the first-stage F-statistics both inside and outside the Corn Belt. We present
two sets of results. Panel A follows previous studies examining the yield-weather relationship
that ran unweighted annual regressions of log corn yields on the seasonality of extreme heat,
specifically, it’s interaction with a restricted cubic spline with 5 knots on [0.1,0.75] of the
growing season. It gives the F-statistics from annual regressions covering our sample period
1970-2009. On the other hand, our migration regressions use 5-year intervals, and hence the
number of periods collapses from 40 years to eight 5-year intervals. The migration regression
are population-weighted to obtain the most efficient estimator for the overal population.
Since H-year averages have less variation than annual data, measurement error might be
amplified. Panel B therefore gives the F-statics for the population-weighted regressions
using 5-year intervals. The F-statistics generally decrease as the number of observations is
lower, but is still larger than 10 in all cases.

Our baseline model use annual state-level data on the beginning and end of the growing
season for the years in which it is available and the average values for each county for the
remaining years for countie