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Abstract

We use labor market data and data on price changes to examine the role of struc-

tural duration dependence and heterogeneity in shaping the aggregate hazard rates.

In line with an extensive literature we examine this question through the lens of a

mixed proportional hazard model. While we think that this model is a convenient

representation of the data, we recognize that its structure can be too restrictive. We

focus on environments where we observe two observations per individual as this not

only allows us to estimate the model non-parametrically, but also test whether the true

data-generating process is likely to have a structure imposed by a mixed proportional

hazard model. We reject that this is the case both for the price change data and la-

bor market data. We then turn to data simulated from reasonable structural models,

none of which can be represented as a mixed proportional hazard model, to examine

implications of estimating a misspecified mixed proportional hazard model. We use a

“CalvoPlus” model for price changes, while for the labor market data, we assume that

individual durations follow an inverse Gaussian distribution. We find that, in fact,

the mixed proportional hazard model is a good approximation of the CalvoPlus model

and therefore the estimated baseline hazard rate is very similar to the true structural

hazard rate. This is not the case for the inverse Gaussian model for the labor market

where the mixed proportional hazard model cannot be viewed as a good approxima-

tion. As a consequence, fitting a mixed proportional hazard model to these data vastly

understate the importance of heterogeneity in the economy.



1 Introduction

The longer a worker has been out of work, the less likely he is to return to work in the

near future. The longer he has been working, the less likely he is to lose his job. The more

time has passed since a firm has last changed its price, the less likely the firm is to change

its price in the near future. These facts are well-known, as is the difficulty in interpreting

them: even if every individual finds a job, loses a job, or changes a price at a constant rate,

heterogeneity across individuals can give rise to the patterns described here. The composition

of the “surviving” population, individuals who have not experienced such an event, changes

endogenously as time passes.

This paper uses large labor market and price data sets to reexamine the role of structural

duration dependence and ex ante heterogeneity in shaping aggregate hazard rates. Following

much of the literature on duration models, we examine the data through the lens of the

proportional hazard model. The model specifies that the hazard rate of exiting a state

(finding a job, losing a job, or changing a price) is the product of two functions: a function

of an individual’s observed and unobserved characteristics; and a function of the duration in

the state. We view this as a convenient statistical representation of the data but recognize

that the multiplicative structure is restrictive and potentially incorrect.1

In much of our analysis, we focus on environments in which we observe two spells for each

individual. We also assume that each individual’s characteristics are constant across the two

spells. We discuss the plausibility and restrictiveness of these assumptions in the body of

the paper. Honoré (1993) proves that the proportional hazard model is nonparametrically

identified under these assumptions. In particular, consider a data set containing the dura-

tion of two completed spells for each individual and no other covariates. Assume that the

probability that an individual’s spell ends in period t conditional on not having ended prior

that period can be expressed as θh(t), where θ is a function of the individual’s characteristics

and h(t) is the common baseline hazard rate. Normalizing the population mean value of θ

to unity, we can recover both the distribution of θ, say G(θ), and the entire baseline hazard

{h(t)} from this data set.

We use two large data sets, one containing price data from the United States and the

other containing employment data from Austria, to estimate a proportional hazard model.

We start by following the literature and imposing parametric restrictions on the distribution

of individual characteristics G. In contrast to the robustness issues highlighted in Heckman

and Singer (1984b) but consistent with the findings in Nakamura and Steinsson (2008), our

1See (see Van den Berg, 2001, Section 4.3) for an attempt to write down an economic model that generates
non-constant but proportional hazard rates as an outcome.
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results are robust to a variety of parametric restrictions on G.

We then offer the first nonparametric estimates of G. More precisely, we prove that

the model is overidentified: if the proportional hazard assumption is valid, there are many

equivalent nonparameteric estimates of baseline hazard rate. Unfortunately, we find that

different estimates give us different results. That is, we can easily reject the hypothesis that

our data sets could have been generated by any proportional hazard model in which each

individual’s characteristic is constant across the two spells.

Almost any model will be rejected in a sufficiently large data set, even if the model offers

a close approximation to reality. We therefore turn to quantitatively-reasonable synthetic

data in order to evaluate the effect of imposing the proportional hazard assumption in en-

vironments where it is invalid. To do this, we develop structural models that we believe

may be reasonable approximations to the data generating process for both the price and

labor market models. For the price data, we look at a “CalvoPlus” model (Nakamura and

Steinsson, 2010), while for the labor market data, we assume individual durations follow

an inverse Gaussian distribution, as in Alvarez, Borovičková, and Shimer (2015). Neither

structural model has a proportional hazard representation. Instead, we suggest a multiplica-

tive decomposition of the evolution of the raw hazard rate into the portion attributable to

the average change in individuals’ hazard rates (the structural hazard rate) and the pro-

portion attributable to changes in the composition of individuals in the population. This

decomposition can be performed in any structural model, including the proportional hazard

model. Whenever the proportional hazard assumption is valid, the structural hazard rate is

equivalent to the baseline hazard rate.

Since we know the true model, we can compute the structural hazard rate. We are in-

terested in what would happen if we didn’t know the true model. To that end, we create

large synthetic data sets using the structural model and estimate the proportional hazard

model both parametrically and nonparametrically. We compare the estimated baseline haz-

ard rate with true structural hazard rate in order to evaluate the economic relevance of the

proportional hazard assumption.

In the case of price data, we find that the parametrically estimated baseline hazard

and the structural hazard rate are very similar. This is not the case for the labor market

data, where the baseline hazard assumption induces us to vastly understate the role of

heterogeneity. Our intuition is that this is related to the structural models we use in the two

cases. The CalvoPlus model we use for price data implies that all hazard rates are upward

sloping and quickly asymptote to a maximum value which differs across goods. Although

the proportional hazard assumption is inaccurate, it is a reasonable approximation to our

calibrated model. The inverse Gaussian model we use for labor market data implies that
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hazard rates are hump-shaped and may have peaks at very different durations. Fitting a

proportional hazard to data generated from hazards that are far-from-proportional causes

us to vastly understate the importance of heterogeneity in the economy.

We also consider another approach to nonparametric identification in the proportional

hazard model, using covariates as in Elbers and Ridder (1982) and Heckman and Singer

(1984a). More precisely, assume that an individual’s hazard is the product of three terms, a

baseline hazard, an unknown function of observed covariates, and an individual fixed effect

which is orthogonal to the covariates. Then Elbers and Ridder (1982) and Heckman and

Singer (1984a) prove that, under certain regularity conditions, the model is nonparametri-

cally identified. As in the previous case, we prove that if the model is correctly specified,

there are many equivalent nonparametric estimates of the model. Our empirical results are

also broadly similar: we reject the proportional hazard assumption and find that the eco-

nomic relevance of the rejection depends on how far the true model is from the proportional

hazard model.

2 Identification and Testing with Two Spells

2.1 Continuous Time

This section proves that the proportional hazard model is overidentified with data on two

spells. Our approach is based on Honoré (1993), who establishes that the model is nonpara-

metrically identified.

We consider a population with measure 1. Each individual has a fixed type θ with

cumulative distribution G(θ) in the population. Each individual experiences two completed

spells. We assume that the probability that a spell ends prior to period t is

F (t; θ) ≡ 1− e−θ
∫ t
0 h(τ)dτ

for some nonnegative, integrable function h. These outcomes are independent across spells

and across individuals. Equivalent, θh(t) ≡ Ft(t; θ)/(1−F (t; θ)) is the instantaneous hazard

of a job ending during period t and e−θ
∫ t
s h(τ)dτ is the probability of a job ending between

any dates s and t conditional on the job surviving until at least date s.

As written, this model is not identified. We could double θ for all individuals and halve

h(τ) at all durations without changing the probability distribution over any individual’s

realized duration. We address this through a convenient normalization, that the population
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mean of θ is unity,
∫
θdG(θ) = 1.2 This implies that the baseline hazard at duration 0 is

simply equal to the population hazard rate at that duration. At later durations, however,

dynamic selection reduces the value of θ and so affects the evolution of the population hazard

rate.

A key object for this analysis is the survivor function. Let Φ(t1, t2) denote the fraction of

individuals whose first spell lasts at least t1 periods and second spell lasts at least t2 periods.

The structure of the proportional hazard model implies that this is

Φ(t1, t2) =

∫
e−θ(Z(t1)+Z(t2))dG(θ), (1)

where Z(t) ≡
∫ t
0
h(τ)dτ is the integrated baseline hazard. This formula takes advantage of

the fact that the durations of the two spells are independent conditional on the individual

characteristic θ.

Honoré (1993) proves that the model is nonparametrically identified. Denote the partial

derivative of Φ using subscripts. Simple algebra implies

Φ1(t1, t2) = −h(t1)

∫
θe−θ(Z(t1)+Z(t2))dG(θ),

Φ2(t1, t2) = −h(t2)

∫
θe−θ(Z(t1)+Z(t2))dG(θ).

In particular, taking ratios of these two numbers gives

Φ1(t1, t2)

Φ2(t1, t2)
=
h(t1)

h(t2)
(2)

for all t1 and t2. Thus the survivor function contains enough information to recover the ratio

of the baseline hazard rate at any two durations. In particular, the baseline hazard rate at

duration 0 is equal the population hazard rate, say h(0) = h̄(0), while the baseline hazard

at later durations satisfies

h(t) = h̄(0)
Φ1(t, 0)

Φ2(t, 0)
.

Effectively this approach treats the distribution of unobserved characteristics as a nuisance

parameter and solves for the baseline hazard by differencing out the nuisance parameter.

Once we have recovered the baseline hazard h(t), we immediately obtain the integrated

baseline hazard Z(t). We can then recover the Laplace transformation of the distribution

of individual characteristics θ. This follows immediately from the survivor function in equa-

2If the distribution of θ does not have a finite mean, this assumption is not a normalization. Nevertheless,
the results in Proposition 1 still holds at any strictly positive values of t1, t′1, and t2.
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tion (1). For any number s,

L(s) =

∫
e−θsdG(θ) = Φ(Z−1(s), 0),

where the left hand side is the Laplace transform of G and the right hand side is given by

data and the inverse of the integrated baseline hazard.3

We take Honoré’s argument one step further. Evaluate the ratio of partial derivatives at

two values (t1, t2) and (t′1, t2). Taking ratios again gives

h(t1)

h(t′1)
=

Φ1(t1, t2)Φ2(t
′
1, t2)

Φ2(t1, t2)Φ1(t′1, t2)
(3)

for all t1, t
′
1, and t2. Curiously, the left hand side does not depend on t2, while the right

hand side depends on t2, a testable prediction of the proportional hazard model:

Proposition 1 For any t1 and t′1,

Ψ(t1, t
′
1; t2) ≡

Φ1(t1, t2)Φ2(t
′
1, t2)

Φ2(t1, t2)Φ1(t′1, t2)
(4)

does not depend on t2.

In fact, Honoré (1993) considers a more general model in which the baseline hazard rate

is allowed to differ across the two spells. In that case, equation (2) gives the ratio of the

baseline hazard during the first spell at duration t1 relative to the baseline hazard in the

second spell at duration t2, while we need equation (3) to recover the relative value of the

baseline hazard at two durations during the same spell.

Proposition 1 yields a nonparametric test of the model. Ψ(t1, t
′
1; t2) can be measured

directly in a large dataset for a particular value of t1 and t′1, and different values of t2.

The proportional hazard model implies that it should be independent of t2. This result is

intuitive. In general, the relative hazard at durations t1 and t′1 during the first spell depends

on individual’s characteristics and hence is correlated with the duration of the second spell.

But this is not the case with the proportional hazard model, since everyone has the same

relative hazard at durations t1 and t′1.

3This is feasible as long as the integrated baseline hazard grows without bound; otherwise we can only
do this for small values of s.
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2.2 Discrete Time

The results in Proposition 1 assume that we have data available in continuous time, while

any real world data set records outcomes at discrete intervals. There are two ways to deal

with this. The first is to assume that the time period is sufficiently short so that we can

move freely between continuous and discrete time. The second is to develop a discrete time

analog of this result. We pursue the latter route here.

Assume time is discrete, t ∈ {1, 2, . . .}. Let θh(t) denote the probability that an individual

with type θ finds a job during period t. The probability that a spell ends prior to t is

F (t; θ) = 1−
t−1∏
τ=1

(1− θh(τ)),

independent across spells and individuals. Again let Φ(t1, t2) denote the fraction of individ-

uals whose first spell lasts at least t1 periods and second spell lasts at least t2 periods. This

now satisfies

Φ(t1, t2) =

∫ (t1−1∏
τ=1

(1− θh(τ))

)(
t2−1∏
τ=1

(1− θh(τ))

)
dG(θ).

First differencing this object yields

Φ1(t1, t2) = −h(t1)

∫
θ

(
t1−1∏
τ=1

(1− θh(τ))

)(
t2−1∏
τ=1

(1− θh(τ))

)
dG(θ),

Φ2(t1, t2) = −h(t2)

∫
θ

(
t1−1∏
τ=1

(1− θh(τ))

)(
t2−1∏
τ=1

(1− θh(τ))

)
dG(θ),

where now Φ1(t1, t2) ≡ Φ(t1 + 1, t2)− Φ(t1, t2) and Φ2(t1, t2) ≡ Φ(t1, t2 + 1)− Φ(t1, t2). We

can again eliminate the nuisance parameter to arrive at equations (2) and (3). Thus once

we have properly defined the proportional hazard model, the testable implications of the

discrete and continuous time versions of this model are identical.

2.3 Formal Testing

In any real-world data set generated from a proportional hazard model, we would not expect

Ψ(t1, t
′
1; t2) to be exactly independent of t2 due to sample variability. We use bootstrapping

to derive critical values for a static Ψ̂(t1, t
′
1; t2). The null hypothesis is that the data are

generated by a mixed proportional hazard model against the hypothesis that the data come

from a model that does not admit a mixed proportional hazard representation. In an infinite
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sample under the null hypothesis, Ψ(t1, t
′
1; t2) should be the same for all values of t2. In

a finite sample, these values can differ even under the null. We use bootstrapping to find

thresholds cψ(t1, t
′
1; t2), c̄ψ(t1, t

′
1; t2) such that in a finite sample, if the null hypothesis is true,

then

Prob [Ψ(t1, t
′
1; t2) /∈ [cψ(t1, t

′
1; t2), c̄ψ(t1, t

′
1; t2)]] = α,

where a typical choice of α is 0.05. If the value of Ψ(t1, t
′
1; t2)) measured in the data falls

outside this interval, we reject the null hypothesis.

The above strategy tests each (t1, t
′
1, t2) separately, and it is very likely that in any real-

world data, we reject null for some values of (t1, t
′
1; t2) but cannot reject for other values.

To test a joint hypothesis that for any two values of t1, call them t11 and t21, it holds that

Ψ(t11, t
′
1; t2)) = Ψ(t21, t

′
1; t2)), we propose a test which is similar to a Wald test. We compute

W as

W =
∑
t1

∑
t2

Ψ̂(t1, t
′
1; t2)

2. (5)

Here Ψ̂(t1, t
′
1; t2) ≡ Ψ(t1, t

′
1; t2)−Ψ(t1, t′1; ·) is a normalized test statistic, where Ψ(t1, t′1; ·) is

the mean value of Ψ(t1, t
′
1; ·) across t2, for given values t1, t

′
1. In a standard Wald test, if each

of Ψ̂(t1, t
′
1; t2) were independent and distributed according to a standard normal distribution,

then W has a chi-squared distribution. Since we do not have results on the distribution of

Ψ̂(t1, t
′
1; t2)

2, we again use bootstrapping to find a critical value at the significance level α,

call it W̄α, so that we reject the null if W > W̄α.

The key step in bootstrap hypothesis testing is to sample under the null hypothesis. In

our case it means that we need to sample data from a mixed proportional hazard model, but

the sampled data should nevertheless be a close description of the data at hand. We therefore

proceed as follows. We estimate a mixed proportional hazard model on our data. We use

a parametric procedure, described in more detail in Section 4. This procedure recovers

parameters of the distribution of θ and the baseline hazard rate h(t), which fully describes

the model. We then create a large number of synthetic datasets of N products/individuals

from this model, where N is the number of products/individuals in the data, and compute

Ψ̂(t1, t
′
1; t2) for all several values of t1, t

′
1, t2 for each synthetic dataset. We find cψ(t1, t

′
1; t2)

and c̄ψ(t1, t
′
1; t2) by ordering Ψ̂(t1, t

′
1; t2) across samples and taking the value at α/2 and

1 − α/2 position in the ordered sample. In each synthetic dataset, we compute statistic

W and choose W̄α such that α percent of the W values lie below W̄α. If the value of W

measured in the real-world data lies above W̄α, we reject the null hypothesis.
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3 Data

3.1 Sampling Framework

To estimate the proportional hazard model, we need data on the survivor function Φ(t1, t2)

for a large variety of “individuals.” An issue that immediately arises is that in any real-world

data set, we do not observe two completed spells for all individuals. For example, in a labor

market context, there are individuals who never work and others who only stop working

when they hit retirement.

Our methodology recognizes that if the proportional hazard model is correctly specified,

then we can estimate it using any subset of observations in the data. For example, in the

context of price changes, we can estimate it only using retailers who stock a good for at

least a pre-specified amount of time. While this may bias any estimates of the distribution

of characteristics G(θ), it should not affect estimates of the baseline hazard h(t). Our

methodology also takes advantage of the symmetry of our setup. This is important because

we may not observe the second spell for individuals whose first spell is very long, but we can

observe the first spell of individuals whose second spell is very long.

Our goal is to measure the baseline hazard through to some pre-specified duration T .

For the case of price changes, our sampling frame is the set of all products that are in our

data set for at least 2T − 1 periods after the initial price change. For each product, we let

t1 equal the duration of the first spell, top-coded at T . For each product with t1 < T , we let

t2 equal the duration of the second spell, again top-coded at T . This is feasible because we

have at least 2T − 1 observations and because we do not look at products whose first spell

is top-coded. Denote the the number of products with durations (t1, t2) by n(t1, t2) for all

t1 < T and t2 ≤ T . Let n(T, ·) denote the number of products whose first spell has duration

at least T .

For t1 < T and t2 < T , our measure of the number of spells is simply N(t1, t2) =

(n(t1, t2) +n(t2, t1))/2, where we take advantage of the symmetry of our model to effectively

enlarge the data set. For t < T , we also let N(t, T ) = N(T, t) = n(t, T ), again using

symmetry, but now to impute values for individuals whose first spell is top-coded and hence

second spell may be truncated. Finally, our measure of N(T, T ) is n(T, ·) −∑t<T n(t, T ),

i.e. the remaining spells.

Once we have recovered N(t1, t2) for all (t1, t2) ∈ 1, 2, ..., T 2, we can define the survivor

function as

Φ(t1, t2) =

∑
τ1≥t1,τ2≥t2 N(τ1, τ2)∑
τ1≥1,τ2≥1N(τ1, τ2)

, (6)

the fraction of individuals with spells lasting at least (t1, t2) periods. This is an unbiased
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estimate of the survivor function for the original set of products and hence we can use it to

estimate the baseline hazard, recover the distribution of characteristics, and test the model.

Our sampling framework for the labor market application is slightly different. We still

measure two consecutive spells, top coding each spell at duration T . But spells are no longer

consecutive, since a worker spends some time employed between unemployment spells and

vice versa.4 We therefore restrict attention to individuals whom we observe for at least 4T

periods, still top-coding both spells at T and inferring the duration of the second spell for

individuals whose first spell is top-coded from the individuals whose second spell is top-

coded.

3.2 Price Data

We use the Nielsen-IRI retail scanner data sets, which are available through the Kilts Center

for Marketing at the University of Chicago. This contains a large number of weekly price

observations for many products in many retail outlets. In particular, there are around 2.6

million goods identified by its UPC code, and for each them, participating stores report

weekly revenue and quantity sold by the end of the week.

We define product as a particular good identified by its UPC code in a particular location.

For each such product, we use weekly revenue and quantity sold to compute an average weekly

price of the product, which we in turn use to calculate price changes. We consider only price

changes larger than 0.1%. This is because some changes in average prices are due to the fact

that some customers shop with coupons, which is not directly observable, and imposing a

lower bound on the price change is a way to exclude such price changes. This is different

from sales, which are observable in the dataset. We treat regular price changes separately

from all price changes which include sales.

We define price spell as an elapsed time (in weeks) between two price changes, and

consider only price spells longer than 2 weeks. Timing of a price change within a week is

not innocuous. Since we only observe average weekly prices, a price change in the middle of

a week can generate a spurious price spell with duration 1 week.5 The products are divided

into 31 categories, e.g. coffee and frozen entrees. We estimate and test the proportional

hazard on each variety.

We choose to truncate spells at T = 104 weeks, which is not restrictive because average

duration of a price spell is around 12 weeks. We select all products which are in the dataset

4A similar consideration applies if we consider regular price changes, rather than all price changes, sine
sales can occur in between regular price changes.

5Suppose that the price of a product increases from $1 to $2 in the middle of a week. Then we would
measure average price of $1 in week 1, $1.5 in week 2 and $2 in week 3, which looks like as if there were two
price changes.
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for at least 2T − 1 weeks and construct data on duration of two price spells as described in

3.1. The number of products differs across categories, ranging from about 50,000 for razors

to 1,800,000 for frozen dinners. We present detailed results for the good category coffee,

which contains nearly 600,000 products.

3.3 Labor Market Data

For our labor market application, we use data from the Austrian social security registry. The

data set covers the universe of private sector workers over the years 1972–2007 (Zweimuller,

Winter-Ebmer, Lalive, Kuhn, Wuellrich, Ruf, and Buchi, 2009). It contains information

on individual’s employment, registered unemployment, maternity and retirement, with the

exact begin and end date of each spell.

The use of the Austrian data is compelling for two reasons. First, the data set contains the

complete labor market histories of the majority of workers over a 35 year period, which allows

us to construct multiple non-employment spells per individual. Second, the labor market

in Austria remains flexible despite institutional regulations, and responds only very mildly

to the business cycle. Therefore, we can treat the Austrian labor market as a stationary

environment and use the pooled data for our analysis. We discuss the key regulations below.

Almost all private sector jobs are covered by collective agreements between unions and

employer associations at the region and industry level. The agreements typically determine

the minimum wage and wage increases on the job, and do not directly restrict the hiring

or firing decisions of employers. The main firing restriction is the severance payment, with

size and eligibility determined by law. A worker becomes eligible for the severance pay after

three years of tenure if he does not quit voluntarily. The pay starts at two month salary and

increases gradually with tenure.

The unemployment insurance system in Austria is very similar to the one in the U.S.

The duration of the unemployment benefits depends on the previous work history and age.

If a worker has been employed for more than a year during two years before the layoff, she

is eligible for 20 weeks of the unemployment benefits. The duration of benefits increases to

30 weeks and 39 weeks for workers with longer work history.

Temporary separations and recalls are prevalent in Austria. Around 40 percent of non-

employment spells end with an individual returning to the previous employer.

We work with non-employment spells, defined as the time from the end of one full-time

job to the start of the following full-time job during which a worker was registered as un-

employed for at least one day. We drop incomplete spells and spells involving a maternity

leave. Although in principle we could measure non-employment duration in days, dispropor-
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tionately many jobs start on Mondays and end on Fridays, and so we focus on weekly data.

We code less than one calendar week (i.e. between Monday and Sunday) out of work as 0

weeks, more than one and less than two calendar weeks as 1 week, and so on.

Our sample consists of all individuals who were no older than 45 in 1986 and no younger

than 40 in 2007, so that each individual has at least 15 years when he could potentially be

at work. We consider all individuals with at least one non-employment spell which started

after 1986 and the individual was at least 25 years old when the spell started. This is our

starting sample. We then proceed as described in 3.1, truncating spells at T = 260 weeks.

4 Parametric Estimates

The usual approach in the literature is to estimate a proportional hazard model semi-

parametrically, specifying either the distribution of unobserved heterogeneity or a functional

form for the baseline hazard rate. The first option is more common as it allows to estimate

the baseline hazard is the usual focus of an analysis and thus putting fewer parametric as-

sumptions on it is desirable. While this approach admits using multiple spells per individual,

to our knowledge only (Nakamura and Steinsson, 2010) took advantage of multi-spell data

in the price change literature.

The goal of estimating the proportional hazard model parametrically is threefold. First,

we explore parametric estimates with multiple spells, which is rather rarely done in the

literature. Second, we re-examine whether the estimates of the baseline hazard depend on

distributional assumptions of the unobserved heterogeneity as was argued by (Heckman and

Singer, 1984b). Finally, we use these estimates to bootstrap the distribution of the test

statistic.

Figure 1 shows estimated baseline hazard for prices in the good category coffee, assum-

ing that unobserved heterogeneity is distributed according to gamma or inverse Gaussian

distribution.6 The figure also depicts an aggregate hazard rate, calculated as a ratio of the

number of products that change its price at duration t and the number of products that

did not change the price before t. We normalize the baseline hazard rates so that they are

equal to the aggregate hazard rate at duration of 2 weeks. The estimated baseline hazard is

not sensitive to the parametric assumption, which is consistent with findings in (Nakamura

and Steinsson, 2010). Compared to the aggregate hazard rate, the baseline hazard is flatter

suggesting that heterogeneity explains part of the decline in the aggregate hazard rate.

Figure 2 shows parametric estimates of the baseline hazard estimates for non-employment

exit rate, under the assumption that unobserved heterogeneity is distributed according to

6We make this choice for convenience, since these options are part of a command in Stata.
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Figure 1: Parametric estimate of the baseline hazard for price changes, good category coffee.
The figure shows the aggregate hazard rate (purple line), and the baseline hazard estimated
under assumption that the unobserved heterogeneity is distribution according to gamma
(blue line) or inverse Gaussian (red line). The baseline hazard is normalized so that it equals
aggregate hazard at duration of 2 weeks. Dotted lines depict 95 % confidence interval for
the estimate of the baseline hazard.
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Figure 2: Parametric estimate of the baseline hazard rate for non-employment exit rate. The
figure shows the aggregate hazard rate (purple line), and the baseline hazard estimated under
assumption that the unobserved heterogeneity is distribution either according to gamma
(blue line) or inverse Gaussian (red line). The baseline hazard rate is normalized such that
it equals aggregate hazard at duration of 1 week. The dotted lines depict 95 % confidence
intervals for the estimated baseline hazard. All hazard rates are HP-filtered with a smoothing
parameter 10 to remove seasonal patterns.

gamma or inverse Gaussian. Here the baseline hazard depends on the distributional assump-

tions, which is more in line with Heckman and Singer (1984b), even though the difference

between the two estimates are not dramatic. The difference between the baseline and aggre-

gate hazard rate is large, suggesting an important role of heterogeneity, especially after 10

weeks of non-employment.

5 Non-Paremetric Test Results

We now turn to non-parametric testing.

5.1 Price Changes

We start with the price data. We present the test results in two ways. First, we plot

Ψ(t1, t
′
1; t2) from equation (4) as a function of t2, separately for different values of t1. We

choose t′1 = 2 weeks. If the data were generated by the mixed proportional hazard model, the
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Figure 3: Test of the proportional hazard model for the price data, good category coffee. The
figure shows the baseline probability of changing prices at 3, 6, 13, and 26 weeks, compared
to 2 weeks duration for different values of the second spell duration t2. According to the
model, each line should be independent of t2.

value of Ψ(t1, t
′
1; t2) should not depend on t2. Results for one of the product categories, coffee,

are shown in Figure 3, we show other results in Appendix. Second, we present Ψ̂(t1, t
′
1; t2)

which is demeaned Ψ(t1, t
′
1; t2). We again choose t′1 = 2 weeks and present Ψ̂(t1, 2; t2) as a

function of t2, together with the 95-percent confidence intervals.

Each line in Figure 3 shows Ψ(t1, 2; t2), which is the hazard of changing a price at duration

t1 relative to the hazard of changing a price at duration 2 weeks, estimated using different

durations of the second spell t2. The figure shows that Ψ(t1, 2; t2) depends on the value

of t2. To understand this figure better, consider the case of t1 = 13. If one asks, how

much more likely is it to see a price change at 13 weeks than in 2 weeks, one would get an

answer anywhere between “20% more likely” (the maximum of Ψ(13, 2; t2) is 1.2) and “20%

less likely” (the minimum of Ψ(13, 2; t2) is 0.8). This is the source of rejection of a mixed

proportional hazard model. In general, this range for relative hazards tends to be wider for

larger values of t1, and the magnitude of the relative hazards tends to decrease in t2.

Using the F -test, we reject the null hypothesis that Ψ(t1, 2; t2) is independent of t2 for

all t1 at the 1% confidence level (the p-value is 0).

Figure 4 shows Ψ(t1, t
′
1; t2) together with the bootstrapped probability thresholds. We
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Figure 4: Test statistic Ψ(t1, 2; t2) for the price data, good category coffee, for different values
of t1 and t2, together with critical values at 5% confidence level. If the data were generate
by a mixed proportional hazard mode, the test statistic should lie within the red lines for
each value of t1, t2.

choose t′1 = 2 and plot Ψ̂(t1, 2; t2) for different values of t1 and t2. The null hypothesis of data

coming from a mixed proportional hazard model is rejected whenever Ψ(t1, t
′
1; t2) lies outside

the critical values, depicted as red dashed lines. Altogether, for t1, t2 ∈ [2, 52], only 11% of

values Ψ(t1, 2; t2) lie within the thresholds. The probability thresholds are based on 100

random samples from the proportional hazard model, where the unobserved heterogeneity is

distributed according to gamma distribution with mean 1 and variance .056, and the baseline

hazard as shown in Figure 1. The joint test also rejects the null. We find that W = 18.7

while the 5-percent one-sided critical value is W̄α = 3.6.

5.2 Labor Market Outcomes

We next turn to the nonemployment exit rate. Figure 5 shows results for the non-parametric

test by plotting the relative probability of finding a job at durations 13, 26, 39, and 52 weeks,

compared to 0 weeks. This are again values of Ψ(t1, 0; t2) from equation (4) for different

values of t1 and t2. According to the theory, these probabilities should not depend on the
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Figure 5: Test of the proportional hazard model. The figure shows the baseline probability
of finding a job at 13, 26, 39, and 52 weeks, compared to 0 weeks duration for different values
of the second spell duration t2. According to the model, each line should be independent of
t2.

choice of t2, and so should give accurate estimates of the relative baseline hazard h(t1)/h(0),

but the figure shows a systematic dependence. Each line initially increases and then starts

declining at some t2 < t1. The highest implied relative baseline hazard is in each case at

least twice the minimum. Monte Carlo simulations suggest to us that this is driven by the

large number of individuals who have two spells of similar long lengths, an observation that

cannot be accommodated by the proportional hazard model. If an individual experience two

spells of a similar length, it is likely to be the case that his individual hazard rate has a

maximum close to this length. Since there is a variation in duration length among people

with two similarly long spells, it must be the case that different workers have peaks in the

their individual hazard rate at different durations. But this thus cannot be a proportional

hazard model, because it implies that individual hazard rates are proportional to the baseline

and thus have to peak at the same duration.

Figure 6 shows the test statistic Ψ(t1, 2; t2) together with bootstrapped thresholds for

rejecting the null hypothesis. The computed statistic lies within these thresholds only for

47% of the values of t1 ∈ {0, 1, . . . 104}, t2 ∈ {0, 1, . . . 104}. Also, the joint test rejects the

null hypothesis. We find W = 19, 219 in the data, well above the 5-percent critical value of

W̄α = 725.
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Figure 6: Test statistic Ψ(t1, 0; t2) for nonemployment exit for different values of t1 and t2,
together with critical values at a 5% confidence level. If the data were generate by a mixed
proportional hazard model, the test statistic should lie within the red lines for each value of
t1, t2.
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6 Structural Models

The test results show that neither the price change nor the labor market data are likely to

be generated by the proportional hazard model. In this section we examine implications

of imposing a proportional hazard structure in environments where it is not valid. We use

structural models to argue that this leads to incorrect inference about the role of the struc-

tural dependence and heterogeneity in explaining the hazard rate. For the price data, we

look at a “CalvoPlus” model (Nakamura and Steinsson, 2010), while for the labor market

data, we assume individual durations follow an inverse Gaussian distribution, as in Alvarez,

Borovičková, and Shimer (2015). These models do not have a proportional hazard represen-

tation, but we treat data generated from these models as if they did to show that this leads

to underestimating the role of heterogeneity.

6.1 General Decomposition of the Hazard Rate

The proportional hazard model offers a natural decomposition of the raw hazard rate into

the baseline hazard and the portion attributable to heterogeneity. This section shows how to

perform a more general decomposition of the raw hazard rate into two portions, the average

change in individuals’ hazard rates (the structural hazard rate) and the remaining portion

attributable to changes in the composition of individuals in the population.

Consider a population composed of many individuals characterized by a characteristic

θ. Let h(t; θ) denote the hazard rate of type θ and duration t. In the proportional hazard

model, this can be expressed as the product of θ and the baseline hazard, but we relax that

restriction here. The probability that a spell lasts at least t periods is

F (t; θ) = 1− e−
∫ t
0 h(τ ;θ)dτ

for all t and θ. This implies the density of θ in the population surviving to duration t is

g(θ; t) =
e−

∫ t
0 h(τ ;θ)dτg(θ; 0)∫

e−
∫ t
0 h(τ ;θ

′)dτg(θ′; 0)dθ′
,

where g(θ; 0) is the initial population density of θ.7 This model then gives rise to a raw

hazard rate

H(t) =

∫
h(t; θ)g(θ; t)dθ. (7)

7With a general formulation of the hazard rate h, there is no loss of generality in assuming that the initial
distribution admits a density function.
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We are interested in decomposing the evolution of H into two terms, the portion due

to the evolution of the average value of h and the portion due to the evolution of g.

We propose a multiplicative decomposition here, H(t) = Hstr(t)Hhet(t), or equivalently

logH(t) = logHstr(t) + logHhet(t).8

We start by differentiating equation (7):

Ḣ(t) =

∫
ḣ(t; θ)g(θ; t)dθ +

∫
h(t; θ)ġ(θ, t)dθ.

The first term (if negative) is the decrease in the raw hazard rate coming from the fact that

the average individual has an decreasing hazard rate. The second term (if negative) is the

decrease in the hazard rate coming from the fact that individuals with a high hazard rate

become a small share of the population over time. To perform a multiplicative decomposition,

we divide through by both sides by the hazard rate and write

Ḣ(t)

H(t)
=
Ḣstr(t)

Hstr(t)
+
Ḣhet(t)

Hhet(t)
,

where
Ḣstr(t)

Hstr(t)
=

∫
ḣ(t; θ)g(θ; t)dθ

H(t)
and

Ḣhet(t)

Hhet(t)
=

∫
h(t; θ)ġ(θ; t)dθ

H(t)
.

Finally, we define

logHstr(t) =

∫ t

t0

Ḣstr(s)

Hstr(s)
ds+ logH(t0) and logHhet(t) =

∫ t

t0

Ḣhet(s)

Hstr(s)
ds (8)

for some carefully chosen value of t0, e.g. t0 = 0.

In the proportional hazard model, h(t; θ) = θh(t), so

Ḣstr(t)

Hstr(t)
=
ḣ(t)

h(t)
.

Thus this decomposition recovers the baseline hazard rate, Hstr(t) = h(t). More generally,

however, the growth in the structural portion of the hazard rate represents the increase in

the average hazard rate relative to the average level of the hazard rate. In a structural model,

we can compute the contribution of structural duration dependence Hstr(t) and compare it

to what one would get by treating the data as if it comes from a proportional hazard model.

8See Alvarez, Borovičková, and Shimer (2015) for an additive decomposition. We use a multiplicative
decomposition here because it has the same structure as the proportional hazard model.
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6.2 CalvoPlus Model of Price Changes

We model the decision of a firm to change the product price using the so-called CalvoPlus

model which is a combination of a menu cost and a Calvo model. A firm can adjust its price

any time by paying a fixed cost ψ > 0, but occasionally a price change can be done for free.

This opportunity arrives at the rate λ > 0.

Let P (t) be the current price. We denote p∗(t) the profit maximizing price which follows

a Brownian motion with zero drift and variance σ2. A firm optimally chooses to adjust its

price either when it is free (Calvo model), or when the gap between the current optimal price

is large enough (menu costs model). More precisely, there is a price adjustment when the

price gap x(t) ≡ p∗(t)− P (t) hits either −w/2 or w/2, where w is the width of the inaction

region which depends on ψ and σ. A firm always adjusts to the profit-maximizing price

p∗(t).

We now turn to the determination of a price spell, an elapsed time between two price

adjustments. All price spells start at the profit-maximizing price, therefore x(0) = 0. The

price gap x(t) follows a Brownian motion with zero drift and variance σ2, properties inherited

from p∗(t). A given price spell ends when an opportunity of a free price adjustment arrives,

or when x(t) hits one of the barriers. In the first case, the distribution of the duration of

a price spell is described by an exponential distribution with parameter λ. In the second

case, the duration distribution is given by the first hitting time of one of the two barriers

for a Brownian motion, which is a known formula (see for example Kolkiewicz (2002)), and

depends only on a reduced-form parameter θ ≡ (σ/w)2. The two events are independent

and thus the probability of not adjusting a for at least t periods is a product of two terms -

the probability that Calvo does not arrive before time t and probability that x(t) does not

hit any of the two barriers,

S(t; θ) = e−λt
∞∑
j=0

aj
qj
e−tθqj ,

where qj = (2j + 1)2π2/2 and aj = 2π(−1)j(2j + 1) for j = 0, 1, . . .. Notice that the

distribution depends only on λ and θ.

We consider an economy with many products, each described by θ and λ. We impose that

λ is the same for each product but allow θ to vary across products, denoting its distribution

G. The aggregate survivor function can be obtained by integrating S(t; θ) across θ,

S(t) = e−λt
∞∑
j=0

aj
qj

∫
e−tθqjdG(θ) = e−λt

∞∑
j=0

aj
qj
LG(tqj)

where LG is the Laplace transform of distribution G.
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Figure 7: Type-specific hazard rates for CalvoPlus model. The figure shows hazard rate of
a price change for λ = 0.01 and different values of normalized width of inaction w/σ.

It turns out to be convenient to assume that θ ∼ Gamma(k, ν) because its Laplace

transform has a closed form, LG(z) = (1 + νz)−k. We show in Appendix that a very good

approximation for the aggregate hazard H(t) is given a simple formula

H(t) ≈ π2/2kν

1 + π2/2νt
.

We use this formula to find values of k,ν and λ which minimize the difference between the

aggregate hazard rate in the data and in the model.

Observe that this model does not have a proportional hazard representation. The hazard

rate at duration 0 is given by the Calvo parameter for each type θ, h(0, θ) = λ, but the

hazard at t > 0 is given by the probability that the price gap hits the barrier which depends

on the parameter θ. Therefore, h(t, θ) 6= h(t′, θ) for t 6= t′, t > 0, t′ > 0. This is illustrated in

Figure 7, which shows hazard rates of price adjustment for λ = 0.01 and different values of

θ.

We choose parameters of the model λ, ν, k to match the aggregate hazard rate for one of

the products, coffee. The comparison of the aggregate hazard rate in the model and data is

depicted in Figure 8. We find that λ = 0.01, ν = 0.01, k = 2.25 which implies that the mean

value of w/σ is 8.11, with standard deviation of 3.87.
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Figure 8: Fit of the CalvoPlus model to the data for coffee. The figure compares the
aggregate hazard rate of price adjustment implied by the model to the one measured in the
data.

We use the parametrized model to do the following exercise. We generate data from the

model and use them to parametrically estimate the proportional hazard model, despite the

fact that it is misspecified. We calculate the multiplicative decomposition given by (8); we

can do this because we know the structure of the model. We then compare the structural

hazard rate from the decomposition with the estimated baseline hazard rate. We know that

if the model admits a proportional hazard representation, these two objects are equal. The

difference between them can then be interpreted as a measure of incorrect inference one

makes with the misspecified model.

Figure 9 shows that, despite the fact that the model is misspecified, the baseline hazard

rate is very close to the structural hazard rate, at least within the first 52 weeks.

To interpret this result, we come back to our non-parametric test. We perform the test

on the data simulated by the model, and show Ψ(t1, 9; t2) in Figure 10 for different values of

t1. We again reject that the data are generated by the proportional hazard model, but the

rejections is not too strong.

Indeed, going back to Figure 7, we notice that the pattern in the individual hazard rates.

They all start at λ for t = 0, then they are increasing until they reach their type-specific

asymptote. Once on the asymptote, the hazard rate is constant and thus this is a version

of the proportional hazard model with constant hazard and non-degenerate distribution of
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Figure 9: Multiplicative hazard rate decomposition in the CalvoPlus model. The purple line
shows the aggregate hazard rate. The black line shows the true contribution of structural
duration dependence, Hstr, to the hazard rate, while the red line shows the contribution of
the structural duration dependence implied by proportional hazard model, estimated using
random effects and a parametric baseline hazard. Both are normalized such that at t̄ = 10
they are equal to the aggregate hazard rate.
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Figure 10: The non-parametric test of the proportional hazard model using data simulated
from the CalvoPlus model.

heterogeneity. Most types reach their asymptote very quickly, within 10 weeks or so, and

thus the model is a proportional hazard model at longer durations.

This exercise also illustrates that the non-parametric test is “too strong”. The propor-

tional hazard model is rejected, as shown in 10, despite the fact that the model is rather

close to the proportional hazard model. A different way to see that the model is rejected is to

look at the non-parametric estimates of the baseline hazard rate. If the proportional hazard

model is correct, then ˆ̄h(t|t2) = S1(t, t2)/S2(t, t2) is a consistent estimate (up to a scale) of

the baseline hazard rate for any choice of t2. Figure 11 shows ˆ̄h(t|t2) for different values of

t2, normalized such that they equal aggregate hazard rate at t̄ = 10. The non-parametric

estimates depend strongly on the choice of t2, but interestingly, the parametric estimate is

close to the true structural hazard rate.

Also, notice that the aggregate hazard H(t) and the non-parametric estimate of the

baseline hazard with t2 = 0 coincide. This is a general result. If the model is such that

hazard rates for individual types coincide at t = 0, then the estimate of the baseline hazard
ˆ̄h(t|0) = S1(t, 0)/S2(t, 0) is proportional to the aggregate hazard H(t) for all t, irrespective

of the distribution of unobserved heterogeneity. Using this estimate of the baseline hazard,

one concludes there is no heterogeneity, thus making an incorrect inference about the source

of the declining hazard.
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Figure 11: The non-parametric estimates of the baseline hazard rate for the Calvo Plus
model, using different values of t2. For comparison, we also show the aggregate hazard rate
(purple line) and the parametric estimate (red line).

6.3 Inverse-Gaussian Model of Non-employment Exit

We perform a similar analysis for the non-employment exit. We use a structural model for

the decision to exit non-employment to generate artificial data which we use to estimate the

proportional hazard model. We use the structural model from Alvarez, Borovičková, and

Shimer (2015).

Consider a risk-neutral, infinitely-lived worker with discount rate r, who can either be

employed, s(t) = e, or non-employed, s(t) = n, at each instant in continuous time t. We

assume the worker earns a flow wage ew(t) when working and gets a flow benefit eb(t) when

not working. The natural logarithm of the potential wage w(t) and of the potential benefit

b(t) follow correlated random walks with drift, both when the worker is employed and when

the worker is non-employed. The drift and standard deviation of each may depend on the

worker’s employment status. We impose restrictions on these parameters to ensure that the

worker’s value is finite.

A non-employed worker can become employed at t by paying a fixed cost ψee
b(t) for a

constant ψe ≥ 0. Likewise, an employed worker can become non-employed by paying a

cost ψne
b(t) for a constant ψn ≥ 0. The worker must decide optimally when to change her

employment status s(t).
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Let ω(t) ≡ w(t) − b(t) denote the worker’s log net benefit from employment. This

inherits the properties of w and b, following a random walk with state dependent drift

and volatility. We prove in Alvarez, Borovičková, and Shimer (2015) that the worker’s

employment decision depends only on her employment status s(t) and her net benefit from

working ω(t). In particular, the worker’s optimal policy involves a pair of thresholds. If

s(t) = e and ω(t) ≥ ω, the worker remains employed, while she stops working the first time

ω(t) < ω. If s(t) = n and ω(t) ≤ ω̄, the worker remains non-employed, while she takes a job

the first time ω(t) > ω̄. Assuming the sum of the fixed costs ψe +ψn is strictly positive, the

thresholds satisfy ω̄ > ω, while the thresholds are equal if both fixed costs are zero.

We turn next to the determination of non-employment duration. All non-employment

spells start when an employed worker’s wage hits the lower threshold ω. The net benefit from

employment then follows a Brownian motion with drift and the non-employment spell ends

when the net benefit from employment hits the upper threshold ω̄. Therefore the length of

a non-employment spell is given by the first passage time of a Brownian motion with drift.

This random variable has an inverse Gaussian distribution with density function

f(t;α, β) =
β√

2πt3/2
exp

(
−(αt− β)2

2t

)
, (9)

where the parameters α and β depend on the structural parameters of the model. In par-

ticular, α is the ratio of the drift of the Brownian motion to its standard deviation and β is

the ratio of the distance between the barriers to the standard deviation.

We show in Alvarez, Borovičková, and Shimer (2015) that using data on two non-

employment spells, we can non-parametrically estimate the distribution of (|α|, β), call it

G. Here we take the estimate distribution G and simulate data from this model. We again

non-parametrically test the proportional hazard model. Figure 12 shows a strong rejection

of the model, with patterns very similar to those observed in 5.

The rejection of the proportional hazard model is not surprising, here the non-employment

exit hazard rates differ a lot across types. Each hazard rate is hump-shaped, starting at 0 at

duration 0, and approaching an asymptotic hazard rate of α2/2 for t→∞. The position and

the height of the maximum of the hazard rate, as well as the speed at which it approaches

its asymptote, depend on values of α and β, as shown in Figure 13.

Figure 14 illustrates that the data do not admit a proportional hazard representation

by showing non-parametric estimates of the baseline hazard using different values of t2. All

hazards are normalized so that they are equal at duration t = 2. The shape as well as the

magnitude of the baseline hazard strongly depends on the choice of t2. Figure 14 also shows

the aggregate hazard rate and the baseline hazard estimated parametrically under the as-
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Figure 12: The non-parametric test of the proportional hazard model using data simulated
from Inverse-Gaussian model.
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Figure 13: Type-specific hazard rates for the Inverse Gaussian model. The figure shows
hazard rate of exiting non-employment for different types described by (α, β).
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Figure 14: Non-parametric estimates of the baseline hazard rate using data from the inverse
Gaussian model, using different values of t2. For comparison, we also show the aggregate
hazard rate (purple line) and the parametric estimate of the baseline hazard (red line).

sumption that the unobserved heterogeneity is distributed according to gamma distribution.

Finally, we compare the estimated baseline hazard to the structural hazard rate Hstr(t)

from the multiplicative decomposition. They are depicted in Figure 15, together with the

aggregate hazard rate. The difference between the baseline and the true structural hazard

rate is large. The model vastly underestimates the role of heterogeneity, leading to a biased

inference about the relative importance of heterogeneity and structural duration dependence.

This might not be very surprising here. The true heterogeneity is two-dimensional, and the

hazard rates of individual types are far from being proportional.

7 Covariates

Elbers and Ridder (1982) show that covariates help identify the proportional hazard model.

In particular, they show that if the mean of G is finite, and function φ is non-negative,

differentiable and non-constant on an open set in Rk, where k is the number of covariates,

then the functions φ and h̄ and the distribution G are uniquely determined up to a con-

stant. Heckman and Singer (1984a) give another identifiability theorem, which relaxes the

assumption of the finite mean, but instead require a condition on the rate of decay of the
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Figure 15: Multiplicative hazard rate decomposition in the Inverse Gaussian model. The
purple line shows the aggregate hazard rate. The black line shows the true contribution
of structural duration dependence, Hstr, to the hazard rate, while the red line shows the
contribution of the structural duration dependence implied by estimated proportional hazard
model. Both are normalized such that at t̄ = 2 they are equal to the aggregate hazard rate.
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tail of G.

We first show how the survivor function can be used to determine φ(x) and h̄(x), and

how it can be used to derive a test of the model. Our approach here is close to Elbers and

Ridder (1982). In fact, after some algebra it can be shown that our results for φ(x) and h̄(x)

are equivalent to equations (10) and (15) in Elbers and Ridder (1982).

This section is written in a continuous time and continuous space, as is also the case

in Elbers and Ridder (1982) and Heckman and Singer (1984a). We believe that it is not

possible to conduct the same analysis in when time or space are discrete, as it is not possible

to eliminate the distribution of θ.

Assume now that the hazard of an individual i is given by

hi(t) = θiψ(xi)h̄(t) (10)

where xi is an observable characteristic of individual i, as for example age.

Let S(t, x) be the share of individuals with characteristic x for whom the spell lasts at

least t periods. Then,

S(t, x) =

∫
exp

(
−θψ(x)

∫ t

0

h̄(s)ds

)
g(θ)dθ. (11)

Differentiate with respect to t,

St(t, x) = −ψ(x)h̄(t)

∫
θ exp

(
−θψ(x)

∫ t

0

h̄(s)ds

)
g(θ)dθ. (12)

Evaluate this expression at t = 0, St(0, x) = −ψ(x)h̄(0)
∫
θg(θ)dθ. As usually, the baseline

hazard is identified up to a scale and thus we can normalize h̄(0) =
∫
θg(θ)dθ = 1. Equation

(12) then identifies ψ(x). This result is analogous to equation (10) in Elbers and Ridder

(1982).

Differentiate equation (11) with respect to x to find

Sx(t, x) = −ψ′(x)

∫ t

0

h̄(s)ds

∫
θ exp

(
−θψ(x)

∫ t

0

h̄(s)ds

)
g(θ)dθ. (13)

Take the ratio of St(t, x) and Sx(t, x),

St(t, x)

Sx(t, x)
=

ψ(x)h̄(t)

ψ′(x)
∫ t
0
h̄(s)ds

. (14)

Define y(t) ≡
∫ t
0
h̄(s)ds, and observe that equation (14) is an ordinary differential equation
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for y(t), with the initial condition y(0) =
∫ 0

0
h̄(s)ds = 0. Rewriting (14) in terms of y(t),

y′(t) = y(t)
ψ′(x)

ψ(x)

St(t, x)

Sx(t, x)
≡ k(t, x)y(t), (15)

we find the solution for y(t),

y(t) = Ct exp

(∫ t

0

(
k(τ, x)− 1

τ

)
dτ

)
, (16)

where C is a constant to be determined. By taking a logarithmic transformation of the above

expression and differentiating, it is straightforward to verify that this is indeed a solution.

The condition y(0) = 0 does not help to pin down the value of C. However, notice that the

normalization h(0) = 1 implies another condition for y(t), specifically that y′(0) = h(0) = 1.

Take the derivative of equation 16 with respect to t,

h̄(t) = y′(t) = Ctk(t, x) = C
tψ(x)St(t, x)

ψ′(x)Sx(t, x)
. (17)

The value at t = 0 can be found by taking a limit as t→ 0,

h̄(0) = lim
t→0

C
tψ(x)St(t, x)

ψ′(x)Sx(t, x)
.

Recall that St(0, x) = −φ(x), and use L’Hospital rule to find the following limit,

lim
t→0

Sx(t, x)

t
= − lim

t→0
ψ′(x)

∫ t
0
h̄(τ)dτ

t
= −ψ′(x) lim

t→0

h̄(0)

1
= −ψ′(x).

Therefore, it follows that C = 1. After some algebra, it can be shown that our solution for

y(t) is equivalent to the solution implied by equations (11) and (15) in Elbers and Ridder

(1982).

Observe that the right hand side is directly measurable in the data so this gives one way

to find the baseline hazard rate h̄(t).

It is possible to use equation 14 for find an overidentifying test. Take a ratio of equation

(14) evaluated at (t, x) and (t′, x),

St(t, x)

Sx(t, x)

Sx(t
′, x)

St(t′, x)
=
h̄(t)

∫ t′
0
h̄(s)ds

h̄(t′)
∫ t
0
h̄(s)ds

. (18)

The right hand side of (18) does not depend on x while the left-hand side does. The left-hand

side is directly measurable in the data and thus for given values of t, t′ one can test whether
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the measured ratio is independent of x.

In the case of one spell and covariates we consider a data set that for each x has spells

with at least T periods. For each x we top code the spells at duration T , i.e. for any

completed or uncompleted duration t ≥ T we record them as of length T . Then for each x

and t ≤ T we record the number of spells as n(t, x). The survivor function S(x, t) is obtained

for each x and t ≤ T as:

S(x, t) =

∑
s≥t n(x, s)∑
s n(x, s)

.

In our labor market application, we choose covariate x to be workers’ age at the beginning

of a spell. We measure age in years, and continue to measure non-employment duration in

weeks, starting at 0. We define a statistic

Ψ(t, x; t′) ≡ St(t, x)

Sx(t, x)

Sx(t
′, x)

St(t′, x)
. (19)

If the data were generated from a mixed proportional hazard model, then Ψ(t, x; t′) would

not depend on x. We choose t′ = 0 and plot Ψ(t, x; 0) as a function of x for different values

of t.

8 Test Results with Covariates

We apply the test proposed in the previous section to our data. We choose age at the

beginning of the spell as our covariate x.

8.1 Price Changes

To construct the dataset, we use a different sampling procedure than in case of two spells.

We aim to measure the baseline hazard through some pre-specified duration T and so we

truncate measurement at T . If a product has multiple spells, we choose one spell at random.

We consider separately sales and regular price changes, and measure spells only longer than

2 weeks. We define the age of a product as the number of periods a product has been in the

sample. We consider only products for which we can determine their age. This means, that

we consider only products which do not have any recorded transaction for the first year since

the beginning of the dataset. Here we present results for the good category coffee, where

measure hazard rate up to T = 104 weeks. The age of the product is measured in weeks,

and varies between 1 and more than 500 weeks.

Figure 16 shows estimated ψ(x). We see that there is some variation between 1 and 10

weeks of age, but that ψ(x) is very flat after 10 weeks of age.
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Figure 16: Estimated function ψ(x) for price change hazard for coffee products, with prod-
uct’s age at the beginning of the spell as a covariate x.

Figure 17 shows the test statistic together with bootstrapped standard errors. The test

statistic appears flat, not depending on the age, which suggests that we will not reject the

mixed proportional hazard model. The standard errors are wide, which we believe is a

reflection of ψ(x) being flat and not containing enough information on the baseline hazard.

8.2 Labor Market Outcomes

To construct the dataset, we use a different sampling procedure than in case of two spells.

As before, we define a non-employment spell as time between two full-time jobs, and impose

that a worker has to be officially registered as unemployed for at least one day during the

non-employment period. We aim to measure the baseline hazard through some pre-specified

duration T and so we truncate measurement at T . We do not impose any age restrictions on

the sample. Many workers experience more than one non-employment spell and we randomly

select one of them.

Figure 18 shows the estimate of ψ(x), estimated as ψ(x) = −St(0, x). The first thing to

notice is that there is not much variability in ψ(x). This is problematic because identification

relies on changes in ψ(x).

We present test results in Figure 19. We plot the value of Ψ(t, x; t′) defined in (19) as a

function of x, for different values of t. We choose t′ = 0 weeks. If the data were generated
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Figure 17: Nonparametric test of the proportional hazard model with covariates for coffee
products. The figure shows the test ratio at 3, 6, 25, and 36 weeks, compared to 2 weeks
duration at different ages. According to the proportional hazard model, each line should be
independent of age. Dashed red lines show bootstrapped standard errors.
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Figure 18: Estimated function ψ(x) for the nonemployment exit hazard, with worker’s age
at the beginning of the spell as a covariate x.

from the mixed proportional hazard model, each of the depicted lines would be constant

with respect to age. We see that Ψ(t, x; t′) is noisy but does not vary much with x. The

standard errors are large, so it would be difficult to reject the MPH model. However, the

test reveals that there is not much information about the baseline hazard h̄(t). Recall that

the test statistic Ψ(t, x; t′) has an interpretation of the relative hazard rates at two different

durations t and t′. Since it varies a lot, it is not informative about the shape of h̄(t).

9 Conclusion

A mixed proportional hazard model has been a leading model in a duration analysis, espe-

cially for separating out the role of unobserved heterogeneity and the structural duration

dependence. To estimate the model, a conventional procedure was to make parametric as-

sumptions on the distribution of unobserved heterogeneity. However, these assumptions do

not have to be innocuous. As argued by Heckman and Singer (1984a), the choice of a partic-

ular distribution can dramatically affect estimates of the baseline hazard, yet an economic

theory usually does not offer any guidance for which parametric assumptions to impose.

In this paper we show how to test whether data admit a mixed proportional hazard

model representation non-parametrically, without imposing additional assumption on the
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Figure 19: Nonparametric test of the proportional hazard model with covariates. The figure
shows the test ratio at 13, 26, 39, and 52 weeks, compared to 0 weeks duration at different
ages. According to the proportional hazard model, each line should be independent of age.
Dashed red lines show bootstrapped standard errors.
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distribution of unobserved heterogeneity. We also show how to non-parametrically estimate

a baseline hazard. We consider two different cases: one in which we observe two spell per

individual as in Honoré (1993), and one in which we observe one spell and a covariate for

each individual, as in Elbers and Ridder (1982). We apply these tests to price change and

non-employment duration data, and in both cases we reject the MPH specification. We use

structural models to illustrate that estimating an MPH model on data which do not admit

this representation, tends to underestimate the role of heterogeneity.
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Alvarez, Fernando, Kataŕına Borovičková, and Robert Shimer, 2015. “Decomposing Duration

Dependence in a Stopping Time Model.” University of Chicago Mimeo.

Elbers, Chris, and Geert Ridder, 1982. “True and Spurious Duration Dependence: The

Identifiability of the Proportional Hazard Model.” The Review of Economic Studies. 49

(3): 403–409.

Heckman, James J., and Burton Singer, 1984a. “The Identifiability of the Proportional

Hazard Model.” Review of Economic Studies. 51 (2): 231–241.

Heckman, James J, and B Singer, 1984b. “A Method for Minimizing the Impact of Distri-

butional Assumptions in Econometric Models for Duration Data.” Econometrica. 52 (2):

271–320.
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