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Abstract

Researchers run experiments to obtain a treatment effect estimate that is internally valid. However,
the local average treatment effect (LATE) estimated by an experiment is not globally externally valid if
the treatment effect varies across individuals. The LATE gives the average treatment effect for compliers
who receive the treatment if and only if they win the experimental lottery. In many experiments, there
are also always takers who always receive the treatment and never takers who never receive the treatment
regardless of the experimental lottery. I show that it is possible to use such experiments to recover bounds
on average treatment effects for always takers and never takers. These bounds can reject global external
validity of the LATE in some cases, and they depend on weaker assumptions than existing tests of global
external validity. Building on existing methods to recover a marginal treatment effect (MTE) with
a discrete instrument, I develop weights that allow me to recover average treatment effects for discrete
groups of individuals created by a discrete instrument, including always takers and never takers. I use the
recovered treatment effects to decompose group average treated outcomes into selection and treatment
effects. I also decompose the sample OLS estimate into a selection effect and a treatment effect. This
decomposition generalizes the comparison of the OLS estimate to the LATE when the treatment effect is
heterogeneous. I apply these methods to the Oregon Health Insurance Experiment. The Oregon LATE
indicates that obtaining insurance increases emergency room (ER) utilization for compliers. I find that
the treatment effect of insurance on ER utilization decreases from always takers to compliers to never
takers. I also find that potential uninsured ER utilization decreases from always takers to compliers
to never takers. Therefore, the selection effect and the treatment effect of insurance on insured ER
utilization decrease as a larger fraction of individuals gain insurance. The heterogeneous selection and
treatment effects that I recover from the OHIE indicate that a different policy experiment could increase
or decrease ER utilization, depending on which individuals it induces to gain coverage.
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1 Introduction

Researchers run experiments to obtain a treatment effect estimate that is internally valid. However, the

local average treatment effect (LATE) estimated by an experiment is not globally externally valid if the

treatment effect varies across individuals. The LATE gives the average treatment effect for compliers who

receive the treatment if and only if they win the experimental lottery. In many experiments, there are also

always takers who always receive the treatment and never takers who never receive the treatment regardless

of the experimental lottery. If the treatment effect varies from always takers to compliers to never takers,

then the LATE is not globally valid. I focus on examining the external validity of experiments by using

information available within experiments to identify average treatment effects for always takers, compliers,

and never takers.

I build on marginal treatment effect (MTE) methods developed by Björklund and Moffitt [1987] and

Heckman and Vytlacil [1999, 2005, 2007]. Traditionally, the MTE could only be identified in settings with

continuous instruments. Therefore, MTE methods could not be applied to experiments with discrete or

binary interventions. However, recent extensions developed by Brinch et al. [2012] provide approaches to

identify the MTE in settings with discrete instruments, thus allowing for the application of MTE methods

to experiments.

Under weaker assumptions than the assumptions that Brinch et al. [2012] impose to identify the MTE

and to test for external validity, I show that it is possible to use experiments to recover bounds on average

treatment effects for always takers and never takers. In some cases, these bounds do not include the LATE.

Therefore, these bounds provide a new test that can reject global external validity under weaker assumptions

than existing tests.

Next, building on the Brinch et al. [2012] approach to recover a marginal treatment effect with a discrete

instrument, I develop weights that allow me to recover average treatment effects for discrete groups of

individuals created by a discrete instrument. These weights differ from the weights for continuous instruments

used by Brinch et al. [2012]. They allow me to recover average treatment effects for always takers, never

takers, and other groups of interest from the MTE.

Using the treatment effects that I recover, I decompose group average treated outcomes into selection

and treatment effects. I also decompose the sample OLS estimate into a selection effect and a treatment

effect. This decomposition generalizes the comparison of the OLS estimate to the LATE when the treatment

effect is heterogeneous.

I apply these methods to the Oregon Health Insurance Experiment (OHIE), an important randomized

experiment for which the external validity of the findings is of particular policy-relevance. Through my
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analysis of the OHIE, I contribute to the understanding of the impact of health insurance expansions on

emergency room (ER) utilization. Legislation requires that emergency rooms see all patients, regardless of

whether they have health insurance, making the ER the main portal through which the uninsured enter the

healthcare system. ER utilization of the uninsured places a burden on other players in the healthcare system

who pay for their uncompensated care. Furthermore, the uninsured themselves could potentially get higher

quality, less expensive, and more coordinated care through other outlets. For these reasons, policymakers are

particularly interested in how emergency room utilization will change in response to other health insurance

expansions, especially those induced by the Affordable Care Act.

The OHIE is arguably the “gold standard” for evidence on the impact of health insurance expansions

because it is a recent randomized experiment, but there is reason to question the external validity of the

treatment effects derived from it. A central finding from the OHIE is that health insurance increased ER

utilization for individuals who gained health insurance coverage through the OHIE lottery (Taubman et al.

[2014]). However, results from a credible natural experiment that increased health insurance coverage, the

Massachusetts reform of 2006, show that ER utilization decreased (Miller [2012], Smulowitz et al. [2011]) or

stayed the same (Chen et al. [2011]), and admissions to the hospital from the emergency room (a proxy for

emergency room visits) decreased (Kolstad and Kowalski [2012]). Related evidence on the ER utilization

of other populations of newly insured individuals also yields varying results (see Currie and Gruber [1996],

Anderson et al. [2012, 2014], Newhouse and Rand Corporation Insurance Experiment Group [1993]).

Using data from the OHIE, I find that the treatment effect of insurance on ER utilization decreases from

always takers to compliers to never takers. I also find that potential uninsured ER utilization decreases

from always takers to compliers to never takers. Therefore, the selection effect and the treatment effect

of insurance on insured ER utilization decrease as a larger fraction of individuals gain insurance. The

heterogeneous selection and treatment effects that I recover from the OHIE indicate that a different policy

experiment could increase or decrease ER utilization, depending on which individuals it induces to gain

coverage.

In the next section, I present a model that I use to define global external validity in terms of the MTE.

I discuss identification and estimation of the MTE in Section 3. In Section 4, I apply MTE methods to the

OHIE and I extrapolate the results to other contexts, including the Massachusetts health reform. In Section

5, I provide lessons for the design of future experiments, and I conclude.
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2 The MTE and the External Validity of Experiments

2.1 Model of Selection into Treatment within an Experiment

Selection into treatment is the key model element. Suppose D represents a binary treatment such as health

insurance coverage and Y represents an observed outcome such as emergency room utilization. Define YT

as the potential outcome of an individual in the treated state (D = 1), and define YU as the potential

outcome of an individual in the untreated state (D = 0).1 In the OHIE context, YT represents potential

emergency room utilization with health insurance coverage, and YU represents potential emergency room

utilization without health insurance coverage. The following model relates the potential outcomes to the

observed outcome:

Y = (1−D)YU +DYT .

In this model, an individual selects into treatment D based on the net benefit of treatment, ID, which

consists of an observed component p and an unobserved component UD as follows:

ID = p− UD.

Since UD enters (2.1) negatively, I refer to it as the unobserved net cost of treatment. The unobserved net

cost of treatment can have any distribution, but the quantiles of any distribution are distributed uniformly

between 0 and 1. I therefore normalize UD ∼ U(0, 1) so that UD represents the fraction of the population

with a lower unobserved net cost of treatment. In the OHIE context, UD could include pent-up demand for

ER utilization, hypochondria, income, health, and any observable factor that is not specified in the model.

Since p enters (2.1) positively, I refer to it as the observed net benefit of treatment. I specify p such that

it represents the potential fraction treated: p ≡ P (D = 1|Z[, X]) is the probability of treatment given the

observed value of the instrument Z and an optional vector of covariates X. In OHIE context, Z is a binary

indicator for winning the Oregon lottery. For any binary instrument, two values of p are observed. The

first is the rate of treatment among lottery losers pB ≡ P (D = 1|Z = 0), which gives the potential fraction

treated if the entire population were to remain in the baseline world without an experimental intervention.

The second is the rate of treatment among lottery winners pI ≡ P (D = 1|Z = 1), which gives the potential

fraction treated if the entire population were to be eligible for the intervention. The observed probability of

treatment in the full experimental population is a weighted average P (D = 1) = s(pB)pB + s(pI)pI , where

s(pB) ≡ P (Z = 0) represents the share that loses the lottery and s(pI) ≡ P (Z = 1) = 1− s(pB) represents

1Rubin [1974], Rubin [1977], and Holland [1986] developed the idea of potential outcomes. I have changed the traditional
notation from Y1 to YT and Y0 to YU to facilitate simpler notation for concepts that I introduce later.
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the share that wins the lottery.

In the baseline world without an experimental intervention, individuals with unobserved cost of treatment

less than or equal to the observed net benefit of treatment are baseline treated (BT): 0 ≤ UD ≤ pB . All

others are baseline untreated (BU): pB < UD ≤ 1. In a world with the experimental intervention,

individuals with unobserved cost of treatment less than or equal to the observed net benefit of treatment are

intervention treated (IT): 0 ≤ UD ≤ pI . All others are intervention untreated (IU): pI < UD ≤ 1.

Suppose that the experimental intervention increases the observed fraction of individuals to select into

treatment, implying pB < pI . All of the baseline treated individuals continue to receive treatment: these

are always takers: 0 ≤ UD ≤ pB . The baseline untreated individuals with unobserved cost of treatment

less than the intervention treatment probability select into treatment: these are compliers: pB < UD ≤ pI .

The remaining baseline untreated individuals with the highest unobserved net cost of treatment, also known

as the intervention untreated, remain untreated: these are never takers: pI < UD ≤ 1.2

Compliers are individuals who change their takeup behavior from a specific baseline to a specific inter-

vention; therefore, other individuals could be “compliers” for different interventions and different baselines.

Always takers and never takers from one experiment can shift to being compliers in another experiment.

Therefore, the terms “compliers,” “always takers,” and “never takers” are specific to a given baseline and

intervention, and therefore specific to a given experiment. Imagine that the distance between the baseline

and intervention becomes infinitesimal. Further imagine a continuum of potential interventions such that

the individual with the lowest unobserved net cost of treatment (UD = 0) is the complier for the first and

the individual with the highest unobserved net cost of treatment (UD = 1) is the complier for the last. For

each potential intervention in the continuum, the marginal individual is the one for whom the unobserved

net cost of treatment UD is equal to the observed net benefit of treatment p.

2.2 The Marginal Treatment Effect

The marginal treatment effect (MTE), as popularized by Heckman and Vytlacil [1999], is the difference

between the treated potential outcome and the untreated potential outcome for an individual marginal to

selecting into treatment – an individual for whom the unobserved net cost of treatment UD is equal to the

observed net benefit of treatment p:

MTE(p) = E(YT − YU |UD = p).

2The primitives of the model guarantee that the intervention has a monotonic impact on takeup: there are no “defiers” that
would have received the treatment at baseline but do not receive it given the intervention.
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The MTE is defined for a particular value of p, but it can be informative to plot the function MTE(p) as

the potential fraction treated p increases from 0 to 1. If the outcome Y represents the gain from treatment

in dollars, then the MTE can be interpreted as the willingness to pay for treatment for an individual at the

margin of selecting into treatment. In this special case, the function MTE(p) is a demand function. If the

outcome Y instead represents the cost of treatment in dollars, then the function MTE(p) is a marginal cost

function. More generally, Y can represent any outcome that could be affected by treatment, in dollars or

any other units. In the OHIE context, Y is a measure of emergency room utilization.

The marginal treatment effect is the difference between the marginal treated outcome (MTO), and

the marginal untreated outcome (MUO):

MTO(p) = E(YT |UD = p)

MUO(p) = E(YU |UD = p).

I sometimes refer to the marginal untreated outcome MUO(p) as the marginal selection effect MSE(p)

because it identifies selection. A treatment effect should only be observed for individuals who change treat-

ment status. Therefore, any change in the untreated outcome as the fraction treated increases reflects only

selection. In the OHIE context, the difference in ER utilization between the uninsured lottery losers and the

uninsured lottery winners identifies the slope of MUO(p). Under the marginal untreated outcome test

for selection, if MUO(p) is not constant in any range of p, then there must be selection in that range.

The marginal untreated outcome test for selection generalizes the Einav et al. [2010] cost curve test for

selection in insurance markets because it can be applied to any outcome Y and any treatment D. In the

Einav et al. [2010] special case, Y is insurer cost and D is an indicator for enrollment in a generous insurance

plan relative to a basic plan. If marginal insurer cost in the ungenerous plan decreases as enrollment in

the generous plan p increases, then higher-cost individuals have selected into the generous plan. In this

special case, a downward-sloping MUO(p) indicates adverse selection into the generous plan, and an

upward-sloping MUO(p) indicates advantageous selection into the generous plan.

The slope of the marginal treated outcome function MTO(p) reflects treatment effect heterogeneity as

well as selection. In the OHIE context, MTO(p) describes how the ER utilization of the marginal insured

individual changes as coverage increases. If there is no treatment effect heterogeneity, then MTO(p) reflects

selection in the same way that MUO(p) reflects selection: a downward slope indicates that individuals with

higher values of the outcome have selected into treatment. If there is no selection, then MTO(p) reflects how

the treatment effect changes as the fraction treated increases: a downward slope indicates that individuals

with bigger differences between the treated and untreated potential outcomes (and hence more to gain

6



from treatment) have selected into treatment. In the general case with treatment effect heterogeneity and

selection, the slope of MTO(p) at each fraction treated p depends on the sign and magnitude of the selection

and treatment effects.

The marginal treatment effect MTE(p) isolates the treatment effect from MTO(p) by purging out

selection identified by MUO(p). In the special case where the treatment D represents insurance and the

outcome Y represents insurer cost, the treatment effect identified by MTE(p) is known as moral hazard.

Moral hazard need not be the same across all individuals: MTE(p) identifies how moral hazard varies with

selection. Previous research has referred to the way that moral hazard varies with selection as “selection on

moral hazard” (Einav et al. [2010]), but I prefer to refer to it simply as moral hazard to avoid confusing it

with selection.3

2.3 The External Validity of An Experiment

A treatment effect recovered from an experiment is globally externally valid if the MTE is constant for

all p, including p < 0 and p > 1. I define one treatment effect to be locally externally valid for another

if both treatment effects are equal. Empirically, the local average treatment effect (LATE) from the OHIE

might not be globally externally valid, but it could be locally externally valid for other treatment effects of

interest.

3 Identifying and Estimating the MTE with an Experiment

3.1 Identifying Average Characteristics of Always Takers, Compliers, and Never

Takers from an Experiment

Identification of the MTE with an experiment relies on the same information that Abadie [2003] uses to

identify the average characteristics of always takers, never takers, and compliers. Recall that always takers

are individuals with 0 ≤ UD ≤ pB ; compliers are individuals with pB < UD ≤ pI ; and never takers are

individuals with pI < UD ≤ 1. Because UD is distributed uniformly, the share of always takers is pB ; the

share of compliers is (pI − pB); and the share of never takers is (1− pI). An experiment is internally valid

if the distribution of the unobserved net cost of treatment UD is the same among lottery winners and losers.

3Previous attempts to separate selection from moral hazard in insurance markets often conflate the two, especially if moral
hazard varies. For example, under the Chiappori and Salanie [2000] “positive correlation” test, a correlation between insurance
coverage and insured spending could indicate moral hazard as well as selection. Under the Finkelstein and Poterba [2014]
“unused observables” test, a correlation between a covariate and insurance coverage a second correlation between the same
covariate and insured spending could indicate moral hazard as well as selection. Under the Einav et al. [2013] cost curve test,
an insured marginal cost curve MTO(p) that is not constant could indicate moral hazard as well as selection. However, the
cost curve test isolates the selection when applied to MUO(p), and it isolates moral hazard when applied to MTE(p).
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4

The key to identification of average characteristics is that internal validity implies that the shares of always

takers, compliers, and never takers are the same among lottery winners and losers. The individuals who go

untreated despite winning the lottery identify the average characteristics of never takers: E(X|D = 0, Z = 1),

and the individuals who gain treatment despite losing the lottery identify the average characteristics of

always takers: E(X|D = 1, Z = 0). The average characteristics of the individuals who lose the lottery and

go untreated E(X|D = 0, Z = 0) are a weighted average of the average characteristics of never takers and

untreated compliers: compliers who lose the lottery. Because we know the share of compliers and the

average characteristics of never takers, we can calculate the average characteristics of untreated compliers

via

1

pI − pB
[(1− pB)E(X|D = 0, Z = 0)− (1− pI)E(X|D = 0, Z = 1)] . (1)

Similarly, the average characteristics of the treated individuals who win the lottery E(X|D = 1, Z = 1) are

a weighted average of the average characteristics of always takers and treated compliers: compliers who

win the lottery. We can calculate the average characteristics of treated compliers via

1

pI − pB
[pIE(X|D = 1, Z = 1)− pBE(X|D = 1, Z = 0)] . (2)

Because the untreated and treated compliers should have the same characteristics, we can take a weighted

average of both groups using the sample weights s(pB) and s(pI) to obtain an estimate of the average

characteristics of all compliers.5

In practice, few experimenters report the average characteristics of compliers, never takers, and always

takers. Those who do hope that the compliers will have similar characteristics to the always takers and

never takers. If average characteristics are statistically the same across all groups, then they have more

confidence that the LATE that they estimate from the experiment will be valid in other contexts. However,

if the average characteristics of compliers are different from the average characteristics of other groups, they

simply acknowledge the difference and proceed to estimate the LATE. With MTE methods, experimenters

can use the information embodied in the comparison of compliers to always takers and never takers to bound

or estimate a marginal treatment effect function that generalizes the LATE.6

4Covariates can be used to test internal validity. If the lottery winners do not have the same same average characteristics as
the losers, then it is unlikely that the unobserved net cost of treatment UD is the same among lottery winners and losers.

5We can also compare the treated and untreated compliers to test internal validity because both groups should have the
same characteristics if the randomization was conducted correctly.

6Identification of the average characteristics of always takers, never takers, and compliers requires cross-tabulations of the
data by the treatment D as well as the instrument Z. In contrast, identification of the LATE only requires a tabulation of the
outcome Y by the instrument Z and a separate tabulation of the treatment D by the instrument Z. In fact, even if the outcome
Y and the treatment D are only available in separate datasets, then the LATE can still be obtained. It is not surprising, then,
that additional information from cross-tabulations can yield a richer understanding of the treatment effect.
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3.2 Identifying Bounds on Outcomes and Treatment Effects with an Experi-

ment

Applying (1) and (2) to an outcome Y in lieu of a characteristic X identifies the local average untreated

outcome (LAUO): the average outcome of untreated compliers, and the local average treated outcome

(LATO): the average outcome of treated compliers:

LAUO =
1

pI − pB
[(1− pB)BUUO − (1− pI)IUUO] (3)

LATO =
1

pI − pB
[pIITTO − pBBTTO] , (4)

in terms of the intervention untreated untreated outcome (IUUO): E(Y |D = 0, Z = 1); the baseline

untreated untreated outcome (BUUO): E(Y |D = 0, Z = 0); the baseline treated treated outcome

(BTTO): E(Y |D = 1, Z = 0), and the intervention treated treated outcome (ITTO): E(Y |D =

1, Z = 1). The local average treatment effect (LATE) is the difference between the LATO and the

LAUO.

The average outcome of untreated compliers (LAUO) relative to the average outcome of never takers

(IUUO) identifies the average slope of the marginal selection function MUO(p) from pB to 1. Untreated

compliers have lower net unobserved costs of treatment (pB < UD ≤ pI) than never takers (pI < UD ≤ 1), so

all of the untreated compliers select into treatment before all of the never takers. If the untreated compliers

have a higher average outcome than the never takers (LAUO > IUUO), then the marginal selection function

MUO(p) slopes downward on average from pB to 1. In the OHIE context, if the untreated compliers have

higher average uninsured ER utilization than the never takers, then there is adverse selection on average

from the baseline level of coverage to full coverage.

Similarly, the average outcome of treated compliers (LATO) relative to the average outcome of always

takers (BTTO) identifies the slope of the marginal treated outcome function MTO(p) from 0 to pI . Always

takers have lower net unobserved costs of treatment (0 < UD < pB) than treated compliers (pB < UD < pI),

so all of the always takers select in to treatment before all of the treated compliers. If the always takers have

a higher average outcome than the treated compliers (BTTO > LATO), then MTO(p) slopes downward on

average from 0 to pI . In the OHIE context, if the always takers have higher average insured ER utilization

than the treated compliers, then there could be adverse selection or a decreasing treatment effect as coverage

increases from zero to the level of coverage under the intervention.

The assumption that the marginal treated and untreated outcome functions MTO(p) and MUO(p) are

weakly monotonic in p yields bounds on the average treatment effects for always takers and never takers.
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The average treatment effect for always takers, the baseline treated treatment effect (BTTE) is the

difference between the BTTO and the baseline treated untreated outcome (BTUO). The BTUO is

not observed. However, under weak monotonicity of MUO(p) the average untreated outcome of compliers

provides a bound: (BTUO ≤ LAUO < IUTO) or (BTUO ≥ LAUO > IUTO). Similarly, the average

treatment effect for never takers, the intervention untreated treatment effect (IUTE) is equal to

the difference between the intervention untreated treated outcome (IUTO) and the IUUO. Under

weak monotonicity of MTO(p), the average treated outcome of compliers provides a bound on the IUTO:

(IUTO ≤ LATO < BTTO) or (IUTO ≥ LATO > BTTO). In the OHIE context, these bounds could be

useful to ER providers who want to bound ER utilization in the full lottery sample if Oregon were to change

its intervention to provide health insurance to no one or to require everyone to have coverage.

In the case where LAUO > IUUO and BTTO < LATO, the implied upper bound on the average

treatment effect for always takers (BTTE) that is informative about the global external validity of the

LATE because it is strictly less than the LATE.7 In the same case, the implied lower bound on the average

treatment effect for never takers (IUTE) is informative because it is strictly greater than the LATE. The

combination of both bounds implies BTTE < LATE < IUTE. Similarly, in the case where LAUO < IUUO

and BTTO > LATO, the bounds are also informative, implying BTTE > LATE > IUTE. Global external

validity requires that all treatment effects are equal, so global external validity can be rejected in both cases.

In these cases, the marginal untreated outcome and the marginal untreated outcome functions have slopes

of the opposite sign, so the difference between them cannot be constant for all p.

In the two remaining cases in which the slopes of the marginal untreated outcome and marginal treated

outcome curves have slopes of the same sign, the bounds on outcomes could be useful for bounding outcomes

if never takers gained treatment or if always takers lost treatment. However, the implied bounds on treatment

effects in these cases are not informative about global external validity. In these cases, it is possible that the

treatment effect varies, but weak monotonicity of MTO(p) and MUO(p) alone cannot reject global external

validity. Additional structure on MTO(p) and MUO(p) can yield a test of global external validity that is

informative in all cases, and it can yield point estimates in lieu of bounds.

7The proof proceeds as follows:
LAUO > IUUO =⇒ BTUO ≥LAUO (by weak monotonicity of MUO(p))

=⇒ BTTO −BTTE −BTTO≥LAUO (by BTTE = BTTO −BTUO −BUUO))

=⇒ −BTTE ≥LAUO −BTTO

=⇒ BTTE ≤BTTO − LAUO

=⇒ BTTE ≤LATE + BTTO − LATO (by LATE = LATO − LAUO)

=⇒ BTTE ≤LATE + BTTO − LATO < LATE (if BTTO < LATO).
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3.3 Identifying the Linear MTE with an Experiment

Brinch et al. [2012] impose structure on MUO(p) and MTO(p) to identify a linear MTE with a binary

instrument. They assume that the slope of MUO(p) at every point from 0 to 1 is equal to the average slope

of MUO(p) from pB to 1. They also assume that the slope of MTO(p) at every point from 0 to 1 is equal to

the average slope of MTO(p) from 0 to pI . These assumptions introduce heterogeneity in outcomes within

always takers, compliers, and never takers, while preserving the mean outcomes. Furthermore, MUO(pI) is

the untreated outcome of the last complier and the first never taker to select into treatment, and MTO(pB)

is the treated outcome of the last always taker and the first complier to select into treatment.

Under these assumptions, the two points (pB+pI

2 , LAUO) and (pI+1
2 , IUUO) identify the linear MUO(p)

and the two points (pB

2 , BTTO) and (pB+pI

2 , LATO) identify the linear MTO(p):

MUO(p) =
(1 + pI)BUUO − (1 + pB)IUUO

pI − pB
+

2(IUUO −BUUO)

pI − pB
p (5)

MTO(p) = BTTO − pB
pI − pB

(ITTO −BTTO)+
2(ITTO −BTTO)

pI − pB
p. (6)

The linear MTE is the difference between the linear marginal treated outcome function MTO(p) and the

linear marginal untreated outcome function MUO(p):

MTE(p) =
1

pI − pB
(pI(BTTO −BUUO) + pB(IUUO − ITTO) + (IUUO −BUUO))

+
2

pI − pB
((ITTO − IUUO)− (BTTO −BUUO))p. (7)

Brinch et al. [2012] derive MTE(p) without constructing the LATO and the LAUO using the average

untreated outcome (AUO): AUO(p)= E(YT |X = x, UD > p) =
∫ 1

p
MUO(p)dp, and the average

treated outcome (ATO): ATO(p)= E(YT |X = x, UD ≤ p) =
∫ p

0
MTO(p)dp. Linearity of MTO(p) and

MUO(p) implies linearity of AUO(p) and ATO(p). The two points (pB , BUUO) and (pI , ITTO) identify

the linear AUO(p), and the two points (pB , BTTO) and (pI , ITTO) identify the linear ATO(p):

AUO(p) = BUUO− pB
pI − pB

(IUUO −BUUO)+
IUUO −BUUO

pI − pB
p (8)

ATO(p) = BTTO− pB
pI − pB

(ITTO −BTTO) +
ITTO −BTTO

pI − pB
p, (9)

from which they derive the linear marginal untreated outcome function MUO(p)8 and the linear marginal

treated outcome function MUO(p).9

8MUO(p) =
d[(1−p)AUO(p)]

d(1−p)
= − d[(1−p)AUO(p)]

dp
= −(1− p)

dAUO(p)
dp

−AUO(p).

9MTO(p) =
d[pATO(p)]

dp
= p

dATO(p)
dp

+ ATO(p)
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3.4 Identifying Treated Outcomes, and Untreated Outcomes, and Treatment

Effects from the Linear MTE from an Experiment

We can construct inframarginal treated outcomes, untreated outcomes, and treatment effects from the linear

MTO(p), MUO(p) and MTE(p) by applying general weights ωg(p) to all three functions:

gTO =

∫ 1

0

ωg(p)MTO(p)dp (10)

gUO = gSE =

∫ 1

0

ωg(p)MUO(p)dp =

∫ 1

0

ωg(p)MSE(p)dp (11)

gTE =

∫ 1

0

ωg(p)MTE(p)dp (12)

where gTO is the general weighted average treated outcome (TO), gUO = gSE is the general weighted

average untreated outcome (UO) or selection effect (SE), and gTE is the general weighted average

treatment effect (TE). For general weights ωg, the weighted average treatment effect is equal to the

difference between the weighted average treated outcome and the weighted average untreated outcome:

gTE = gTO − gUO.

Experiments involve several interesting groups of individuals g, each represented by a different set of

general weights ωg(p). First consider baseline treated individuals, also known as always takers, for whom

0 ≤ UD ≤ pB . For baseline treated individuals, the weights are

ωBT (p) =


1
pB

if 0 ≤ p ≤ pB

0 if pB < p ≤ 1,

as shown in Column 1 of Table 1. We observe the potential treated outcome for these individuals: E(YT |0 ≤

UD ≤ pB) = E(Y |D = 1, Z = 0) = BTTO. The BTTO and all other quantities that do not require

the linear MTE for identification are depicted in bold in Table 1. We do not observe the baseline treated

untreated outcome BTUO = E(YU |0 ≤ UD ≤ pB) because always takers always receive treatment. However,

we can calculate it with (11). We can also calculate the average effect of treatment on always takers, the

baseline treated treatment effect BTTE = E(YT − YU |0 ≤ UD ≤ pB).

Similarly, Column 2 gives weights for the baseline untreated individuals (compliers and never takers).

For these individuals, we observe the baseline untreated untreated outcome (BUUO). The linear MTE iden-

tifies the baseline untreated treated outcome (BUTO) and the baseline untreated treatment effect (BTTE).

Columns 3 and 4 give weights for the intervention treated (IT) individuals (always takers and compliers)

and the intervention untreated (IU) individuals (never takers).
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Table 1: Treated Outcomes, Untreated Outcome, and Treatment Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline 
Treated 

Baseline 
Untreated

Intervention 
Treated

Intervention 
Untreated

Randomized 
Intervention 

Randomized 
Intervention 

Local 
Average

(Always Takers) (Never Takers) Sample Treated Sample Untreated (Compliers)

BT BU IT IU RIST RISU LA A

(RISOLS - 
RISTTE)/RISOLS

RISTTE/RISOLS

(RISOLS - 
RISUTE)/RISOLS

RISUTE/RISOLS

BUTE/BUTO

ITUO/ITTO

ITTE/ITTO

IUUO/IUTO

IUTE/IUTO

Treatment Effect
TE/OLS

OLS = TTO - UUO

(BOLS - 
BTTE)/BOLS

BTTE/BOLS

(BOLS - 
BUTE)/BOLS

BUTE/BOLS

(IOLS - 
ITTE)/IOLS

ITTE/IOLS

(IOLS - 
IUTE)/IOLS

IUTE/IOLS

1

Calculation of the bold quantities does not rely on the linear MTE.

Average

- -

(g) OLS Decomposition

Selection
(OLS - TE)/OLS

- -

(f)

AUO/ATO

ATE/ATO

RISTUO/RISTTO

RISTTE/RISTTO

RISUUO/RISUTO

BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO

BUUO/BUTO

(e) Decomposition

Selection
UO/TO

(d)

Treatment Effect
TE/TO

BTUO/BTTO

BTTE/BTTO RISUTE/RISUTO

LAUO/LATO

LATE/LATO

0 0

0 0 0 0

ITUO

1

0 0

0 0

RISTTE RISUTE LATE ATE

IUUO RISTUO RISUUO LAUO AUO

1

OLS Estimates  

ITTO IUTO RISTTO RISUTO LATO ATO(a) MTO(p) 
Treated Outcome
TO

BTTO BUTO

(c)
MTE(p) = 
MTO(p) - MUO(p)

Treatment Effect
TE = TO - UO

BTTE BUTE

(b) MUO(p)
Untreated Outcome
UO

BTUO BUUO

ITTE IUTE

𝟏𝟏
𝐩𝐩𝐁𝐁

𝟏𝟏
(𝟏𝟏 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
(𝟏𝟏 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
𝐩𝐩𝐈𝐈

𝟏𝟏
𝐩𝐩𝐈𝐈

𝟏𝟏
(𝟏𝟏 − 𝐩𝐩𝐈𝐈)

𝐬𝐬(𝐩𝐩𝐈𝐈)
𝐩𝐩𝐁𝐁 + 𝐬𝐬(𝐩𝐩𝐈𝐈)(𝐩𝐩𝐈𝐈 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
𝐩𝐩𝐁𝐁 + 𝐬𝐬(𝐩𝐩𝐈𝐈)(𝐩𝐩𝐈𝐈 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
(𝐩𝐩𝐈𝐈 − 𝐩𝐩𝐁𝐁)

𝐬𝐬(𝐩𝐩𝐁𝐁)
𝟏𝟏 − 𝐬𝐬(𝐩𝐩𝐈𝐈)𝐩𝐩𝐈𝐈 − 𝐬𝐬(𝐩𝐩𝐁𝐁)𝐩𝐩𝐁𝐁

𝟏𝟏
𝟏𝟏 − 𝐬𝐬(𝐩𝐩𝐈𝐈)𝐩𝐩𝐈𝐈 − 𝐬𝐬(𝐩𝐩𝐁𝐁)𝐩𝐩𝐁𝐁

if 0 ≤ p ≤ 𝑝𝑝𝐵𝐵 ∶

if 𝑝𝑝𝐵𝐵 < p ≤ 𝑝𝑝𝐼𝐼 ∶

if 𝑝𝑝𝐼𝐼 < p ≤ 1 ∶
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In contrast to the baseline and intervention weights, the randomized intervention sample (RIS) weights

that I introduce in Columns 5 and 6 reflect the fraction of the sample that loses the lottery s(pB). The

randomized intervention sample treated treated outcome (RISTTO) and the randomized intervention sample

untreated untreated outcome (RISTUUO) are both observed. In the context of the OHIE, they give the

average ER utilization among the insured and the uninsured individuals in the experiment, respectively.

Column 7 reports the local average weights, which yield the LATE. Experimenters often refer to the

LATE as the “treatment on the treated” estimate, which can be misleading. The LATE gives the treatment

effect on compliers, but always takers are also treated. The weights that I have introduced allow me to

calculate treatment effects for various treated groups, while the traditional Heckman and Vytlacil [2007]

weights for a continuous instrument used by Brinch et al. [2012] only yield one “treatment on the treated”

estimate. Using my weights, the baseline treated treatment effect BTTE gives a “treatment on the treated”

estimate for always takers; the intervention treated treatment effect ITTE gives a “treatment on the treated”

estimate for always takers and compliers; and the randomized intervention sample treated treatment effect

RISTTE gives a “treatment on the treated” estimate for always takers and compliers, weighted by the share

that loses the lottery s(pB). The terms LATE, BTTE, ITTE, and RISTTE convey which groups of treated

individuals are included, while “treatment on the treated” does not.

Column 6 reports the average weights ωA(p) = 1. The average weights are equal to the sum of the

weights for always takers, compliers and never takers ωA(p) = ωBT (p) + ωLA(p) + ωIU (p). The ATO, AUO,

and ATE are not observed, but they can be calculated with the linear MTE. In the context of the OHIE,

the ATO gives the average ER utilization if all individuals were insured, and the AUO gives the average ER

utilization if all individuals were uninsured.

The average weights ωA(p) = 1 are the only weights in Table 1 that do not expect a specific experimental

intervention. Any given experimental intervention shifts the treatment probability from a specific pB to a

specific pI . By substituting hypothetical values of pB and pI in the formulas in Table 1, experimenters can

forecast treated outcomes, untreated outcomes, and treatment effects from hypothetical new experimental

intervention. The randomized intervention sample weights ωRIS(p) reflect the experimental design as well

as the experimental intervention because they reflect the share of individuals who win the lottery s(pI).

By substituting hypothetical values of s(pI) and s(pB) = 1 − s(pI) into ωRIS(p), experimenters can fore-

cast treated outcomes and untreated outcomes from hypothetical new experiments that alter the share of

individuals who lose the lottery.

Estimates of treated and untreated outcomes can be useful for budgeting hypothetical new experiments.

In the OHIE context, suppose that Oregon policymakers have the results from the OHIE, and they are

contemplating making more coverage available via a new experimental intervention in which lottery winners
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who sign up for health insurance will also receive an additional incentive, such as $200 in cash. Suppose

that pilot tests indicate that the new intervention treatment probability p′I will exceed pI from the OHIE.

By computing the RISTTO with cost as an outcome for hypothetical values of p′I and s(pI), policymakers

can determine how many individuals they can classify as lottery winners in the new experiment while still

meeting their budget goals.

3.5 Identifying Optimal Treatment Probabilities with the Linear MTE from an

Experiment

The linear MTE allows for positive treatment effects in some groups (gTE > 0) and negative treatment

effects in others (gTE < 0). Consider the case where the MTE is downward-sloping10. Define p∗ as the

potential fraction treated p at which the linear MTE is zero:

p∗ = −pI(BTTO −BUUO) + pB(IUUO − ITTO) + (IUUO −BUUO)

2((ITTO − IUUO)− (BTTO −BUUO))
. (13)

If 0 < p∗ < 1, then p∗ gives the potential share of individuals in the full sample with a positive treatment

effect. The downward-sloping MTE indicates that individuals with positive treatment effects select into

coverage first, so the first p∗ of individuals to select into treatment have a positive treatment effect, and the

remaining individuals have a negative treatment effect.

In this case, if a policymaker wants all individuals with positive treatment effects to receive treatment,

then p∗ gives the optimal value of the intervention treatment probability pI . If the intervention treatment

probability from an experiment is not equal to the optimal probability, then the experimenter can recommend

policies that make treatment more or less attractive to bring pI closer to p∗. The experimenter can then

test whether pI = p∗ with a new experiment.

Next consider the case where the MTE is upward-sloping11 with 0 < p∗ < 1. If a policymaker wants all

individuals with positive treatment effects to receive treatment, then the optimal fraction of individuals to

treat is (1 − p∗). Unfortunately, it is harder to target those individuals because the first p∗ individuals to

select into treatment should not receive it. In this case, the optimal policy does not simply involve making

the treatment more or less attractive for all individuals. Rather, it involves targeting the treatment to the

individuals who should receive it.

Instead, it involves it also involves manipulating the net unobserved cost of treatment UD such that

the individuals with positive treatment effects select in to treatment before the individuals with negative

treatment effects.

10((ITTO − IUUO)− (BTTO −BUUO)) < 0
11((ITTO − IUUO)− (BTTO −BUUO)) > 0
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The remaining cases are straightforward. If the linear MTE is always positive in the range 0 < p < 1,

then it is optimal to treat everyone. If the linear MTE is always negative in the range 0 < p < 1, then it is

optimal to treat no one.

If the outcome Y measures the benefit of treatment in dollars, then MTE(p) can be used to calculate

the deadweight loss that results from treating a suboptimal fraction of individuals. If the baseline treatment

probability is optimal (pB = p∗), then the deadweight loss is equal to the integral of MTE(p) from pB to

pI , which is also equal to the LATE. Under this interpretation, the LATE is the distortion associated with

shifting the treatment probability from the baseline probability pB to the intervention probability pI with

the intervention. In the Einav et al. [2010] OHIE context, if Y measures the cost to the insurer in the

generous plan relative to the ungenerous plan, and pB is optimal, then the LATE gives the deadweight loss

due to moral hazard.12

The optimal treatment threshold need not be zero. Suppose that there are two different linear MTE

curves: one measures benefit in dollars, and the other measures cost in dollars. Given these two curves, the

optimal treatment threshold does not occur at p∗ where the benefit MTE intersects zero; it occurs where

the benefit MTE intersects the cost MTE (marginal benefit equals marginal cost).

3.6 Decomposing Treated Outcomes from an Experiment into Selection and

Treatment Effects

All of the treatment effects in Table 1 have been purged of selection. However, all of the treated outcomes

do reflect selection. For any group g of individuals represented by general weights ωg, we can decompose the

treated outcome into shares due to selection and treatment effects as follows:

gSE

gT0︸ ︷︷ ︸
selection

+
gTE

gT0︸ ︷︷ ︸
treatment

= 1,

because gTO = gSE + gTE. In the OHIE context, this decomposition tells us what share of insured ER

utilization in any group g is due to the composition of the group as opposed to moral hazard in that group.

We can also decompose a change in treated outcomes across groups into selection and treatment effects.

It is particularly useful to understand the change in the treated outcome induced by an experiment: ITTO−
12The LATE does not give the deadweight loss due to selection, which has been purged from the MTE.

16



BTTO. We can decompose the difference into shares due to selection and treatment as follows13:

IUUO −BUUO
ITTO −BTTO︸ ︷︷ ︸

selection

+
(ITTO − IUUO)− (BTTO −BUUO)

ITTO −BTTO︸ ︷︷ ︸
treatment

= 1.

This decomposition requires the same assumptions as the linear MTE, but it can be calculated directly

from observable quantities even if the linear MTE has not been calculated. Different experiments start from

different baseline probabilities of treatment pB and induce different intervention probabilities of treatment

pI . However, this decomposition should give the same outcome regardless of the experiment.14 In the

OHIE context, this decomposition tells us what share of the change in insured ER utilization induced by the

experiment is due to selection relative to moral hazard. I also implement a similar decomposition to assess

what share of the difference in utilization between always takers and compliers is due to selection relative to

moral hazard.

3.7 Decomposing OLS Estimates from an Experiment into Selection and Treat-

ment Effects

Consider an OLS regression run on the sample of individuals that lose the lottery, the baseline individu-

als. The baseline OLS (BOLS) estimate is the difference between the baseline treated treated outcome

(BTTO) and the baseline untreated untreated outcome (BUUO). BOLS can be affected by selection because

it compares the observed outcome for a group of treated individuals, BTTO = E(YT |0 ≤ UD ≤ pB), to

the observed outcome for a different group untreated individuals BUUO = E(YU |pB ≤ UD ≤ 1), instead of

comparing it to the potential untreated outcome for the treated individuals BTUO = E(YU |0 ≤ UD ≤ pB).

We can decompose BOLS into shares due to selection and treatment effects as follows:

BTTE −BOLS
BOLS︸ ︷︷ ︸
selection

+
BTTE

BOLS︸ ︷︷ ︸
treatment

= 1.

An alternative reason for why BOLS can be affected by selection is that it compares the observed outcome

for a group of untreated individuals BUUO = E(YU |pB ≤ UD ≤ 1) to the observed outcome for a different

treated individuals BTTO = E(YT |0 ≤ UD ≤ pB), instead of comparing it to the potential treated outcome

for the untreated individuals BUTO = E(YT |pB ≤ UD ≤ 1). Therefore, we can also decompose BOLS into

13This follows because ITTO = ITUO + ITTE and BTTO = BTUO + BTTE. Furthermore, ITUO − BTUO = IUUO −
BUUO.

14To see this, note that the slope of the linear marginal untreated outcome function MUO relative to the slope of the linear
marginal treated outcome function MTO determines the share due to selection.
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shares due to selection and treatment effects as follows:

BUTE −BOLS
BOLS︸ ︷︷ ︸
selection

+
BUTE

BOLS︸ ︷︷ ︸
treatment

= 1.

Similarly, the intervention OLS (IOLS) estimate is the difference between the intervention treated

treated outcome (ITTO) and the intervention untreated untreated outcome (IUUO). We can decompose

IOLS into shares due to selection and treatment effects in two ways, as shown in Row e of Table 1. Selection

and treatment effects can vary from BOLS to IOLS, so there is no reason to expect that their respective

decompositions will yield the same answers.

Rather than estimating BOLS and IOLS separately, experimenters often report randomized interven-

tion sample OLS (RISOLS), the OLS estimate on the full sample. RISOLS is a weighted average of

BOLS and IOLS, weighted by the share of individuals lotteried out s(pB). RISOLS is also equal to the dif-

ference between the randomized intervention sample treated treated outcome (RISTTO) and the randomized

intervention sample untreated untreated outcome (RISUUO). We can decompose RISOLS into the shares

due to selection and treatment effects in two ways as as shown in Row e of Table 1.

Experimenters often compare LATE to RISOLS with the intent of obtaining the share of RISOLS

due to the treatment effect. If there is no treatment effect heterogeneity, then (LATE/RISOLS) =

(RISTE/RISOLS) = (RISUE/RISOLS), and all three fractions give the share of the OLS estimate

due to the treatment effect. However, if there is treatment effect heterogeneity, then RISTE and RISUE are

directly comparable to RISOLS because they reflect the same mix of individuals, but LATE is not directly

comparable to RISOLS because it only reflects compliers.

Although it is common to report RISOLS, it is not a very informative statistic for two reasons. First,

unlike BOLS, it reflects the impact of the experimental intervention. Second, unlike BOLS and IOLS,

RISOLS reflects the share of the sample that loses the lottery s(pB), so it changes with the experimental

design. I recommend reporting BOLS and IOLS in addition to RISOLS. Under the assumptions required to

identify the linear MTE, the comparison of BOLS to IOLS provides a test for global external validity.

3.8 Difference-in-Difference Test

Angrist [2004], Brinch et al. [2012], and Bertanha and Imbens [2014] propose tests for global external validity

that I implement using the following difference-in-difference regression:

Y = λDZDZ + λDD + λZZ + λ, (14)
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where Y is the outcome, λD is the coefficient on the binary indicator for selecting into the treatment D, λZ

is the coefficient on the binary indicator for winning the lottery Z, λDZ is the coefficient on the interaction

of selecting into treatment and winning the lottery, and λ is the coefficient on the constant term. This

regression compares four observable experimental average outcomes: the baseline treated treated outcome

BTTO = E(Y |D = 1, Z = 0); the baseline untreated untreated outcome BUUO = E(Y |D = 0, Z = 0); the

intervention treated treated outcome ITTO = E(Y |D = 1, Z = 1); and the intervention untreated untreated

outcome IUUO = E(Y |D = 0, Z = 1).

The coefficient λD is equal to BTTO−BUUO, which is equal to the baseline OLS estimate BOLS. On

its own, λD does not inform the presence or absence of selection or a heterogeneous treatment effect. Even

if λD = 0, there could be selection and a heterogeneous treatment effect that balances it.

The coefficient λZ is equal to IUUO−BUUO. If λZ = 0, then there is no selection. However, the absence

of selection does not imply global external validity because the treatment effect can still be heterogeneous.

In general, even if there is no selection, BOLS 6= IOLS 6= RISOLS 6= LATE.

The coefficient λDZ is equal to ((ITTO−IUUO)−(BTTO−BUUO)), which is equal to IOLS−BOLS.

If and only if IOLS is equal to BOLS, then λDZ = 0, and any treatment effect derived from the linear MTE

from an experiment is globally externally valid. When this condition holds, the linear MTE has zero slope,

per (7), so there is no treatment effect heterogeneity.

The regression in (14) makes these tests simple to implement. The asymptotic or bootstrapped standard

errors from the regression provide direct tests for whether each coefficient is equal to zero. The joint test of

λDZ = λD = 0, which tests whether the treatment effect is globally externally valid and equal to zero can

be implemented as a post-estimation t-test.

The difference-in-difference test can reject external validity even if MTO(p) and MUO(p) have slopes

of the same sign. In contrast, the bounds that I introduced in Section 3.2 can only reject global external

validity if MTO(p) and MUO(p) have slopes of the opposite sign because they impose less structure. The

bounds impose weak monotonicity of MTO(p) and MUO(p), but the difference-in-difference test imposes

linearity of MTO(p) and MUO(p). An experimenter willing to impose linearity of MTO(p) and MUO(p) for

the difference-in-difference test can recover the linear MTE and all of the quantities derived from it without

imposing further assumptions.

3.9 Difference-in-Difference Test Using Covariates

We can incorporate covariates into the difference-in-difference test to formalize the comparison of the char-

acteristics of always takers, never takers, and compliers discussed in Section 3.1. Suppose that we implement

(14) using a single covariate from the vector X as the dependent variable in lieu of the outcome Y . In this
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implementation, the coefficient λD tests whether the observable characteristic is related to baseline takeup;

the coefficient λZ tests whether the experiment induces selection on that observable characteristic; and the

coefficient λDZ tests whether the observable characteristic has a different relationship to intervention takeup

than it does to baseline takeup.

We can obtain further insight by regressing the outcome Y on the same covariate in the sample of lottery

losers. Using the estimated coefficients, we can obtain a predicted outcome for all lottery losers and winners,

and we can use that predicted outcome as the dependent variable in a new difference-in-difference test. If

we find a nonzero coefficient using the actual outcome, but we do not reject that the coefficients is equal to

zero using the predicted outcome, then we have found an observable basis for baseline takeup, selection, or

selection on the treatment effect, respectively.

We can also implement a more powerful test by predicting the outcome Y using the entire vector of

covariates X in the sample of lottery losers. If we cannot reject zero for all coefficients in the resulting

difference-in-difference test, then we can be more confident that all selection has an observable basis. In

insurance markets, if there is an observable basis for selection, then pricing or risk adjustment on that

observable basis could alleviate or eliminate welfare losses (Bundorf et al. [2012].

3.10 Using Covariates for Subgroup Analysis and Sample Re-weighting with

Linear MTE Methods

Subgroup analysis divides the sample into subgroups, generally one covariate at a time, and compares the

LATEs estimated within each subgroup. If the LATE on the full sample is globally externally valid, then the

LATE should be the same in each subgroup. The linear MTE should also be the same within each subgroup.

However, if the LATE on the full sample is not globally externally valid, then the LATE and MTE need not

be the same in each subgroup. Even if the linear MTE is the same within each subgroup, each subgroup s

can have a different support from pBs to pIs and hence a different LATE.

If subgroup analysis yields different LATEs in each subgroup, experimenters often re-weight the experi-

mental sample to extrapolate the results to a second sample. Sample re-weighting should produce relevant

results in the second sample if the LATE in each subgroup is globally externally valid. However, if the LATE

in each subgroup is not globally externally valid, then the experimenter should re-weight using the MTE in

each subgroup, taking pBs and pIs in the second sample into account.
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3.11 Identifying a Linear or Nonlinear MTE with an Experiment and Covariates

We can combine information across subgroups to estimate richer MTE functions. Within each subgroup

s, the two points (pBs, BUUOs) and (pIs, IUUOs) identify a linear average cost curve for the untreated,

and the two points (pBs, BTTOs) and (pIs, ITTOs) identify a linear average cost curve for the treated.

However, if we assume that the MTE is the same across subgroups, then we have four points to identify

linear or nonlinear average cost curves for the treated and untreated. By further subdividing the sample

into finer subgroups, we can achieve nonparametric identification of the MTE. Furthermore, if we are willing

to impose some structure on how covariates enter the MTE, then we need not assume that the MTE is the

same across subgroups.

Brinch et al. [2012] specify the following functional forms that impose some structure on how covariates

enter the MTE, MTO, and MUO while allowing them to differ across subgroups with the same vector of

characteristics X = x:

MTE(x, p) = E(YT − YU |X = x, UD = p)=(βT − βU )′x+ (mto(p)−muo(p)). (15)

MTO(x, p) = E(YT |X = x, UD = p) =β′Tx+mto(p) (16)

MUO(x, p) = E(YU |X = x, UD = p) =β′Ux+muo(p). (17)

where the first component of each function depends on the observed vector of characteristics x, and the

second component depends on the unobserved net cost of treatment UD. Variation across subgroups in the

observed outcomes identifies the additive shifts β′Tx and β′Ux. Variation across subgroups in the unobserved

net cost of treatment pBx and pIx identifies the slopes mto(p) and muo(p).15

The additive separability imposed by (15)-(17) is weaker than additive separability often imposed by

experimenters. For example, by including covariates additively in an instrument variable regression model,

experimenters assume that covariates induce the same additive shift in the observed outcome Y regardless

of treatment status. In contrast, (15)-(17) allow covariates to shift the treated potential outcome YT and

the untreated potential outcome YU by different amounts.

The experimenter can summarize heterogeneity in the treatment effect across subgroups by graphing the

average MTE over all individuals i in the experiment: MTE(x, p) =
∑

i(βT − βU )′xi + (mto(p)−muo(p)).

To demonstrate the maximum range of treatment effects, the experimenter can also graph the MTEs with

the smallest and largest observable components: minMTE(x, p) = mini (βT − βU )′xi + (mto(p)−muo(p))

and maxMTE(x, p) = maxi (βT − βU )′xi + (mto(p) −muo(p)). A table that reports (βT − βU )′x for each

15I specify the slopes in lowercase to avoid confusion with MTO(p) and MUO(p), the linear marginal treated and untreated
outcome functions that do not depend on x.
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subgroup and (mto(p) − muo(p)) for the reference subgroup gives all information necessary to construct

MTE(x, p) for each subgroup.

3.12 Identifying Treated Outcomes, Untreated Outcomes, and Treatment Ef-

fects from the Linear or Nonlinear MTEs with Covariates from an Exper-

iment

We can construct inframarginal treated outcomes, untreated outcomes, and treatment effects from the lin-

ear or nonlinear MTO(x, p), MUO(x, p) and MTE(x, p) by applying general weights ωg(x, p) to all three

functions:

gTO(x) =

∫ 1

0

ωg(x, p)MTO(x, p)dp (18)

gUO(x) = gSE(x) =

∫ 1

0

ωg(x, p)MUO(x, p)dp =

∫ 1

0

ωg(x, p)MSE(x, p)dp (19)

gTE(x) =

∫ 1

0

ωg(x, p)MTE(x, p)dp (20)

the weights ωg(x, p) are the same as those given in Row D of Table 1, except that they are a function of

the predicted propensity score pBx or pIx for individuals with covariate vector x in lieu of the full sample

pB or pI . These weights are very different from the weights graphed by Brinch et al. [2012]. The weights

that I have developed here explicitly account for the binary instrument. Rather than reporting (18)-(20) at

a single value of x, I evaluate them for every x in the sample and report the averages gTO(x), gUO(x), and

gTE(x).

3.13 Identifying Optimal Treatment Probabilities with the MTE from an Ex-

periment and Covariates

Brinch et al. [2012] do not discuss the possibility of using the MTE model that incorporates covariates to

identify heterogeneous treatment effects across subgroups. Such an exercise could be useful to an experi-

menter who wants to predict which groups of individuals are likely to react positively or negatively to an

intervention. Identification of positive and negative treatment effects from an MTE with covariates is similar

to identification in the case without covariates discussed in Section 3.5, but the predictions are richer.

Suppose that the linear MTE or the nonlinear MTE with covariates is weakly downward-sloping. In some

subgroups of individuals with covariate vector X = x, the observable component of the MTE, (βT − βU )′x,

might be large enough that the MTE is always above zero for all potential treated fractions 0 ≤ p ≤ 1. In

those subgroups, all members have a positive treatment effect. Similarly, in other subgroups, (βT − βU )′x
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might be negative enough that the MTE is always below zero for all potential treated fractions 0 ≤ p ≤ 1.

In those subgroups, all members have a negative treatment effect.

In any remaining subgroups, the MTE crosses zero at 0 < p∗x < 1. Individuals in those subgroups will

have a positive treatment effect if they have unobserved net costs of treatment UD less than the threshold

p∗x in their subgroup; they will have a negative treatment effect otherwise. Equivalently, the first p∗x of

individuals in the subgroup to sign up for treatment will have a positive treatment effect, and the remaining

individuals will have a negative treatment effect. Thus, the sign of the treatment effect depends on the

potential fraction treated. If a policymaker wants all individuals with positive treatment effects to receive

treatment, then p∗x gives the optimal fraction of the subgroup to treat.

Suppose that the linear MTE is upward-sloping or that a nonlinear MTE is upward-sloping for some

0 < p∗x < 1. In these cases, analysis follows as discussed in Section 3.5. the optimal policy will shift the

order that individuals select into treatment by altering UD.

3.14 Extrapolating an MTE to Another Experiment on the Same Sample

Suppose that the only difference between two different experiments on the same sample is that they involve

different baseline and intervention treatment probabilities pI and pB . In this case, both experiments should

recover the same MTE functions. In practice, if the MTE varies across experiments, then we can conclude,

in the spirit of a Hausman [1978] test, that one of the experiments is invalid or that an assumption required

for MTE estimation is violated.

If anything other than the treatment probabilities varies across experiments, then the MTE functions

might not be comparable. For example, Y must be measured in the same way across experiments for the

MTEs to be the same. Even within a single experiment, the MTE for one outcome can be upward-sloping

while the MTE for another outcome can be downward-sloping. For example, in the OHIE context, if primary

care utilization and ER utilization are substitutes for all individuals, then the MTE for primary care can be

upward-sloping even as the MTE for ER utilization is downward-sloping.

The treatment D must also be measured in the same way across experiments the MTEs to be the same.

Different measures of treatment result in different intervention and treatment probabilities pI and pB . They

also result in different marginal treated and untreated outcome curves because the individuals used to identify

those curves vary as the definition of treatment varies.

For the MTE with covariates, the entire vector of covariates must be available and measured in a stan-

dardized way for the MTEs across experiments to be the same. It is tempting to think of the linear MTE

is an approximation to the MTE with covariates. However, the covariates change the interpretation of the

unobserved net cost of treatment UD. As more covariates are included in model, they are purged from the
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residual unobserved net cost of treatment UD in the spirit of Altonji et al. [2005]. In the limit, if every

element of the unobservable becomes observed, then the MTE becomes a horizontal line.

Identification of the MTE with an experiment requires that the experiment changes the threshold for

selection into treatment, but it does not change the order in which individuals select into treatment given by

UD. If one experiment does not change UD but a second experiment does, then the MTE functions identified

by both experiments need not be the same. The MTE could be upward-sloping in one experiment and

downward-sloping in another if one experiment changes the ordering of selection into treatment. However,

the ATEs recovered from the MTEs from both experiments will be the same.

Suppose that the only difference between a proposed experiment and an existing experiment on the

same sample is that one experiment offers a larger treatment incentive than the other, resulting in a larger

intervention treated fraction pI . In this case, it should be reasonable for the experimenter to extrapolate

from the MTE function from one experiment to the next. However, even in this case, the experimenter

should exercise caution if the intervention treated fraction pI induced by the new experiment is far outside

of the support of the existing experiment.

3.15 Extrapolating to the Experiment Interpreted as a Natural Experiment

Any experiment can be interpreted as a natural experiment that took place in the post-period but not in

the pre-period for lottery winners. If some individuals receive the treatment in the pre-period, ensuring that

there are some always-takers, then we can estimate an MTE with the natural experiment and compare it to

the MTE estimated with the randomized experiment. Assumign that the conditions require to compare two

different experiments on the same sample from Section 3.14 are met, the MTEs from both experiments should

equal, so we can compare them with a Hausman [1978] test. In the OHIE context, no individuals receive

insurance in the pre-period because they must be uninsured to enter the lottery, so we cannot estimate a

separate MTE using the natural experiment. However, we can use the observed change in outcomes from

the pre-period to the experimental period (Y − Ypre) to validate the predictions from the MTE estimated

with the randomized experiment.

3.16 Extrapolating the MTE to an Experiment on a Different Sample

I provide several cases under which it is possible to compare MTEs from experiments on different samples.

Each case imposes some structure on how the samples are drawn from a broader pool. In each case, assume

that the conditions required to compare two different experiments on the same sample from Section 3.14 are

met.

In the simplest case, suppose that both samples are drawn at random from a broader pool. This case
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differs from the comparison of different experiments on the same sample because the same individuals need

not be in the experimental data for both experiments. In this case, the MTEs should be the same for both

experiments.

Next, suppose that both samples are not strictly drawn at random from the broader pool because the

second experiment over-samples individuals with a characteristic that is observable in both samples. Further

suppose that the observable characteristic is independent of the unobserved net cost of treatment UD in the

experiment that does not over-sample. In this case, the potential fraction treated p has the same meaning

in both samples, and the MTEs should be the same for both experiments.

In a related case, suppose that the second experiment over-samples individuals with a characteristic

that is observable in both samples, but that characteristic is not independent of the unobserved net cost of

treatment UD in the first experiment. In this case, the linear MTEs need not be equal because the potential

fraction treated p does not have the same meaning in both examples. However, by specifying the correct

model of over-sampling, it should be possible to construct MTEs with covariates that are the same for both

experiments.

In a different case, suppose that the first experimental sample is drawn at random from the broader

pool and the second experimental sample is drawn at random from a set of individuals who sign up for a

lottery from the broader pool. To compare the MTEs, the experimenter must take a stand on the range of

unobserved cost of treatment UD from the broader pool that is represented by the individuals who sign up

for the lottery. Suppose that the distribution of observable characteristics does not differ across samples.

One natural assumption is that the fraction f of individuals who sign up for the lottery would be the first

to select into treatment in the broader sample. If this assumption holds, then the MTE from 0 ≤ p ≤ 1 on

the individuals who sign up for the lottery should be equal to the MTE from 0 ≤ p ≤ f < 1 on the broader

sample. In this case, extrapolation from the sample of individuals who sign up for the lottery to the broader

pool requires extrapolation to potential treated fractions that exceed full treatment: p > 1.

3.17 Estimating the MTE from an Experiment

The linear MTE is exactly identified, so estimation is straightforward. Estimation of the quantities derived

from it is also straightforward because they can be expressed in closed form. Confidence intervals for the

linear MTE function and all quantities derived from it can be obtained via bootstrapping.16

Estimation of the MTE with covariates requires more assumptions. I detail my preferred algorithm

for estimation of the MTE with covariates via a global polynomial in Appendix A.17 After choosing the

16I bootstrap by household ID for 200 replications, and I report the 2.5 and 97.5 percentiles as the 95% confidence interval.
I obtain significance stars for other intervals by constructing analogous confidence intervals.

17I intend to make Stata code available.

25



order of the global polynomial, I estimate propensity scores and the average treated and untreated outcome

functions ATO(x, p) and AUO(x, p). From those estimates, I construct estimates of the marginal treated

and untreated outcome functions MTO(x, p) and MUO(x, p) and the marginal treatment effect. I obtain

confidence intervals for the MTE with covariates and all quantities derived from it via bootstrapping.

In theory, higher order global polynomials offer greater flexibility. In practice, if the common support

of the treated and untreated propensity scores from the experiment do not span potential treated fractions

from 0 ≤ p ≤ 1, then it is desirable to impose more structure on the MTE to extrapolate beyond the

experimental support. Other than the LATE, all treatment effects in Table 1 require extrapolation beyond

the experimental support. Extrapolation is less reliable with higher order polynomials because the estimated

function decreases to negative infinity or increases to infinity just outside of experimental support.

In theory, local polynomials also offer greater flexibility. However, local polynomials can only be estimated

within the support, and extrapolation requires ad hoc assumptions. Furthermore, local polynomial estimation

often results in functions that are not smooth. If the average treated and untreated outcome functions

ATO(x, p) and AUO(x, p) are not smooth, then the functions derived from their slopes, the MTO(x, p),

MUO(x, p), and MTE(x, p), are subject to large fluctuations that might not be merited by the underlying

data.

4 Application: The Oregon Health Insurance Experiment

4.1 OHIE Replication Results

As a first step toward estimating marginal treatment effects in the OHIE, I replicate the main LATE estimates

reported in Taubman et al. [2014] using publicly-available Oregon administrative data. Following Taubman

et al. [2014], I specify the endogenous variable D as an indicator for any Medicaid coverage, which includes

Medicaid coverage obtained via the lottery or the existing Medicaid eligibility guidelines. I refer to individuals

withD = 1 as “treated” or “insured,” and individuals withD = 0 as “untreated” or “uninsured.”18 I examine

three measures of emergency room utilization Y : an indicator for any ER visit, a count of the number of

ER visits, and dollar amount of ER total charges.19 All three measures include individuals with zero visits.

The first column of Table 2 replicates the main results from Taubman et al. [2014] using the full sample of

18Several individuals with D = 0 gained health insurance coverage through other means, but they were still “untreated” and
“uninsured” by Medicaid.

19Even though they body of Taubman et al. [2014] does not report results using ER total charges, I examine it because it is
more continuous than the other two measures of ER uilization. ER total charges (reported in the data as “total charges”) is the
sum of the list prices of all care provided during the ER visit and any associated hospitalization. The amounts actually paid,
which are not observed, are generally much lower than total charges because of discounts. However, because the insured and
uninsured receive different discounts, the comparison of total charges is more informative for this exercise than the comparison
of actual payments would be.
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administrative data.20 The coefficient in the top panel, which I replicate exactly, indicates that individuals

who receive Medicaid coverage increase the probability that they visit the ER by 6.97 percentage points

on a base of 34 percentage points among the lottery losers (a 21% increase). The coefficient in the middle

panel indicates that individuals who receive Medicaid coverage increase their visits to the ER by 0.388 visits

on a base of 1.00 visits among the lottery losers (a 39% increase).21 The coefficient in the bottom panel

indicates that individuals who receive Medicaid coverage increase their total charges by $847 on a base of

$3,620 among lottery losers (a 23% increase.).

For comparison to Taubman et al. [2014], I report standard errors clustered by household ID in brack-

ets. For comparison to MTE results, I also report standard errors block bootstrapped by household ID in

parentheses. Both standard errors are similar. The estimates for any visits and the number of visits are

statistically different from zero at the 1% level, and the total charges estimate is not statistically different

from zero at conventional levels.

Because the linear MTE does not incorporate covariates, I examine robustness of the OHIE LATEs to

the exclusion of covariates. Following Taubman et al. [2014], the results in the first column include two

covariates. The first is a measure of ER utilization before the experimental period, specified in the same way

as the outcome Y .22 When I omit this covariate in Column 2, the point estimates remain almost unchanged

for the first two measures of ER utilization. The point estimate for charges decreases substantially, but it

remains positive.

The second covariate is a count of the number of lottery entrants in the household. Multiple individuals

in the same household could enter the OHIE lottery by signing up for a waitlist for Medicaid coverage.

However, if any individual in the household won the lottery, then all household members were treated as

winners. About 20% of entrants had another entrant in their household, and very small fraction had two

other entrants in their household. Because of the lottery design, individuals in households with more than

one entrant won the lottery at a much higher rate: 57% vs. 34%.

It is unlikely that OHIE results that do not control for the number of lottery entrants are internally

valid. Because the indicator for winning the lottery Z is not balanced on the number of lottery entrants, it

is unlikely that the distribution of UD is the same for lottery winners and losers. For example, individuals

in households whose members communicated about how to sign up for the waitlist might have been more

likely to sign up for the waitlist and to use the ER upon winning the lottery. Indeed, the comparison of

the characteristics of lottery winners and losers yields several statistically significant differences in the full

20For each outcome, I run regressions on the largest set of observations for which all variables are available.
21I cannot replicate the result in the bottom panel exactly because of censoring and truncation performed to limit the

identification of human subjects in the publicly-available data, but my estimate is very similar to the coefficient of 0.41 on a
base of 1.02 visits reported in Taubman et al. [2014].

22The period from before the experimental period is January 1, 2007 to March 9, 2009, and the experimental period is from
March 10, 2008 to September 2009.
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Table 2: OHIE Replication and Extension

(1) (2) (3) (4) (5)

Medicaid 0.0697 0.0763 -0.0146 0.182† 0.0531†
(0.0251)*** (0.0268)*** (0.0282) (0.0720)** (0.0276)**
[0.0239]*** [0.0257]*** [0.0266] [0.0661]*** [0.0279]*

Covariates Any pre-visits, 
Lottery Entrants

Lottery Entrants No Covariates No Covariates No Covariates

Regression sample Full sample Full sample Full sample
2 Lottery 
Entrants

1 Lottery 
Entrant

Observations 24,646 24,646 24,646 4,951 19,643

R-squared 0.151 0.030 - 0.015 0.013

E[Y|Z=0] 0.34 0.34 0.34 0.21 0.37

(1) (2) (3) (4) (5)

Medicaid 0.388 0.344 -0.048 0.700† 0.267†
(0.106)*** (0.124)** (0.128) (0.237)*** (0.142)**
[0.107]*** [0.131]*** [0.134] [0.237]*** [0.151]*

Covariates Pre-visits, 
Lottery Entrants

Lottery Entrants No Covariates No Covariates No Covariates

Regression sample Full sample Full sample Full sample
2 Lottery 
Entrants

1 Lottery 
Entrant

Observations 24,615 24,622 24,622 4,948 19,622

R-squared 0.339 0.022 - 0.013 0.010

E[Y|Z=0] 1.00 1.00 1.00 0.45 1.09

(1) (2) (3) (4) (5)

Medicaid $847 $509 -$990 $878 $428
($796) ($838) ($844) ($1,408) ($958)
[$769] [$807] [$805] [$1,361] [$935]

Covariates Pre-charges, 
Lottery Entrants

Lottery Entrants No Covariates No Covariates No Covariates

Regression sample Full sample Full sample Full sample
2 Lottery 
Entrants

1 Lottery 
Entrant

Observations 24,621 24,630 24,630 4,950 19,628

R-squared 0.088 0.006 - 0.002 0.002

E[Y|Z=0] $3,620 $3,639 $3,639 $1,639 $3,971

To obtain the bootstrapped standard errors, we block bootstrap for 200 replications, and we 
report the standard deviation of the replications as an estimate of the standard error.

Source: Oregon Administrative Data

Any ER Visits

Number of ER Visits

ER Total Charges

*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped standard errors in parentheses, asymptotic 
standard errors in square brackets. Standard errors are clustered at the household level.
Test of equality of coefficiens in Columns (4) and (5): ††† p<0.01,  †† p<0.05,  † p<0.1.

28



sample. As noted in Taubman et al. [2014], the LATEs for ER utilization are not robust to the removal of

the control for the number of lottery entrants. In Column 3, the coefficients for all three specifications of

ER utilization are negative, and none are statistically different from zero.

The next two columns report results from separate regressions for individuals with two lottery entrants

and one lottery entrant. The results within these subsamples should be internally valid.23 However, the

comparison across these subsamples suggests that the results are not globally externally valid. Across all

measures of ER utilization, the LATE of insurance on ER utilization is substantially larger in the subsample

with two entrants: 18 vs. 5 percentage points, 0.7 vs. 0.3 visits, and $830 vs. $430.24 The coefficients are

statistically different from each other at the 10% level for first two measures.

The subsample with one lottery entrant is my preferred replication sample. Because it includes the vast

majority of the full OHIE sample, it is likely to be more representative of other samples of interest. One

difficulty in extrapolating from either OHIE subsample to any other sample of interest is that a variable that

captures the same information as the number of lottery entrants is unlikely to be available. Household size

is a potential candidate, but it is distinct from the number of lottery entrants because not all members of a

household entered the lottery. Household size is not available in the OHIE administrative data, so it is not

possible to further restrict the sample with one lottery entrant to households with only one member.

4.2 Estimated Average Characteristics of Always Takers, Never Takers, and

Compliers

The first column of Table 3 provides summary statistics on the OHIE sample with one lottery entrant. The

sample is 56% female, the average age is 41, and 91% selected materials written in English.25 The next two

columns show that the lottery winners and losers have the same average values of these covariates, and the

corresponding t-tests reported in the bottom panel do not reject the null of internal validity. In contrast, as

shown in Columns 4 and 5, the treated and untreated individuals do not have the same average values of

these covariates. The individuals who take up treatment are 64% female, while the individuals who do not

are only 53% female. Thus, there seems to be some observable basis for selection into insurance.

Columns 6 through 9 report cross-tabulations of the data based on lottery status and treatment. Always

takers have a 72% probability of being female, but never takers have only a 53% probability of being female.

23The Taubman et al. [2014] approach of controlling for the number of lottery entrants could also produce internally valid
results, depending on whether a linear control effectively balances the unobserved net cost of treatment UD. More recent
analysis by Finkelstein et al. [2015] divides the sample as I do.

24The average ER utilization of lottery losers is much higher among the subsample with multiple lottery entrants, suggesting
that individuals in households with more ER utilization did not enter the lottery at a higher rate. However, individuals in
household with more pent-up demand for ER utilization might have entered the lottery at a higher rate. Although ER care is
available to the uninsured, it is not necessarily free.

25I report statistics on these covariates because they are all defined in a comparable way in the Behavioral Risk Factor
Surveillance System (BRFSS), so they can be used for extrapolation to other samples.
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Table 3: Average Characteristics and Outcomes of Always Takers, Never Takers, and Compliers

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Randomized 
Intervention 

Intervention Baseline Randomized 
Intervention 

Randomized 
Intervention  

Baseline 
Treated

Baseline 
Untreated

Intervention 
Treated

Intervention 
Untreated 

Local Average 
Treated

Local Average 
Untreated

Local 
Average

Sample 
Average

Sample 
Treated 

Sample 
Untreated

(Always 
Takers)

(Never 
Takers and 
Untreated 
Compliers)

(Always 
Takers and 

Treated 
Compliers)

(Never 
Takers)

(Treated 
Compliers)

(Untreated 
Compliers)

(All 
Compliers)

(Z=1) (Z=0) (D=1) (D=0) (D=1, Z=0) (D=0, Z=0) (D=1, Z=1) (D=0, Z=1)
RIS RIST RISU BT BU IT IU LAT LAU LA

Covariates
Female 0.56 0.55 0.56 0.64 0.53 0.72 0.53 0.58 0.53 0.50 0.55 0.53
Age in 2009 40.7 40.7 40.7 40.5 40.7 39.4 40.9 41.3 40.3 42.4 42.4 42.4
English 0.91 0.91 0.91 0.91 0.91 0.90 0.91 0.92 0.91 0.93 0.92 0.92

Predicted outcomes
Any ER visits 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.38
Number of ER visits 1.12 1.12 1.12 1.13 1.11 1.12 1.12 1.13 1.11 1.14 1.14 1.14
ER total charges $4,009 $4,003 $4,013 $4,016 $4,007 $3,899 $4,033 $4,098 $3,937 $4,215 $4,251 $4,238

Outcomes
Any ER visits 0.37 0.38 0.37 0.51 0.33 0.55 0.33 0.48 0.31 0.44 0.39 0.40
Number of ER visits 1.12 1.16 1.09 1.73 0.92 1.89 0.95 1.62 0.85 1.45 1.19 1.28
ER total charges $4,009 $4,082 $3,971 $6,996 $3,061 $8,794 $3,109 $5,732 $2,930 $3,944 $3,516 $3,664

N for outcomes
Any ER visits 19,643 6,755 12,888 4,737 14,906 1,959 10,929 2,778 3,977 1,751 3,341 5,092
Number of ER visits 19,622 6,743 12,879 4,725 14,897 1,956 10,923 2,769 3,974 1,745 3,333 5,078
ER total charges 19,628 6,752 12,876 4,726 14,902 1,951 10,925 2,775 3,977 1,752 3,341 5,093

(2) - (3)
λDZ

    [(8) - (6)] -
[(9) - (7)]

λD

(6) - (7)
λZ

(9) - (7)
λDZ = 0 
λD  = 0

λDZ = 0 
λZ   = 0

λD = 0
λZ = 0

λDZ = 0 
λZ   = 0
λD = 0

Covariates
Female -0.012 -0.133***  0.188*** -0.006 *** *** *** ***
Age in 2009 -0.019  2.504*** -1.470*** -0.668*** *** *** *** ***
English  0.002  0.018* -0.008 -0.003

Predicted outcomes
Any ER visits -0.001  0.004  0.002 -0.003 *** ** ***
Number of ER visits -0.005  0.005  0.020 -0.012 *** *** ***
ER total charges -$6 $266** -$98 -$89 *** *** ** ***

Outcomes
Any ER visits  0.014* -0.045***  0.213*** -0.023*** *** *** *** ***
Number of ER visits  0.069* -0.171  0.939*** -0.104** *** *** *** ***
ER total charges $111 -$2,882*** $5,685*** -$179 *** *** *** ***

Source: Oregon Administrative Data, 1 Lottery Entrant in Household
Predicted outcomes were obtained using a linear model among lottery losers controlling for common controls only, which includes binary variables for female, age in 2009, English, and all two-way 
interaction terms between these covariates. The reported statistics reflect predictions obtained for both lottery losers and lottery winners using the coefficients from this linear probability model.

T-tests

(10) - (11)

-0.045
-0.075

-0.019

 0.007

-0.003

*** p<0.01, ** p<0.05, * p<0.1; With the exception of joint tests, where asymptotic F-Tests were used, p-values were computed based on bootstrapped standard errors. 

$428

Difference-in-difference Tests

 0.267*

-$21

 0.053**

Columns 10 and 11 report the average characteristics of treated and untreated compliers, calculated via (2)

and (1).26 Although the treated and untreated compliers appear to have slightly different characteristics,

the t-test results reported in the second panel show that the characteristics are not statistically different,

providing further evidence of internal validity.

The combined characteristics of the treated and untreated compliers are reported in Column 12. Existing

studies that report average characteristics of compliers often compare the average characteristics of compliers

to the average characteristics of the full sample to informally assess external validity, and they do not

necessarily even report the characteristics of other groups. In the OHIE, compliers are more male (47% vs.

44%), slightly older (42.4 vs. 40.7), and more likely to request materials in English (92% vs. 91%) than

26Previous research on the OHIE has reported average characteristics of compliers (Finkelstein et al. [2015]).
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individuals in the full OHIE sample. Though the differences raise some some concerns about global external

validity, the magnitues of the differences are small relative to the levels for the full sample.

However, compliers are included in the full sample (they make up 25% of the full sample), so it is more

informative to compare the compliers to the always takers and never takers than it is to compare them to the

full sample. The compliers and the never takers are 53% female, but the always takers are 72% female. The

always takers are also younger on average than the compliers (39.4 vs. 42.4), and the never takers are even

younger (40.3). The always takers are less likely to request materials in English (90%) than the compliers

(92%) and the never takers (91%). The differences in age and English status across the three groups are

relatively small, but the difference in age between the always takers and the compliers is large. Because of

the large age difference, the comparison of the compliers to the always takers casts more doubt on global

external validity than the comparison of the compliers to the full sample.

4.3 Difference-in-Difference Test Results

The difference-in-difference test using covariates formalizes the comparison of the compliers to the rest of

the sample. Results in the second panel show that some covariates are related to selection (λZ 6= 0); some

covariates are related to baseline takeup (λD 6= 0); and some covariates have different relationships to

baseline takeup than they have to intervention takeup (λDZ 6= 0). When we use these covariates to predict

the outcomes Y among the lottery losers, we still see some evidence that casts doubt on global external

validity.

Results from the difference-in-difference test using the three measures of ER utilization show a statistically

significant rejection of global external validity (λDZ 6= 0) for two measures of ER utilization. The results

also show statistically significant evidence of selection (λZ 6= 0) for two measures of ER utilization. The

rejection of the null of no selection indicates that RISOLS is biased. The rejection of global external validity

indicates that the LATE does not apply to all individuals.

4.4 Estimates of the Linear MTE

Figure 1 plots the estimated linear MTO(p), MUO(p), and MTE(p) for all three measures of ER utilization.

The potential fraction treated p increases along the horizontal axis from no treatment to full treatment. As

p increases, individuals with successively higher net unobserved costs of treatment UD select into treatment.

The baseline treatment probability pB = 0.152 indicates that always takers make up the first 15.2% of

the sample to select into treatment. The always takers select into treatment even if they lose the lottery,

so they have the lowest net unobserved costs of treatment (0 ≤ UD ≤ pB). The intervention treatment

probability pI = 0.411 indicates that the next 25.9% (=0.411-0.152) of individuals to select into treatment
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are compliers. The compliers have net unobserved costs of treatment (pB < UD ≤ pI) that are higher than

the net unobserved cost of the last always taker to select into treatment (UD = pB). The compliers that win

the lottery select into treatment (they are the treated compliers), and the compliers that lose the lottery

that do not select into treatment (they are the untreated compliers). The remaining 40.1% of the sample

with the highest net unobserved costs of treatment (pI < UD ≤ 1) are never takers who do not select into

treatment even if they win the lottery. The labels on the bottom axis show how pB and pI divide the baseline

and intervention treated and untreated.

The depiction of pB and pI along the horizontal axis of Figure 1 provides more information than the first

stage estimate. By definition, (pI − pB) is equal to the first stage estimate (P (D = 1|Z = 1)−P (D = 1|Z =

0)). Therefore, the first stage estimate gives the share of compliers, but it provides less information than the

horizontal axis of Figure 1 because it does not convey the shares of always takers and never takers separately.

The reporting of pB or pI in addition to the first stage informs whether the experimental intervention changes

selection into treatment for individuals with high or low net unobserved costs of treatment relative to the

entire sample.

The dashed line depicts the linear marginal untreated outcome function MUO(p), which is identified by

the two points depicted with square markers. One point, (pB+pI

2 , LAUO), shows that the median complier

has the average untreated outcome for compliers, which is implied by the linearity of MUO(p) and the

uniformity of UD. The other point, (pI+1
2 , IUUO), shows that the median never taker has the average

untreated outcome for all never takers. For all three measures of ER utilization, the line that connects

both points, slopes downward, indicating adverse selection. As reported in the first columns of Table 4, the

downward slope of MUO(p) is statistically different from zero for any visits and the number of visits.

The dotted line depicts the linear marginal treated outcome function MTO(p), which is identified by the

two points, (pB

2 , BTTO) and (pB+pI

2 , LATO), depicted with circular markers. For all three measures of ER

utilization, BTTO > LATO, so the linear MTO(p) slopes downward. The downward slope indicates either

selection or moral hazard that changes with selection, or both.

The solid line depicts the marginal treatment effect MTE(p). The LATE, which gives the average

treatment effect for compliers, is the single point on MTE(p) with the diamond marker. Because MTE(p)

is not equal to the LATE for all p, it is clear from the figure that the LATE is not globally externally valid.

In this application, because the marginal treated and untreated outcome functions have slopes of the same

sign, we cannot reject global external validity using the bounds introduced in Section 3.2. However, we have

rejected global external validity in Section 4.3 using the difference-in-difference test. In this application,

the linear MTE relies on the same assumptions as the difference-in-difference test, but it provides more

information.
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Figure 1: Linear MTE
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For all measures of ER utilization, the MTE is downward-sloping, indicating that moral hazard is largest

for the first individuals to select into treatment, and it decreases as subsequent individuals select into

treatment. Across all measures of ER utilization, the marginal treatment effects for always takers are positive

and larger than the marginal treatment effects for compliers. This pattern could arise if the individuals with

the most pent-up demand for ER utilization select into coverage regardless of the lottery outcome, and

individuals with lower levels of pent-up demand only select into coverage if they win the lottery.

For all measures of ER utilization, the MTE is positive for some individuals and negative for others. The

marginal treatment effect changes from positive to negative when the fraction treated increases to p∗ = 0.43

for any visits, p∗ = 0.48 for the number of visits, and p∗ = 0.30 for total charges. For total charges, p∗ < pI ,

which indicates that even though OHIE compliers have positive treatment effects on average, some compliers

decrease their total charges when they select into insurance. All never takers have negative treatment effects

for total charges, and most never takers have negative treatment effects for the other two measures. There

are some never takers with positive treatment effects for any visits and number of visits because p∗ > pI .

In health economics, there is a long-standing question about whether there is heterogeneity in moral

hazard across individuals who use different amounts of care. If moral hazard is the same in levels across all

individuals, as would be the case if the LATE from Oregon were globally externally valid, then efforts to

reduce moral hazard among high users would be just as effective as efforts to reduce moral hazard among low

users. However, if moral hazard is greatest among the high users, then efforts that focus on curtailing their

moral hazard will have the greatest impact. The slope of the estimated marginal selection effect shows that

the individuals most likely to sign up for coverage are the individuals that would have the most utilization

if they were uninsured, and the slope of the estimated marginal treatment effect shows that the individuals

most likely to sign up for coverage increase their utilization the most upon gaining coverage. Therefore,

moral hazard is greatest among the individuals who consume the most care.

4.5 Estimated Treated Outcomes, Untreated Outcomes, and Treatment Effects

from the Linear MTE

Table 4 reports average treated outcomes, untreated outcomes, and treatment effects recovered from the

linear MTO, MUO, and MTE functions as discussed in Section 3.4. Column 1 reports estimates for always

takers, the baseline treated. The baseline treated treated outcome (BTTO) is observed, so it is reported in

bold, along with all other quantities that do not require the assumptions required to identify linear MTE. On

average, always takers visit the ER with probability 0.55, they make 1.89 visits, and the incur $8,794 in total

charges. The baseline treated untreated outcome (BTUO) is not observed because all always takers receive

coverage, but it can be estimated by weighting the linear marginal untreated outcome function MUO(p).
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Table 4: Treated Outcome, Untreated Outcome, and Treatment Effects in Oregon

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline 
Treated 

Baseline 
Untreated

Intervention 
Treated

Intervention 
Untreated

Randomized 
Intervention 

Randomized
Intervention 

Local 
Average

(Always Takers) (Never Takers) Sample Treated Sample Untreated (Compliers)
Intercept Slope BT BU IT IU RIST RISU LA A

0.55*** 0.28*** 0.48*** 0.22*** 0.51*** 0.27*** 0.44*** 0.32***
0.59*** -0.53*** (0.53, 0.57) (0.19, 0.38) (0.46, 0.50) (0.09, 0.34) (0.49, 0.52) (0.16, 0.37) (0.41, 0.47) (0.24, 0.40)

(0.56, 0.62) (-0.75, -0.31) BTTO BUTO ITTO IUTO RISTTO RISUTO LATO ATO
0.42*** 0.33*** 0.40*** 0.31*** 0.41*** 0.33*** 0.39*** 0.35***

0.44*** -0.18*** (0.35, 0.50) (0.33, 0.34) (0.34, 0.46) (0.30, 0.33) (0.34, 0.48) (0.32, 0.33) (0.34, 0.44) (0.33, 0.37)
(0.35, 0.53) (-0.33, -0.03) BTUO BUUO ITUO IUUO RISTUO RISUUO LAUO AUO

0.12*** -0.05 0.08*** -0.10* 0.10*** -0.06* 0.05** -0.02
0.15*** -0.35*** (0.04, 0.20) (-0.15, 0.04) (0.02, 0.14) (-0.22, 0.03) (0.03, 0.16) (-0.16, 0.04) (0.00, 0.11) (-0.10, 0.05)

(0.06, 0.24) (-0.61, -0.12) BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

1.89*** 0.83** 1.62*** 0.55 1.73*** 0.76* 1.45*** 0.99***
2.05*** -2.12*** (1.74, 2.05) (0.02, 1.48) (1.50, 1.73) (-0.49, 1.41) (1.63, 1.82) (-0.11, 1.46) (1.22, 1.66) (0.35, 1.52)

(1.80, 2.38) (-4.02, -0.60) BTTO BUTO ITTO IUTO RISTTO RISUTO LATO ATO
1.35*** 0.95*** 1.25*** 0.85*** 1.29*** 0.92*** 1.19*** 1.01***

1.41*** -0.80*** (1.06, 1.72) (0.91, 1.00) (1.03, 1.53) (0.79, 0.91) (1.04, 1.61) (0.89, 0.96) (1.01, 1.41) (0.94, 1.11)
(1.08, 1.82) (-1.43, -0.26) BTUO BUUO ITUO IUUO RISTUO RISUUO LAUO AUO

0.54*** -0.12 0.37** -0.29 0.44*** -0.17 0.27 -0.02
0.64*** -1.32* (0.15, 0.91) (-0.93, 0.54) (0.05, 0.65) (-1.28, 0.58) (0.12, 0.73) (-1.02, 0.54) (-0.08, 0.58) (-0.67, 0.53)

(0.16, 1.09) (-3.23, 0.19) BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

$8,794*** -$3,006* $5,732*** -$6,068** $6,996*** -$3,824* $3,944*** -$1,218
$10,582*** -$23,601*** ($7,626, $9,902) (-$7,423, $1,380) ($4,987, $6,547) (-$11,844, -$420) ($6,356, $7,591) (-$8,617, $903) ($2,557, $5,436) (-$4,858, $2,409)

($8,828, $12,393) (-$34,299, -$12,906) BTTO BUTO ITTO IUTO RISTTO RISUTO LATO ATO
$3,801*** $3,109*** $3,621*** $2,930*** $3,695*** $3,061*** $3,516*** $3,214***

$3,905*** -$1,383 ($2,034, $5,809) ($2,906, $3,345) ($2,284, $5,145) ($2,545, $3,341) ($2,180, $5,423) ($2,899, $3,276) ($2,445, $4,744) ($2,831, $3,697)
($1,892, $6,208) (-$5,200, $1,878) BTUO BUUO ITUO IUUO RISTUO RISUUO LAUO AUO

$4,994*** -$6,115*** $2,111*** -$8,998*** $3,301*** -$6,885*** $428 -$4,432**
$6,677*** -$22,218*** ($2,587, $6,998) (-$10,552, -$1,638) ($387, $3,584) (-$14,857, -$3,206) ($1,440, $4,873) (-$11,686, -$2,053) (-$1,436, $2,142) (-$8,056, -$723)

($3,555, $9,326) (-$33,486, -$11,076) BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

To obtain the bootstrapped 95% confidence intervals, we block bootstrap by household ID for 200 replications, and we report the 2.5 and 97.5 percentiles as the 95% confidence interval.
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*** p<0.01, ** p<0.05, * p<0.1. Bootstrapped 95% confidence intervals in parentheses.
Source: Oregon Administrative Data, 1 Lottery Entrant in Household.
Calculation of the bold quantities does not rely on the linear MTE.
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The BTUO results show that on average, if the always takers were uninsured, they would visit the ER with

probability 0.42, they would make 1.35 visits, and their ER total charges would be $3,801. The baseline

treated treatment effect BTTE results show that upon gaining insurance, on average, always takers increase

their probability of an ER visit by 0.12, they increase their number of visits by 0.54, and they increase their

ER total charges by $4,944. All of these estimates are much larger than the corresponding LATE estimates,

indicating that there is meaningful variation in moral hazard between the always takers and the compliers.

The bounds on the BTTE introduced in Section 3.2, which assume weak monotonicity of MTO(p) and

MUO(p), are much larger than the BTTE estimates obtained assuming linearity of MTO(p) and MUO(p).

The bounds on the BTTE imply that upon gaining insurance, always takers increase their average visit

probability by no more than 0.16 (BTTE ≤ BTTO − LAUO = 0.55 − 0.39), their number of visits by no

more than 0.7 (1.89-1.19), and their total charges by no more than $5,638 ($8,794-$3,156). These bounds

are not informative about the global external validity of the LATE from the OHIE because they do not rule

out the LATE. It is very plausible that other applications will yield linear MTO(p) and MUO(p) estimates

with slopes of opposite sign and thus bounds that will be informative about the global external validity of

other LATEs.

Even though the bounds on the BTTE are not informative about global external validity, the bounds

on the BTUO could be informative about what ER utilization would have been had Oregon decided not

to provide coverage to anyone who entered the lottery. The bounds on the BTUO imply that if always

takers lost their coverage, then their average ER utilization would be no less than the average ER utilization

for untreated compliers (LATO): 0.39 visit probability, 1.19 visits, and $3,516 in charges. The BUUOs in

Column 2 show that all of the non-always takers without coverage average a 33% visit probability, 0.95 visits,

and $3,109 total charges. Therefore, the average visit probability of everyone in the lottery sample would be

no less than 0.25 (= 0.39pB + 0.33(1 − pB)), the average number of visits would be no less than 0.74, and

average ER charges would be no less than $2,365.

Column 4 gives results for the never takers, the intervention untreated. Never takers visited the ER

an average of 0.85 times, much less frequently than the always takers, who visited 1.89 times, and the

compliers, who visited 1.19 times. However, the IUTE estimates imply that they would visit the ER even

less, an average of 0.29 fewer times, if they had health insurance. The estimates also imply that they

would have a 10 percentage point lower probability of visiting the ER, which is about half of their observed

probability of visiting the ER. The bounds developed in Section 3.2 imply that upon gaining insurance,

never takers would increase their probability of visiting the ER by no more than 13 percentage points

(BTTE ≤ LATO − IUUO = 0.44 − 0.31), and they would increase their number of visits by no more

than 0.6 (=1.45-0.85). Therefore, if Oregon decided to require everyone in the lottery sample to have
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insurance, then the average visit probability of everyone in the lottery sample would be no more than 0.27

(= ITTOpI + 0.13(1− pI)), and the average number of visits would be no more than 1.02.

Column 2 gives treated outcomes, untreated outcomes, and treatment effects for the baseline untreated

(BU) individuals, which includes all individuals except the always takers. This group is policy-relevant

because it represents the potential pool of individuals to whom coverage could be expanded. The average

untreated outcome for these individuals, the BUUO, is observed, but the average treated outcome is not.

Weighting the marginal treated outcome function MTO(p) gives an estimate of the insured ER utilization

of these uninsured individuals. The baseline untreated individuals would visit the ER with 28% probability

when insured, but we only observe them visiting the ER with 33% probability when uninsured, so the BUTE

implies that insurance decreases the probability of an ER visit by 5 percentage points for all individuals who

were uninsured at baseline. The number of visit results tell a similar story. The results show that insurance

decreases the number of visits by 0.12, from a BUUO of 0.95 to at BUTO of 0.83. The BUTE in terms

of ER total charges is also negative: baseline untreated individuals decrease their ER utilization by $6,115

upon gaining coverage.

On its own, the BUTE for total charges seems plausible. However, because we have plotted MUO(p)

and calculated the average untreated outcome derived from it, we see that the linear extrapolation for

uninsured charges does not appear plausible at high values of p because it predicts negative ER utilization.

Total charges could be the preferred measure of ER utilization on theoretical grounds because it is the most

continuous. However, on empirical grounds, the extrapolation of the MTE for ER total charges seems the

least plausible at high values of p. Although the linear extrapolation of the MTO and the MTE for total

charges appears to be reasonable within the experimental support from pB to pI , I prefer to extrapolate to

all untreated groups using the any visit and number of visits results. I focus on those results for the other

untreated groups.

Column 7 reports the local average treatment effect LATE for comparison to the other treatment effects.

Although the local average treated outcome LATO, the local average untreated outcome LAUO, and the

LATE can be calculated without the MTE, the exact same values can be recovered from the MTE. Fur-

thermore, the reported bootstrapped confidence intervals on the LATE are exactly the same as those that

result from obtaining the LATE via an instrumental variable regression. Even though the LATE in terms

of ER utilization is not statistically different from zero at conventional levels, all of the other treatment

effects for ER total charges are statistically different from zero, indicating that even if there is no detectable

impact on the compliers in an experiment, there could be detectable impacts on other groups of interest. The

confidence intervals for the LATE often do not even include other treatment effects of interest, so reporting

the LATE alone would have offered a very limited picture.
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Column 8 reports the ATO that would result if the entire sample had insurance, the AUO that would

result if the entire sample did not have insurance, and the implied average treatment effect of gaining

insurance. The total charges results should be interpreted with caution because they involve extrapolation

to individuals with high values of UD. The any visits and number of visit results show that the average

treatment effect is nearly zero because there are roughly as many individuals with positive treatment effects

as negative treatment effects.

4.6 Treated Outcome Decomposition Results

In Table 5, I decompose the treated outcomes from Table 4 into selection and treatment components following

the approach that I introduced in Section 3.6. For the always takers, selection accounts for 77% of the

probability of observing any visit, 71% of the observed number of visits, and 43% of ER total charges. The

99% confidence intervals reject one and zero, indicating that the treated outcome for always takers reflects

a combination of selection and treatment effects. In other words, 71% of the visits that the always takers

make to the emergency room would still take place were they to lose coverage. However, always takers also

increase their utilization when they gain coverage, and that moral hazard is responsible for 29% of the visits

that they make to the ER.

As shown in Column 7, the average utilization of compliers shows a greater role for selection. For

compliers who gain insurance, selection explains 88% of the probability of any visit, 82% of the number of

visits, and 89% of total charges. The decomposition rejects full selection at the 90% level or higher for the

first two measures of ER utilization, as shown by the significance crosses. However, when ER utilization is

measured in terms of total charges, some compliers, (those with p∗ = 0.30 ≤ UD ≤ 0.41 = pI) have negative

treatment effects. The combination of negative treatment effects and positive selection effects results in a

decomposition that cannot reject full selection.

The decompositions of the treated outcomes for all of the untreated groups also reflect negative treatment

effects. For always takers, the BUTO reported in Table 4 shows that they would have a 28% probability

of visiting the ER if they had insurance. The decomposition in Table 5 shows that predicted probability of

visiting the ER with insurance would be 1.17 times higher, but for the negative treatment effect.

I can also decompose the difference in treated outcomes induced by the OHIE as discussed in Section

3.6. The results of this decomposition should be of interest to insurers because they explain why average

ER utilization is lower for insured lottery winners than insured lottery losers. Relative to the insured lottery

losers, the insured lottery winners are 7 percentage points less likely to visit the ER, they visit the ER 0.26

fewer times, and their total charges are $3,062 lower. The slope of the marginal untreated outcome function

relative to the marginal treated outcome function indicates that selection explains 33% (-.18/-.53) of the
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Table 5: Decompositions of Treated Outcomes and OLS Estimates into Selection and Treatment Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline 
Treated 

Baseline
Untreated

Intervention
Treated

Intervention
Untreated

Randomized
Intervention 

Randomized
Intervention 

Local 
Average

(Always Takers) (Never Takers) Sample Treated Sample Untreated (Compliers)
BT BU IT IU RIST RISU LA A

0.77*** 1.17*** 0.83*** 1.44*** 0.81*** 1.23*** 0.88*** 1.07***
(0.64, 0.92)††† (0.89, 1.78) (0.71, 0.96)††† (0.92, 3.33) (0.69, 0.94)††† (0.89, 2.01) (0.76, 1.00)†† (0.87, 1.42)
BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

0.23*** -0.17 0.17*** -0.44* 0.19*** -0.23* 0.12** -0.07
(0.08, 0.36)††† (-0.78, 0.11)††† (0.04, 0.29)††† (-2.33, 0.08)††† (0.06, 0.31)††† (-1.01, 0.11)††† (0.00, 0.24)††† (-0.42, 0.13)†††
BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO RISUTE/RISUTO LATE/LATO ATE/ATO

0.41*** 1.23*** 0.53*** 1.57*** 0.45*** 1.344***
(0.08, 0.80)††† (0.77, 1.65) (0.11, 0.88)††† (0.86, 2.42) (0.09, 0.84)††† (0.780, 1.943)

(BOLS -
 BTTE)/BOLS

(BOLS -
 BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS -
 IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

(RISOLS -
 RISUTE)/RISOLS

0.59*** -0.23 0.47*** -0.57* 0.55*** -0.344*
(0.20, 0.92)††† (-0.65, 0.23)††† (0.12, 0.89)††† (-1.42, 0.14)††† (0.16, 0.91)††† (-0.943, 0.220)†††

BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

0.71*** 1.15** 0.77*** 1.53 0.75*** 1.22* 0.82*** 1.02***
(0.54, 0.92)††† (0.62, 5.66) (0.61, 0.97)†† (-22.34, 14.80) (0.58, 0.93)††† (-2.60, 6.31) (0.64, 1.06)† (0.66, 2.95)
BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

0.29*** -0.15 0.23** -0.53 0.25*** -0.22 0.18 -0.02
(0.08, 0.46)††† (-4.66, 0.38)†† (0.03, 0.39)††† (-13.80, 23.34) (0.07, 0.42)††† (-5.31, 3.60)† (-0.06, 0.36)††† (-1.95, 0.34)†††
BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO RISUTE/RISUTO LATE/LATO ATE/ATO

0.43*** 1.13*** 0.52*** 1.38*** 0.46*** 1.209***
(0.14, 0.82)††† (0.35, 1.83) (0.18, 0.93)†† (0.34, 2.83) (0.15, 0.85)††† (0.329, 2.150)

(BOLS -
 BTTE)/BOLS

(BOLS -
 BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS -
 IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

(RISOLS -
 RISUTE)/RISOLS

0.57*** -0.13 0.48** -0.38 0.54*** -0.209
(0.18, 0.86)††† (-0.83, 0.65)††† (0.07, 0.82)††† (-1.83, 0.66)††† (0.15, 0.85)††† (-1.150, 0.671)†††

BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

0.43*** -1.03* 0.63*** -0.48** 0.53*** -0.80* 0.89*** -2.64
(0.24, 0.70)††† (-14.04, 5.94)† (0.39, 0.93)††† (-3.27, -0.20)†† (0.31, 0.80)††† (-5.61, 5.08)† (0.55, 1.50) (-27.00, 20.16)
BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

0.57*** 2.03 0.37*** 1.48** 0.47*** 1.80 0.11 3.64
(0.30, 0.76)††† (-4.94, 15.04) (0.07, 0.61)††† (1.20, 4.27)†† (0.20, 0.69)††† (-4.08, 6.61) (-0.50, 0.45)††† (-19.16, 28.00)
BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO RISUTE/RISUTO LATE/LATO ATE/ATO

0.12 2.08*** 0.25 4.21*** 0.16 2.75***
(-0.16, 0.49)††† (1.31, 2.66) (-0.38, 0.87)††† (1.89, 7.68)††† (-0.21, 0.63)††† (1.48, 3.99)†††

(BOLS -
 BTTE)/BOLS

(BOLS -
 BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS -
 IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

(RISOLS -
 RISUTE)/RISOLS

0.88*** -1.08 0.75*** -3.21*** 0.84*** -1.75***
(0.51, 1.16) (-1.66, -0.31)††† (0.13, 1.38) (-6.68, -0.89)††† (0.37, 1.21) (-2.99, -0.48)†††

BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

-($4,475, $6,868) ($2,021, $3,602) ($3,182, $4,623)OLS = 
TTO - UUO

$5,685*** $2,803*** $3,935***
-

- -

Treatment Effect
TE/OLS

BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO

OLS 
Decomposition

Selection
(OLS - TE)/OLS

- -

Treatment Effect
TE/OLS

(0.65, 0.88) (0.71, 0.90)

OLS 
Decomposition

- -(0.19, 0.24) (0.14, 0.19) (0.16, 0.20)
BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO

0.18***
OLS 
Estimates 

OLS = 
TTO - UUO

0.21*** 0.17***

Decomposition

Selection
UO/TO

Treatment Effect
TE/TO

Selection
(OLS - TE)/OLS

OLS 
Decomposition

Selection
(OLS - TE)/OLS

Average
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Selection
UO/TO
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TE/TO

OLS 
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OLS = 
TTO - UUO

0.94*** 0.77*** 0.81***
- -

Source: Oregon Administrative Data, 1 Lottery Entrant in Household.
Calculation of the bold quantities does not rely on the linear MTE.
To obtain the bootstrapped 95% confidence intervals, we block bootstrap by household ID for 200 replications, and we report the 2.5 and 97.5 percentiles as the 95% confidence interval.

Bootstrapped 95% confidence intervals in parentheses. Statistical significance (difference from 0): *** p<0.01, ** p<0.05, * p<0. Statistical significance (difference from 1): ††† p<0.01,  †† p<0.05,  † 
p<0.1 (only indicated for the decompositions).

(0.78, 1.10)
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visit probability difference, 38% (-.80/-2.12) of the visit number difference, and 6% (-1,383/-23,601) of the

total charge difference. In other words, some of the difference in ER utilization between insured lottery

winners and insured lottery losers reflects adverse selection – the lottery losers that took up coverage had a

higher propensity to consume ER care even when uninsured. However, the main reason for the difference is

moral hazard – the lottery losers that took up coverage increased their utilization by more when they gained

health insurance.

I can also decompose difference in treated outcomes between the always takers and treated compliers. The

always takers visited the ER an average of 1.89 times, while the compliers with insurance visited the ER an

average of 1.45 times. The BTTE estimate shows that health insurance increased the ER utilization of always

takers by an average of 0.54 visits, and the LATE estimates shows that health insurance increased emergency

room (ER) utilization for compliers by an average of 0.26 visits. The comparison of the decompositions in

Columns 1 and 7 shows that moral hazard is responsible for a larger share of utilization for always takers

than it is for compliers. Furthermore, differences in moral hazard between two groups explain 62% =(0.54-

0.26)/(1.89-1.45) of the difference in visits between the two groups.

4.7 OLS Decomposition Results

As shown in Table 5, the baseline OLS (BOLS), intervention OLS (IOLS), and randomized intervention

sample OLS (RISOLS) estimates are positive for all measures of ER utilization, indicating that insured

individuals have higher ER utilization than uninsured individuals. Unlike the treatment effects estimated

via the MTE, the OLS estimates can reflect selection in addition to a heterogeneous treatment effect. For

all three measures of ER utilization, IOLS < BOLS, indicating that there is heterogeneity in the treatment

effect, as previously formalized with the difference-in-difference test.

If, as in standard practice, we were to assume that the LATE is globally externally valid and divide the

LATE by the RISOLS, we would conclude that the treatment effect is responsible for only 27% (=0.05/0.18)

of the RISOLS estimate for any visits, 33% (=0.27/0.81) of the RISOLS estimate for number of visits, and

11% (=428/3,935) of the RISOLS for total charges. Instead, if we allow for a heterogeneous treatment effect

estimated by the MTE and divide the RISTTE by the RISOLS, we see that the treatment effect actually

has a much greater role. The treatment effect is responsible for 55% (0.10/0/18) of RISOLS for any visits,

54% (0.44/0.81) of RISOLS for number of visits, and 83%(=3,301/3,935) of RISOLS for total charges. The

comparison of LATE to RISOLS understates the role of the treatment effect in this application because

it does not acknowledge that treatment effects for always takers are larger than the treatment effects for

compliers.

As discussed in Section 3.7, the RISOLS estimate is not very informative about the baseline world before
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the experiment because it reflects the effect of the experimental intervention, and it reflects the experimental

design through the shares that received the experimental intervention by winning the lottery. If we instead

decompose the baseline OLS estimate, as shown in Table 5, we see that baseline OLS is less biased by

selection than we would have concluded based on the results of the other decompositions: the treatment

effect was responsible for 59% of the OLS estimate of the visit probability, 57% of the number of visits, and

88% of total charges.

4.8 Subgroup Analysis Estimates from LATE and Linear MTE

The columns of Tables 6-8 divide the OHIE sample into subgroups based on gender, English status, and

age. For all measures of ER utilization, the LATE is larger for men, individuals who request materials in

English, and individuals younger than median age. LATEs in some subroups are statistically different from

the LATEs in the complementary subgroup and the full sample. However, only the subgroup that requested

materials in a language other than English has negative LATEs for all three measures of utilization, but those

LATEs are not statistically different from zero. The subgroup analysis reported by Taubman et al. [2014]

in Table S14 yields similar results. On the whole, LATE subgroup analysis suggests that health insurance

increases emergency room utilization for all or almost all individuals. Therefore, sample-re-weighting based

only on observed hetergeneity in LATEs is unlikely to explain why some health insurance expansions decrease

ER utilization.

However, the baseline and intervention treatment probabilities pB and pI vary quite a bit across sub-

groups. Therefore, if the MTE varies with p, even if it is exactly the same in all subgroups, then the LATEs

in each subgroup will not be the same. The most noticeable difference in the baseline treatment probability

is between women and men. The values of pB in each subgroup indicate that 20% of women but only 10%

of men gain coverage if they lose the lottery. Stated another way, 20% of women are always takers, but only

10% of men are always takers. This difference is another manifestation of the finding reported in Section 3.1

that compliers and the never takers are 53% female, but the always takers are 72% female.

The next rows report the intercepts and slopes of the linear MTE in each subgroup. For almost all

measures of ER utilization and almost all subgroups, the linear MTE has a statistically-significant downward

slope, indicating that there is treatment effect heterogeneity within each subgroup. As discussed in Section

3.5, when the linear MTE slopes downward, p∗ gives the share of the sample with a positive treatment effect.

In most subgroups, the MTE predicts that less than half of individuals have a positive treatment effect.

When ER utilization is measured in terms of total charges, the linear MTE predicts that a sizeable share of

Oregon compliers in each subgroup have negative treatment effects.

Heterogeneity in the MTE within each subgroup can potentially explain why some health insurance
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Table 6: LATE and Linear MTE Subgroup Analysis: Any ER visits

(1) (2) (3) (4) (5) (6) (7)

Full sample Female Male English-speaker
Non-English 

speaker
Older than or at 

median age
Younger than 
median age

LATE 0.05** 0.01 0.10*** 0.06** -0.11 0.05 0.06
(0.00, 0.11) (-0.07, 0.07) (0.02, 0.17) (0.01, 0.12) (-0.26, 0.06) (-0.02, 0.11) (-0.02, 0.15)

Comparison with complementary sample - * * * *
Comparison with full sample - * * **
pB 0.15*** 0.20*** 0.10*** 0.15*** 0.16*** 0.13*** 0.17***

(0.15, 0.16) (0.19, 0.20) (0.09, 0.10) (0.14, 0.16) (0.14, 0.18) (0.12, 0.14) (0.16, 0.18)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** *** ***
pI 0.41*** 0.44*** 0.38*** 0.41*** 0.38*** 0.43*** 0.39***

(0.40, 0.42) (0.42, 0.46) (0.36, 0.40) (0.40, 0.43) (0.35, 0.43) (0.41, 0.45) (0.38, 0.41)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** * *** ***
Linear MTE intercept 0.15*** 0.12* 0.21*** 0.18*** -0.07 0.25*** 0.07

(0.06, 0.24) (-0.01, 0.26) (0.09, 0.33) (0.08, 0.28) (-0.31, 0.15) (0.14, 0.36) (-0.07, 0.21)
Comparison with complementary sample - * * * *
Comparison with full sample - ** ** ** *
Linear MTE slope -0.35*** -0.35** -0.45** -0.41*** -0.12 -0.71*** -0.03

(-0.61, -0.12) (-0.76, -0.02) (-0.84, -0.09) (-0.73, -0.16) (-0.81, 0.69) (-1.06, -0.37) (-0.43, 0.35)
Comparison with complementary sample - ** **
Comparison with full sample - * *** **
p* 0.43*** 0.34* 0.46** 0.44*** -0.63 0.35*** 2.54

(0.28, 0.98) (-0.03, 0.85) (0.27, 1.01) (0.29, 0.74) (-2.02, 2.51) (0.26, 0.49) (-6.55, 4.38)
Comparison with complementary sample -
Comparison with full sample - *

N 19,643 10,943 8,700 17,892 1,751 9,827 9,816

*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Source: Oregon Administrative Data, 1 Lottery Entrant in Household
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Table 7: LATE and Linear MTE Subgroup Analysis: Number of ER visits

(1) (2) (3) (4) (5) (6) (7)

Full sample Female Male English-speaker
Non-English 

speaker
Older than or at 

median age
Younger than 
median age

LATE 0.27 0.14 0.39* 0.30* -0.15 0.14 0.44
(-0.08, 0.58) (-0.27, 0.56) (-0.04, 0.83) (-0.06, 0.64) (-0.76, 0.40) (-0.29, 0.51) (-0.07, 1.02)

Comparison with complementary sample -
Comparison with full sample -
pB 0.15*** 0.20*** 0.10*** 0.15*** 0.16*** 0.13*** 0.17***

(0.15, 0.16) (0.19, 0.20) (0.09, 0.10) (0.14, 0.16) (0.14, 0.18) (0.12, 0.14) (0.16, 0.18)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** *** ***
pI 0.41*** 0.43*** 0.38*** 0.41*** 0.38*** 0.43*** 0.39***

(0.40, 0.42) (0.42, 0.45) (0.37, 0.40) (0.40, 0.43) (0.35, 0.43) (0.41, 0.45) (0.38, 0.41)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** * *** ***
Linear MTE intercept 0.64*** 0.48 0.92*** 0.72*** 0.14 0.98*** 0.31

(0.16, 1.09) (-0.14, 1.05) (0.23, 1.49) (0.24, 1.20) (-0.64, 1.05) (0.47, 1.58) (-0.47, 1.19)
Comparison with complementary sample -
Comparison with full sample - * *
Linear MTE slope -1.32* -1.06** -2.20* -1.51* -1.07 -3.01*** 0.48

(-3.23, 0.19) (-3.16, 1.00) (-4.60, 0.32) (-3.39, 0.08) (-5.39, 2.30) (-4.83, -1.17) (-2.98, 3.37)
Comparison with complementary sample - ** **
Comparison with full sample - ** *
p* 0.48* 0.45 0.42* 0.48* 0.13 0.33** -0.63

(-1.75, 1.96) (-3.22, 2.16) (-1.36, 1.86) (-0.94, 2.01) (-0.92, 2.10) (0.19, 0.56) (-2.56, 2.50)
Comparison with complementary sample -
Comparison with full sample -

N 19,622 10,932 8,690 17,871 1,751 9,816 9,806

*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Source: Oregon Administrative Data, 1 Lottery Entrant in Household
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Table 8: LATE and Linear MTE Subgroup Analysis: ER Total Charges

(1) (2) (3) (4) (5) (6) (7)

Full sample Female Male English-speaker
Non-English 

speaker
Older than or at 

median age
Younger than 
median age

LATE $428 $358 $458 $579 -$1,698 -$977 $2,431
(-$1,436, $2,142) (-$1,786, $3,052) (-$2,279, $2,486) (-$1,498, $2,543) (-$5,325, $2,757) (-$3,285, $1,376) (-$231, $5,095)

Comparison with complementary sample - * *
Comparison with full sample - * *
pB 0.15*** 0.20*** 0.10*** 0.15*** 0.16*** 0.13*** 0.17***

(0.15, 0.16) (0.19, 0.20) (0.09, 0.10) (0.14, 0.16) (0.14, 0.19) (0.12, 0.14) (0.16, 0.18)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** *** ***
pI 0.41*** 0.44*** 0.38*** 0.41*** 0.38*** 0.43*** 0.39***

(0.40, 0.42) (0.42, 0.45) (0.36, 0.40) (0.40, 0.42) (0.34, 0.42) (0.41, 0.45) (0.38, 0.41)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** * *** ***
Linear MTE intercept $6,677*** $3,526* $12,621*** $7,141*** $3,273 $12,943*** $1,962

($3,555, $9,326) (-$536, $6,938) ($7,705, $17,980) ($3,848, $9,828) (-$2,518, $12,965) ($7,459, $17,572) (-$1,807, $5,848)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - ** *** *** ***
Linear MTE slope -$22,218*** -$10,050* -$51,011*** -$23,270*** -$18,170* -$49,711*** $1,660

(-$33,486, -$11,076) (-$22,997, $2,825) (-$76,451, -$30,594) (-$35,548, -$10,572) (-$45,109, $1,932) (-$67,343, -$31,371) (-$13,008, $13,983)
Comparison with complementary sample - *** *** *** ***
Comparison with full sample - *** *** *** ***
p* 0.30*** 0.35 0.25*** 0.31*** 0.18 0.26*** -1.18

(0.22, 0.45) (-1.08, 1.24) (0.20, 0.30) (0.23, 0.46) (-0.76, 0.46) (0.21, 0.31) (-7.68, 8.82)
Comparison with complementary sample -
Comparison with full sample - ** *

N 19,628 10,939 8,689 17,877 1,751 9,813 9,815

*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Source: Oregon Administrative Data, 1 Lottery Entrant in Household
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expansions decrease ER utilization. Although some variation is visible across subgroups, the linear MTE

in each subgroup is broadly similar to the linear MTE in the full sample. The treatment effect varies with

unobserved heterogeneity UD in the full sample, and it also varies with unobserved heterogeneity in a similar

way in most subgroups. Because the MTE is downward-sloping within each subgroup, it might be more

efficient to combine all subgroups and estimate a single MTE with covariates.

4.9 Estimates of the MTE with Covariates

To estimate MTEs with covariates following the algorithm in Appendix A, I estimate a health insurance

coverage propensity score for each individual in the sample based on covariates and whether the individual

won the lottery. In Figure 2, I report a histogram of the estimated propensity scores in increments of 0.01.

I shade the histogram to reflect the shares of treated and untreated individuals in each bin. Because the

MTE is the difference between the marginal treated outcome and the marginal untreated outcome, the MTE

is only nonparametrically identified in the common support of the treated and untreated. The range of

the common support indicates that based on observable characteristics, few individuals have very low or

high predicted probabilities of obtaining health insurance coverage, even conditional on winning the lottery.

Therefore, I estimate the MTE with a global polynomial so that I can extrapolate outside of the common

support.

Figure 2: Distribution of Estimated Propensity Scores in the OHIE

0
50

0
1,

00
0

1,
50

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1
p

Treated Untreated

Source: Oregon Administrative Data, 1 Lottery Entrant in Household

45



For all three measures of ER utilization, Figure 3 depicts the estimated average linear MTE with covariates

MTE(x, p) with a solid line. For comparison, Figure 3 depicts the linear MTE without covariates with a dot

dash line. The magnitudes of the estimated MTEs are very similar. MTE(x, p) and MTE(p) both indicate

a substantial amount of treatment effect heterogeneity across the unobserved cost of treatment UD.

The difference between the two dashed lines indicates the widest estimated range of treatment effect

heterogeneity across any two groups with different vectors of covariates x. The vector of covariates the yields

the minimum and maximum shift in the MTE differs across the three measures of ER utilization. For ER

total charges, minMTE(x, p) depicts the MTE for 54 year old males who request materials in a language

other than English. As discussed in Section 3.13, the MTE for this group is always below zero, implying

that all members of this group decrease their ER utilization when they gain coverage. For ER total charges,

maxMTE(x, p) depicts the MTE for 62 year old males who request materials in English. The MTE for this

group is always above zero, implying that all members of this group increase their ER utilization when they

gain coverage.

Table 9 reports average treated outcomes gTO(x), gUO(x), and average treatment effects gTE(x) from

the linear MTE with covariates MTE(x, p) for comparison to the corresponding results from the linear

MTE without covariates MTE(p) reported in Table 4. As discussed in Appendix A, the global polynomial

estimation algorithm for MTE(x, p) estimates two separate regressions: one for the treated and another for

the untreated members of the randomized intervention sample. Therefore the average predicted outcomes

for the treated and untreated randomized intervention samples, RISTTO(x) and RISUUO(x) are equal to

the observed average outcomes for the treated and untreated randomized intervention samples, and they are

depicted in bold because they can be calculated without MTE(x, p). The other columns of Table 9 report

average predicted outcomes for various subsets of the treated and untreated randomized intervention samples.

Because the functional form of the estimated global polynomial is not fully nonparametric, the average

predicted outcomes should not exactly equal the average observed outcomes in subsets of the regression

sample. However, the global polynomial is fairly flexible, so the average predicted outcomes from MTE(x, p)

are very similar to the observed outcomes depicted in bold in Table 4.

In theory, even though the linear MTE(p) shows a substantial amount of heterogeneity across the un-

observable UD, the inclusion of covariates in MTE(x, p) could make all unobserved heterogeneity observed,

resulting in a flat MTE(x, p). In that case, all of the average treatment effects derived from MTE(x, p)

should be equal to each other, and thus they should not be equal to the corresponding heterogeneous treat-

ment effects derived from MTE(x, p). In the case in which the inclusion of covariates MTE(x, p) removes

some unobserved heterogeneity, but some remains, the differences between gTE(x) and the corresponding

gTE(x) should reflect the influence of the included covariates on the treatment effect in group g. For ex-
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Figure 3: Linear MTE with Covariates
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Table 9: Treated Outcome, Untreated Outcome, and Treatment Effects in Oregon: Linear MTE with Covariates

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline 
Treated 

Baseline 
Untreated

Intervention 
Treated

Intervention 
Untreated

Randomized 
Intervention 

Randomized
Intervention 

Local 
Average

(Always Takers) (Never Takers) Sample Treated Sample Untreated (Compliers)

0.55*** 0.26*** 0.48*** 0.16* 0.51*** 0.24*** 0.43*** 0.30***
(0.53, 0.57) (0.11, 0.36) (0.46, 0.51) (-0.02, 0.29) (0.50, 0.53) (0.08, 0.34) (0.38, 0.47) (0.18, 0.38)

0.41*** 0.34*** 0.40*** 0.31*** 0.40*** 0.33*** 0.38*** 0.35***
(0.31, 0.50) (0.33, 0.35) (0.32, 0.47) (0.29, 0.33) (0.32, 0.49) (0.32, 0.34) (0.32, 0.43) (0.33, 0.37)

0.14*** -0.08* 0.08** -0.15** 0.11** -0.09* 0.05 -0.05
(0.05, 0.24) (-0.22, 0.02) (0.01, 0.16) (-0.33, -0.02) (0.03, 0.20) (-0.25, 0.01) (-0.02, 0.11) (-0.17, 0.04)

1.91*** 0.74 1.61*** 0.35 1.75*** 0.64 1.39*** 0.90***
(1.75, 2.06) (-0.16, 1.56) (1.50, 1.78) (-0.78, 1.39) (1.67, 1.87) (-0.32, 1.51) (1.12, 1.67) (0.16, 1.57)

1.34*** 0.95*** 1.26*** 0.84*** 1.30*** 0.92*** 1.16*** 1.01***
(0.90, 1.69) (0.92, 1.01) (0.93, 1.54) (0.78, 0.92) (0.92, 1.60) (0.89, 0.97) (0.93, 1.38) (0.93, 1.11)

0.57*** -0.21 0.34** -0.49 0.45** -0.29 0.23 -0.11
(0.17, 1.02) (-1.12, 0.62) (0.02, 0.77) (-1.63, 0.53) (0.12, 0.88) (-1.26, 0.60) (-0.15, 0.62) (-0.85, 0.61)

$9,118*** -$6,565* $5,648*** -$11,195** $7,232*** -$7,776* $2,679*** -$4,186*
($7,909, $10,115) (-$13,263, $1,279) ($4,852, $6,571) (-$18,629, -$1,657) ($6,576, $7,893) (-$14,647, $525) ($816, $5,096) (-$9,532, $2,078)

$3,253*** $3,180*** $3,369*** $2,968*** $3,316*** $3,124*** $3,287*** $3,170***
($1,039, $5,720) ($2,939, $3,440) ($1,678, $5,322) ($2,532, $3,379) ($1,377, $5,485) ($2,909, $3,326) ($2,107, $4,677) ($2,702, $3,702)

$5,865*** -$9,744** $2,280** -$14,163*** $3,916*** -$10,900*** -$608 -$7,357**
($2,913, $7,977) (-$16,446, -$1,975) ($339, $4,208) (-$21,742, -$4,501) ($1,636, $5,890) (-$17,769, -$2,629) (-$2,703, $2,100) (-$12,857, -$1,330)

Treatment 
Effect
TE

*** p<0.01, ** p<0.05, * p<0.1. Bootstrapped 95% confidence intervals in parentheses.
Source: Oregon Administrative Data, 1 Lottery Entrant in Household.
To obtain the bootstrapped 95% confidence intervals, we block bootstrap by household ID for 200 replications, and we report the 2.5 and 97.5 percentiles as the 95% confidence interval.

ER
 T

ot
al

 C
ha

rg
es

Treated 
Outcome
TO
Untreated 
Outcome
UO
Treatment 
Effect
TE

N
um

be
r 

of
 E

R
 V

isi
ts

Treated 
Outcome
TO
Untreated 
Outcome
UO

Average

A
ny

 E
R

 V
isi

ts

Treated 
Outcome
TO
Untreated 
Outcome
UO
Treatment 
Effect
TE

BT(x) BU(x) IT(x) IU(x) RIST(x) RISU(x) LA(x) A(x)

BTTO(x)

BTUO(x)

BTTE(x)

BUTO(x)

BUUO(x)

BUTE(x)

ITTO(x)

ITUO(x)

ITTE(x)

IUTO(x)

IUUO(x)

IUTE(x)

RISTTO(x)

RISTUO(x)

RISTTE(x)

RISUTO(x)

RISUUO(x)

RISUTE(x)

LATO(x)

LAUO(x)

LATE(x)

ATO(x)

AUO(x)

ATE(x)

BTTO(x)

BTUO(x)

BTTE(x)

BUTO(x)

BUUO(x)

BUTE(x)

ITTO(x)

ITUO(x)

ITTE(x)

IUTO(x)

IUUO(x)

IUTE(x)

RISTTO(x)

RISTUO(x)

RISTTE(x)

RISUTO(x)

RISUUO(x)

RISUTE(x)

LATO(x)

LAUO(x)

LATE(x)

ATO(x)

AUO(x)

ATE(x)

BTTO(x)

BTUO(x)

BTTE(x)

BUTO(x)

BUUO(x)

BUTE(x)

ITTO(x)

ITUO(x)

ITTE(x)

IUTO(x)

IUUO(x)

IUTE(x)

RISTTO(x)

RISTUO(x)

RISTTE(x)

RISUTO(x)

RISUUO(x)

RISUTE(x)

LATO(x)

LAUO(x)

LATE(x)

ATO(x)

AUO(x)

ATE(x)

48



ample, unless the LATE without covariates is globally externally valid, LATE(x) need not be equal to the

LATE without covariates. However, since MTE(x, p) is so similar to MTE(p), as depicted in Figure 3,

the all cells in Table 9 do not differ much from the corresponding cells in Table 4. Therefore, relative to

the estimated linear MTE and the estimated linear MTE in each subgroup, the estimated linear MTE with

covariates does not add much to our understanding of treatment effect heterogeneity in the OHIE.

In Figure 4, I report robustness of MTE(x, p) to the order of the global polynomial by plotting the

estimated quadratic gTE(x) and cubic gTE(x). I horizontal axis of these plots only includes the common

support of the estimated treated and untreated propensity scores. As depicted, the linear, quadratic, and

cubic polynomials all depict meaningful variations in treatment effect heterogeneity. Furthermore, with the

exception of the cubic polynomial for ER total charges, they show that the treatment effect decreases as the

fraction treated increases. Higher order global polynomials vary widely, especially outside of the common

support because flexible extrapolation results in predictions that tend very quickly to positive or negative

infinity in regions where there is no data.
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Figure 4: Linear and Nonlinear MTEs with Covariates
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4.10 Extrapolating the MTE to the Experiment Interpreted as a Natural Ex-

periment

As discussed in Section 3.15, any experiment can be interpreted as a natural experiment that took place in

the post-period but not in the pre-period for lottery winners. In the OHIE natural experiment, there are no

always takers who had coverage in both periods because only uninsured individuals could enter the lottery.

Therefore, we cannot estimate a separate MTE using the natural experiment, but we can use the observed

change in outcomes from the pre-period to the experimental period (Y − Ypre) to validate the predictions

from the MTE.

Before extrapolating the MTE to the natural experiment, I run a Monte Carlo exercise to benchmark

how well extrapolations based on the MTE should perform relative to extrapolations based on the LATE

and the RISOLS in the OHIE randomized and natural experiments. I discuss the implementation of the

Monte Carlo exercise in Appendix B.

Table 10 reports the results from the Monte Carlo exercise. Column 1 reports the mean bias and mean

RMSE from 1,000 Monte Carlo simulations in which the true treatment effect θ is equal to the estimated

LATE from the OHIE. In Column 2, the true treatment effect is equal to the estimated MTE from the

OHIE.

For each measure of ER utilization, the first set of results report how well each estimator performs relative

to the true treatment effect in the randomized experiment. I report the rank of each estimator in terms of

absolute bias and RMSE in brackets, and I highlight the winning estimator. As reported in Column 1, when

the LATE is the true value, the LATE has the smallest absolute mean bias for any ER visits, but the linear

MTE has the smallest absolute mean bias for the number of visits and total charges. The magnitude of the

mean bias for the linear MTE for the number of visits shows that the linear MTE under-predicts the true

treatment effect for total charges by only $1.23. The LATE has the lowest RMSE for all three measures of

utilization, but the linear MTE comes in a close second. As reported in Column 2, when the MTE is the

true value, the linear MTE substantially out-performs the LATE in terms of bias and RMSE. The RISOLS

always performs the worst in terms of bias and RMSE.

For each measure of ER utilization, the second set of results report how well each estimator performs

relative to the true treatment effect in the natural experiment. To mimic the natural experiment, for each

observation, I set the true treatment effect equal to D∗TE, and I set the estimated treatment effect equal

to D̂∗TE, since only the individuals who gain coverage should change their utilization from the pre-period

to the experimental period. The performance of the linear MTE relative to the LATE and the RISOLS is

similar for the natural experiment and the randomized experiment. These results suggest that in a simulation
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Table 10: Monte Carlo Exercise

Bias RMSE Bias RMSE

Any ER Visits
TE
RISOLS 0.08124 [3] 0.081 [3] 0.20284 [3] 0.227 [3]
LATE 0.00006 [1] 0.002 [1] 0.07642 [2] 0.127 [2]
Linear MTE 0.00008 [2] 0.003 [2] 0.00019 [1] 0.071 [1]

D*TE
RISOLS 0.01959 [3] 0.040 [3] 0.01959 [3] 0.071 [3]
LATE 0.00002 [2] 0.001 [1] -0.01089 [2] 0.030 [2]
Linear MTE 0.00001 [1] 0.001 [2] 0.00001 [1] 0.016 [1]

Number of ER Visits
TE
RISOLS 0.36703 [3] 0.367 [3] 0.82740 [3] 0.911 [3]
LATE -0.00005 [2] 0.011 [1] 0.28907 [2] 0.479 [1]
Linear MTE 0.000003 [1] 0.012 [2] 0.00003 [1] 0.479 [1]

D*TE
RISOLS 0.08842 [3] 0.180 [3] 0.08842 [3] 0.195 [3]
LATE -0.00001 [1] 0.005 [1] -0.04126 [2] 0.112 [2]
Linear MTE -0.00002 [2] 0.006 [2] -0.00002 [1] 0.062 [1]

ER Total Charges
TE
RISOLS 634.24 [3] 634.236 [3] 8,369.13 [3] 10544.320 [3]
LATE -1.33 [2] 18.475 [1] 4,854.97 [2] 8044.900 [2]
Linear MTE -1.23 [1] 20.172 [2] -16.04 [1] 4534.230 [1]

D*TE
RISOLS 152.71 [3] 311.207 [3] 152.71 [2] 1287.023 [2]
LATE -0.3 [1] 9.064 [1] -693.46 [3] 1886.286 [3]
Linear MTE -0.31 [2] 10.386 [2] -0.31 [1] 1036.856 [1]

Rankings for bias are based on absolute value.
The presented results are means obtained from 1,000 samples of size corresponding to the sample size 

(1)

θ = LATE θ = MTE

(2)
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designed to mimic the OHIE, there is not much to lose by running the linear MTE if the true treatment

effect is equal to the LATE, but there is much to gain by running the linear MTE if the true treatment effect

is equal to the linear MTE.

Next, we turn to validating our MTE results using the natural experiment. For the natural experiment,

the true treatment effect is equal to the difference in outcomes between the experimental period and the

pre-period: D∗θ = Y − Ypre. Unfortunately, the pre-period outcome Ypre is not directly comparable to

the experimental outcome Y . Individuals had to be uninsured for 6 months to enter the lottery, but the

pre-period data aggregate ER utilization over a longer time period, and they do not include any information

on pre-period insurance coverage.27. Therefore, I interpret the findings from the validation exercise with

caution.

I did not include any estimators that require covariates in the Monte Carlo, but I do include estimators

with covariates in the validation exercise. I perform the validation exercise in the full sample and in all

subgroups reported in Table6. In the full sample, I assess the performance of the linear MTE, the linear

MTE with covariates, the LATE, and the RISOLS. In the subgroups, I also assess the performance of the

linear MTE, the LATE, and the RISOLS in each subgroup.

Column 1 of Table 11 reports results from the validation exercise in the full sample. The bias and RMSE

from the validation exercise in the full sample should be directly comparable to the bias and MSE from the

Monte Carlo exercise designed to mimic the natural experiment. In practice, the biases from the validation

exercise are only somewhat larger, but the RMSEs are substantially larger. The linear MTE has the smallest

absolute mean bias for every measure of ER utilization, and it also ranks first in terms of RMSE for any

ER visits and ER total charges. For number of visits, the linear MTE with covariates ranks first in terms

of RMSE, suggesting that the additional structure improves the efficiency of the MTE estimate for that

outcome.

27The pre-period took place from January 1, 2007 to March 9, 2008, and the post-period took place from March 10, 2008
through September 30, 2009.
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Table 11: Extrapolating to the Experiment Interpreted as a Natural Experiment, D∗θ = Y − Ypre

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Any ER Visits
Linear MTE 0.002 [1] 0.274 [1] 0.007 [3] 0.290 [3] -0.005 [2] 0.253 [2] 0.001 [1] 0.277 [1] 0.009 [3] 0.235 [3] -0.005 [2] 0.273 [2] 0.010 [4] 0.275 [4]
Linear MTE in subgroup - - -0.003 [1] 0.289 [1] 0.005 [3] 0.253 [3] 0.006 [2] 0.278 [3] -0.036 [6] 0.246 [5] 0.003 [1] 0.274 [3] 0.002 [2] 0.274 [2]
Linear MTE with covariates 0.022 [4] 0.277 [3] 0.029 [7] 0.291 [4] 0.013 [6] 0.257 [7] 0.022 [6] 0.279 [5] 0.030 [5] 0.249 [7] 0.013 [3] 0.267 [1] 0.032 [7] 0.287 [7]
LATE -0.009 [2] 0.274 [2] -0.006 [2] 0.290 [2] -0.013 [5] 0.254 [5] -0.009 [4] 0.278 [4] -0.002 [1] 0.235 [1] -0.016 [5] 0.275 [5] -0.002 [3] 0.274 [3]
LATE in subgroup - - -0.018 [4] 0.292 [5] -0.003 [1] 0.252 [1] -0.007 [3] 0.278 [2] -0.040 [7] 0.248 [6] -0.017 [6] 0.275 [6] 0.001 [1] 0.274 [1]
RISOLS 0.022 [3] 0.277 [4] 0.029 [6] 0.295 [7] 0.012 [4] 0.254 [4] 0.021 [5] 0.281 [6] 0.028 [4] 0.241 [4] 0.014 [4] 0.274 [4] 0.030 [6] 0.280 [6]
RISOLS in subgroup - - 0.027 [5] 0.294 [6] 0.015 [7] 0.254 [6] 0.023 [7] 0.281 [7] 0.007 [2] 0.235 [2] 0.019 [7] 0.276 [7] 0.025 [5] 0.278 [5]

Number of ER Visits
Linear MTE -0.029 [1] 1.290 [2] -0.014 [1] 1.373 [2] -0.049 [4] 1.179 [4] -0.036 [2] 1.325 [3] 0.039 [4] 0.858 [3] -0.042 [2] 1.241 [3] -0.017 [1] 1.338 [3]
Linear MTE in subgroup - - -0.047 [3] 1.375 [3] -0.018 [1] 1.176 [3] -0.023 [1] 1.324 [2] -0.072 [5] 0.866 [4] -0.025 [1] 1.242 [5] -0.034 [3] 1.338 [2]
Linear MTE with covariates -0.047 [2] 1.283 [1] -0.035 [2] 1.331 [1] -0.063 [6] 1.212 [7] -0.053 [4] 1.313 [1] 0.017 [3] 0.914 [7] -0.053 [5] 1.204 [1] -0.040 [4] 1.362 [7]
LATE -0.072 [4] 1.296 [4] -0.065 [4] 1.377 [4] -0.080 [7] 1.187 [6] -0.078 [7] 1.332 [7] -0.005 [1] 0.854 [1] -0.081 [6] 1.249 [6] -0.063 [6] 1.342 [5]
LATE in subgroup - - -0.093 [7] 1.382 [7] -0.061 [5] 1.181 [5] -0.071 [6] 1.330 [6] -0.106 [6] 0.881 [5] -0.106 [7] 1.257 [7] -0.026 [2] 1.337 [1]
RISOLS 0.055 [3] 1.293 [3] 0.081 [6] 1.380 [6] 0.023 [2] 1.174 [1] 0.049 [3] 1.326 [4] 0.120 [7] 0.889 [6] 0.042 [3] 1.240 [2] 0.068 [7] 1.343 [6]
RISOLS in subgroup - - 0.076 [5] 1.379 [5] 0.032 [3] 1.175 [2] 0.059 [5] 1.327 [5] 0.013 [2] 0.854 [2] 0.049 [4] 1.241 [4] 0.061 [5] 1.342 [4]

ER Total Charges
Linear MTE -35 [1] 10,985 [1] 61 [2] 10,336 [3] 145 [2] 11,750 [1] -93 [3] 11,370 [2] 564 [4] 5,731 [4] -441 [4] 12,950 [2] 371 [4] 8,582 [6]
Linear MTE in subgroup - - -342 [4] 10,344 [4] 256 [4] 11,769 [2] -21 [1] 11,369 [1] -108 [2] 5,612 [1] -34 [1] 12,921 [1] 104 [1] 8,519 [1]
Linear MTE with covariates 1,396 [4] 11,646 [4] 1,688 [7] 10,770 [7] 992 [7] 12,762 [7] 1,331 [7] 11,968 [7] 2,098 [7] 7,326 [7] 846 [5] 13,403 [7] 1,969 [7] 9,478 [7]
LATE -726 [3] 11,092 [3] -776 [5] 10,431 [5] -663 [5] 11,871 [5] -782 [6] 11,488 [6] -148 [3] 5,632 [3] -1,080 [6] 13,152 [5] -372 [5] 8,549 [4]
LATE in subgroup - - -778 [6] 10,432 [6] -670 [6] 11,873 [6] -744 [5] 11,477 [5] -678 [6] 5,793 [6] -1,422 [7] 13,291 [6] 148 [3] 8,522 [3]
RISOLS 100 [2] 10,995 [2] 173 [3] 10,332 [2] 7 [1] 11,776 [3] 44 [2] 11,377 [3] 669 [5] 5,789 [5] -282 [3] 12,973 [4] 481 [6] 8,571 [5]
RISOLS in subgroup - - 4 [1] 10,326 [1] 243 [3] 11,789 [4] 110 [4] 11,379 [4] -12 [1] 5,624 [2] 101 [2] 12,962 [3] 116 [2] 8,520 [2]

Rankings for bias are based on absolute value.

Source: Oregon Administrative Data, 1 Lottery Entrant in Household
The pre-period was defined from January 1, 2007 to March 9, 2008. The post-period was defined from March 10, 2008 and September 30, 2009 (inclusive).
Individuals with missing values for the outcome variable or the corresponding pre-period measure were excluded.

(7)

Full sample Female Male English speaker Non-English speaker
Older than or at 

median age
Younger than 
median age

(1) (2) (3) (4) (5) (6)
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Columns 2-7 report results from the validation exercise in each subgroup. As the highlighting shows, the

three MTE estimators tend to out-perform the two LATE estimators and the two RISOLS estimators. It

is difficult to discern a clear ranking within the three MTE estimators, but the MTE estimator within the

subgroup tends to the have the lowest RMSE for ER total charges. On the whole, the Monte Carlo exercise

and the validation exercise on the natural experiment show that the MTE estimators out-perform the LATE

and OLS estimators in simulated and actual data.

4.11 Extrapolating the MTE to an Experiment on a Different Sample: The

Massachusetts Health Reform

The extrapolation for the results from the OHIE to the Massachusetts health reform is of particular policy-

relevance. Though the LATE from the OHIE shows that insurance increases ER utilization, the LATE from

the Massachusetts Health Reform shows that insurance decreases ER utilization or leaves it unchanged.

The extrapolation of the LATE from Oregon to Massachusetts cannot explain the difference in findings, but

perhaps the extrapolation of the MTE can. In Sections 3.14 and 3.16, I discussed the restrictive conditions

required to extrapolate the results from one experiment to another experiment on a different sample. Under

the strong assumption that all of those conditions are met, I extrapolate the results from the OHIE to the

Massachusetts Health Reform.

Before undertaking this exercise, I acknowledge that there are several factors that could have differed

between both empirical contexts that MTE methods will not address directly. At a fundamental level, the

Oregon expansion was a randomized experiment open to a relatively small group of subjects and the Mas-

sachusetts reform was a state-wide policy. Therefore, Oregon impacts likely occurred through the demand-

side, but Massachusetts impacts could also occur through the supply-side. Health insurance terms could

also differ, especially since Oregon expanded Medicaid alone and Massachusetts also expanded other types

of coverage.

Furthermore, institutional features of the health care environment could differ across states. As discussed

by Miller [2012], Massachusetts had an uncompensated care pool that might have encouraged excess emer-

gency care before its dissolution and replacement under the Massachusetts health reform. Also, both states

could have different social norms regarding emergency room vs. primary care usage. Those social norms

could differ between urban areas and rural areas. Though Massachustts is more urban than Oregon, the

Oregon administrative data on ER utilization are only from the Portland area.

Table 12 presents observable demographic characteristics from the OHIE and Massachusetts side-by-side.

The data from the Massachusetts health reform are the same data from the Behavioral Risk Factor Surveil-

lance System (BRFSS) that I used in Kolstad and Kowalski [2012], restricted to include only individuals from
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Massachusetts. Overall, the Massachusetts sample from the BRFSS includes 62,541 individuals, making it

much larger than our primary OHIE sample of 19,643 individuals.

As shown in the top row, these data do not include any measures of emergency room utilization, but

they do allow me to compare individual-level characteristics from the Massachusetts health reform with

individual-level characteristics from the OHIE. The data from the other published studies that examine the

impact of the Massachusetts health reform on emergency room visits are not at the individual level, or they

only include individuals who visit the emergency room, making them unsuitable for this exercise.

Table 12: Average Characteristics and Outcomes of Always Takers, Never Takers, and Compliers: Oregon
vs. Massachusetts

(1) (2) (3) (4) (5) (6) (7) (8)

Sample 
Average

Always 
Takers

Never 
Takers Compliers

Sample 
Average

Always 
Takers

Never 
Takers Compliers

Y: Any ER visit 0.37 0.55 0.31 0.40 - - - -
Y: Number of ER visits 1.12 1.89 0.85 1.28 - - - -
Y: ER total charges $4,009 $8,794 $2,930 $3,661 - - - -
Z: Selected in Oregon lottery 0.34 0.00 1.00 0.34 - - - -
Z: Massachusetts, Post-Reform - - - - 0.42 0.00 1.00 0.42
D: Medicaid 0.24 1.00 0.00 0.34 0.92 1.00 0.00 0.42
X: Lottery entrants in household 1.00 1.00 1.00 1.00 - - - -
X: Number of adults in household - - - - 1.86 1.86 1.82 1.86
X: Age in 2009 40.7 39.4 40.3 42.4 42.0 42.2 39.0 42.4
X: Female 0.56 0.72 0.53 0.53 0.51 0.52 0.38 0.43
X: English 0.91 0.90 0.91 0.92 0.96 0.98 0.81 0.86
Number of Observations 19,643 1,959 3,977 5,092 62,456 25,918 1,856 3,175

Oregon Health Insurance Experiment Massachusetts Health Reform

Sources: Oregon Administrative Data, 1 lottery entrant in household and Behavioral Risk Factor Surveillance System 2004-2009, Massachusetts data
Note that for the Massachusetts sample, there are more people in the treatment group than in the control group because there are more years of data in 
the post-reform period than in the pre-reform period. The pre-reform period spans 2004 through March 2006. The post-reform period spans July 2007 
through 2009. The during-reform period, which spans April 2006 through June 2007, has been excluded from the analysis. 

The key variables for extrapolation are the instrument Z and the treatment D. I define the Massachusetts

instrument Z so that indicates whether the individual was in the sample post-reform. As discussed in the

table notes, the Massachusetts sample includes slightly less data in the post-reform period. I define the

treatment D such that the treatment represents Medicaid in Oregon and all types of insurance coverage in

Oregon. This is a large assumption.

The next three rows compare the common covariates available in the Oregon data and the Massachusetts

data. As shown, the Oregon sample is younger, they are more likely to be female, and they are less likely to

request materials in English. Furthermore, compliers in Oregon are even younger, more female, and less likely

to request materials in English than compliers in Massachusetts. Column 6 shows that the vast majority of

the Massachusetts sample consists of always takers whose coverage was not affected by the Massachusetts

health reform.
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In Massachusetts, the baseline treatment probability pB and the intervention treatment probability pI are

both very high relative to the OHIE experimental support. Furthermore, as discussed in Section 3.16, since

the Oregon sample consists of individuals who selected to enter a lottery for insurance, the relevant pB and

pI for extrapolation from Oregon could actually exceed 1. However, I proceed under the very conservative

assumption that the distribution of unobserved heterogeneity UD is the same in Oregon and Massachusetts,

so that pB and pI from Oregon and Massachusetts are comparable.

Applying Massachusetts weights to the linear MTE from Oregon, I find negative LATEs for all three

measures of ER utilization. I hesitate to read too much into the magnitudes of the estimates since they

are so far outside of the Oregon support. The Oregon MTE implies that insurance should decrease ER

utilization in Massachusetts by decreasing the visit probability by 0.17, decreasing the number of ER visits

by -0.58, and decreasing ER total charges by $13,797. The any ER visit and ER total charges results are

statistically different from zero at at least the 10% level. Though based on many restrictive assumptions,

these results could potentially reconcile the entire discrepancy in the LATEs for ER utilization between the

Oregon Health Insurance Experiment and the Massachusetts Health Reform.

5 Experimental Design for External Validity

The exercise of applying MTE methods to the OHIE brings to light several issues that should be considered

in the design of future experiments to maximize the usefulness of MTE methods. The first issue is that a

wide array of covariates should be collected to aid in tracing out a nonlinear MTE function. Ideally, these

covariates should be defined such that they can also be obtained from other experimental or non-experimental

data. By defining covariates in a standardized fashion, the MTE function from one context such as Oregon

can be applied to another such as Massachusetts. Covariates used for stratification should be defined such

that they can also be obtained from other experimental or non-experimental data.

A second issue is that researchers should collect data on always takers, compliers, and never takers.

If researchers do not collect follow-up data on experimental subjects who lose the lottery but attain the

intervention by other means, then always takers cannot be identified. Because the OHIE researchers collected

data on individuals who lost the lottery but gained health insurance through other means, the MTE function

can be estimated. However, if they did not collect such data, as is common in clinical trials, then only one

of the separate pieces of the MTE function could be estimated.

A subtler issue is that experiments should be designed such that always takers and never takers are

possible. If there are no always takers or no never takers, the full MTE function cannot be estimated. For

example, in their empirical application, Brinch et al. [2012] cannot estimate the full MTE because there are
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no never takers who have twins but do not end up with an extra child.

A related issue is that going to great lengths to encourage all participants who win the lottery to receive

the intervention could make the estimated LATE less locally externally valid for other LATEs of interest.

It could also limit the ability of the researchers to use the estimates to produce externally relevant ones. In

the extreme case, if there is no selection into or out of treatment, then the LATE will be equal to the ATE.

However, if the policy intervention based on the experiment will allow individuals to select into or out of

treatment, then the ATE might not be locally externally valid for the LATE of interest, but there will be no

way to estimate the LATE of interest with the experiment.

Another manifestation of going to great lengths to encourage full takeup of the experimental intervention

is that the estimated ATE could be smaller than the LATE that would result from a policy of interest. If

the individuals with the largest treatment effects select into treatment first, then then going to great lengths

to get all individuals to take up the treatment if they win the lottery could dilute the policy-relevant LATE

of interest. This insight could be especially valuable in clinical trials.

Finally, perhaps the most productive way to improve the ability of experiments to recover treatment

effect heterogeneity with MTE methods is to run experiments with continuous instruments. The idea of

“selective trials” proposed by Chassang et al. [2012] seems consistent with this idea. With a continuous

intervention, or even several different discrete interventions, the assumptions required to identify treatment

effect heterogeneity with the MTE are weaker.

5.1 Conclusion

Researchers run experiments to obtain a treatment effect estimate that is internally valid. However, the

local average treatment effect (LATE) estimated by an experiment is not globally externally valid if the

treatment effect varies across individuals. The LATE gives the average treatment effect for compliers who

receive the treatment if and only if they win the experimental lottery. In many experiments, there are also

always takers who always receive the treatment and never takers who never receive the treatment regardless

of the experimental lottery. I show that it is possible to use such experiments to recover bounds on average

treatment effects for always takers and never takers. These bounds can reject global external validity of the

LATE in some cases, and they depend on weaker assumptions than existing tests of global external validity.

Building on existing methods to recover a marginal treatment effect (MTE) with a discrete instrument, I

develop weights that allow me to recover average treatment effects for discrete groups of individuals created

by a discrete instrument, including always takers and never takers. I use the recovered treatment effects to

decompose group average treated outcomes into selection and treatment effects. I also decompose the sample

OLS estimate into a selection effect and a treatment effect. This decomposition generalizes the comparison
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of the OLS estimate to the LATE when the treatment effect is heterogeneous.

I apply these methods to the Oregon Health Insurance Experiment. The Oregon LATE indicates that

obtaining insurance increases emergency room (ER) utilization for compliers. I find that the treatment effect

of insurance on ER utilization decreases from always takers to compliers to never takers. I also find that

potential uninsured ER utilization decreases from always takers to compliers to never takers. Therefore, the

selection effect and the treatment effect of insurance on insured ER utilization decrease as a larger fraction of

individuals gain insurance. The heterogeneous selection and treatment effects that I recover from the OHIE

indicate that a different policy experiment could increase or decrease ER utilization, depending on which

individuals it induces to gain coverage.
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Appendices

A Global Polynomial MTE Estimation of an MTE with Covari-

ates

Our goal is to estimate the marginal treatment effect MTE(x, p), the marginal treated outcome MTO(x, p),

and the marginal untreated outcome MUO(x, p), which we have specified as

MTE(x, p) = E(YT − YU |X = x, UD = p)=(βT − βU )′x+ (mto(p)−muo(p)). (21)

MTO(x, p) = E(YT |X = x, UD = p) =β′Tx+mto(p) (22)

MUO(x, p) = E(YU |X = x, UD = p) =β′Ux+muo(p). (23)

Step 1: Specify the order M of the global polynomial

We specify the order M ≥ 1 of the global polynomial for the unobservable components of the average treated

and untreated outcome functions ATO(x, p) and ATO(x, p) as follows:

ATO(x, p) = E(YT |X = x, UD ≤ p)=β′Tx+ATO(p) =β′Tx+

M∑
m=0

γTmp
m (24)

AUO(x, p) = E(YU |X = x, UD > p)=− β′Ux+AUO(p)=− β′Ux+

M∑
m=0

γUmp
m. (25)

These specifications imply that MTE(x, p), MTO(x, p) and MUO(x, p) have the functional forms specified

in (21)-(23) with M th order global polynomials for MTO(p)28, MUO(p)29, and (MTO(p)−MUO(p)):

MTO(x, p) = β′Tx+ γT0 +

M∑
m=1

(m+ 1)γTmp
m (26)

MUO(x, p) = β′Ux− γU0 −
M∑

m=1

mγUmp
m−1 +

M∑
m=1

(m− 1)γUmp
m. (27)

28MTO(p) =
d[pATO(p)]

dp
= p

dATO(p)
dp

+ ATO(p)

29MUO(p) =
d[(1−p)AUO(p)]

d(1−p)
= − d[(1−p)AUO(p)]

dp
= −(1− p)

dAUO(p)
dp

−AUO(p).
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Step 2: Estimate the propensity score p

After dropping individuals with missing values for the outcome Y , we regress treatment D on the instrument

Z and the covariates X. In our baseline, X includes interaction terms between covariates. We also interact

Z with X so that we can harness variation in pBx and pIx across subgroups X = x. Using the coefficient

estimates, we predict a propensity score p ≡ P (D = 1|Z,X) for each individual.

Because the MTE is the difference between the marginal treated outcome and the marginal untreated

outcome, we only estimate MTE(x, p) on a common support for MTO(x, p) and MUO(x, p). We drop

observations outside of the maximum common support of the predicted propensity scores conditional on

D = 1 and D = 0. In addition, we drop observations above the 5th percentile and below the 95th percentile

of the maximum common support.

Step 2: Estimate ATO(x, p) and AUO(x, p)

We estimate the average treated outcome function ATO(x, p) using only the treated observations (the ob-

servations with D = 1) that were not dropped in Step 2. We regress the outcome Y on the covariates X and

a global polynomial in the predicted propensity score as specified in (24). We save the predicted coefficients

βT and
∑M

m=0 γTm.

Similarly, we estimate the average untreated outcome function ATO(x, p) using only the untreated ob-

servations (the observations with D = 0) that were not dropped in Step 2. We regress the outcome Y on

the covariates X and a global polynomial in the predicted propensity score as specified in (25). We save the

predicted coefficients βU and
∑M

m=0 γUm.

Step 3: Construct estimates of MTO(x, p), MUO(x, p), and MTE(x, p)

Using the predicted coefficients saved from Step 2, we construct estimates of the marginal treated and un-

treated outcome functions MTO(x, p) following (26) and (27). We then construct an estimate of the marginal

treatment effect function MTE(x, p) by reporting the difference between MTO(x, p) and MUO(x, p). These

estimates give a value of the MTE for each value of the covariate x and each propensity score p.

B Implementation of the Monte Carlo Exercise

I generate each Monte Carlo to mimic my OHIE replication sample as closely as possible. Each Monte Carlo

has the same number of observations N as my OHIE replication sample. I draw UD so that it is uniformly

distributed from 0 to 1. (This is equivalent to drawing ν from any distribution and setting UD equal to the

quantiles of ν.) I generate the binary instrument Z such that P (Z = 1) = s(pB) where s(pB) is the share of
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lottery winners in the OHIE. I generate the binary treatment D such that D = 1 for the pBN observations

with the lowest values of UD among the observations with Z = 0. I also set D = 1 for the pIN observations

with the lowest values of UD among the observations with Z = 1. I generate YU = MUO(UD) using the

MUO(p) that I estimate in the OHIE so that there is some selection.

Next, I simulate two different versions of the outcome Y for each of the three measures of ER utilization.

The first version reflects a homogenous treatment effect (“θ = LATE”) and the second version reflects a

heterogeneous treatment effect (“θ = MTE”). I generate

YT (θ) =


YU + LATE if θ = LATE

YU +MTE(UD) if θ = MTE

using the LATE and the MTE(p) that I estimate in the OHIE. Finally, I generate two versions of the

observed outcome:

Y (LATE) = (1−D)YU +DYT (LATE)

Y (MTE) = (1−D)YU +DYT (MTE).

I retain the simulated Y (LATE), Y (MTE), D, Z, and the true treatment effect θ for each observation.

In each Monte Carlo sample, for Y (LATE), Y (MTE), I obtain an estimate of the treatment effect θ̂

using three estimators: RISOLS, LATE, and RISTTE from the linear MTE. I calculate the bias and MSE

as follows:

Bias(θ̂) = E[θ̂ − θ]

RMSE(θ̂) =

√
E[(θ̂ − θ)2]

I repeat for 1,000 Monte Carlo samples, and I report the mean bias and MSE across all samples. This

exercise validates how well each estimator performs in the simulated randomized experiment.

In the natural experiment as opposed to the randomized experiment, we are interested in the predicted

observed change in outcomes D∗θ̂ relative to the observed change in outcomes D∗θ because the true change

in outcomes should be zero for all individuals who do not take up coverage (D = 0), and it should be equal

to θ for all individuals who do take up coverage. Therefore, I also calculate mean bias and MSE as follows:

Bias(D̂θ) = E[Dθ̂ −Dθ]

RMSE(D̂θ) =

√
E[(D̂θ −Dθ)2]
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This exercise validates how well each estimator performs in the simulated natural experiment.
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