
A Extensions

In this section we consider two extensions of the baseline model. The first generalizes the

model to allow for capital accumulation. This extension allows us to explore the transmission

of monetary policy to asset prices, and in turn, the transmission from asset prices to the real

economy. The second extension verifies the robustness of the cashless limiting results under

an alternative credit arrangement where, rather than having to use the asset as collateral,

investors are able to issue unsecured debt up to a given limit. As with the baseline model, we

formulate these extensions in discrete time, and consider the continuous-time approximation to

characterize equilibrium.

A.1 Capital accumulation

In the baseline model, the number of production units, As, is exogenous and constant. This

means that monetary policy and the details of the OTC market structure affect asset prices

but do not affect conventional measures of real economic activity, such as aggregate output or

investment. In this section we endogenize the productive capacity of the economy by letting

agents invest to augment the stock of productive units.

The model is as in Section 2, with the following change. We regard the productive units

that yield the dividend good as a capital stock that can be accumulated. Specifically, in the

second subperiod of period t, investors have access to a production technology that transforms

n ∈ R+ units of the general good into x units of capital according to x = ft (n), where

the production function ft is strictly increasing, twice differentiable, concave, and satisfies

ft (0) = limn→∞ f
′
t (n) = 0, and f ′t (0) = ∞. Thus, the value of an investor in the second

subperiod is

Wt(at, a
b
t , kt) = max

(ct,h1t,h2t,xt,ãt+1)∈R6
+

[
ct − ht + βEt

∫
Vt+1 (at+1, ε) dG(ε)

]
s.t. ct + φtãt+1 ≤ h1t + φtat + abt − kt + φstxt + Tt,

with at+1 = (ãmt+1, ηã
s
t+1), ht = h1t + h2t, and xt = ft (h2t), where ht is the labor input (effort)

devoted to production of general goods (equal to the quantity of general goods produced), h1t

is the quantity of general goods used for consumption, and h2t is the quantity of general goods
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used as input to produce new capital, xt. This problem can be written as

Wt(at, a
b
t , kt) = φtat + abt − kt + Tt

+ max
ãt+1∈R2

+

[
−φtãt+1 + βEt

∫
Vt+1 (at+1, ε) dG(ε)

]
+ max
h2t∈R+

[φstft (h2t)− h2t] .

This value function is the same as (3), except for the addition of the last term that represents

the investor’s profit from producing and selling new capital at the market price φst . The optimal

quantity of general goods that the investor devotes to the production of capital goods, i.e., the

h2t that satisfies φstf
′
t (h2t) = 1, is denoted gt (φst ), i.e.,

gt (φst ) ≡ f ′−1
t (1/φst ) . (62)

The quantity of new capital created by an individual investor is xt (φst ) ≡ ft (gt (φst )). We

can regard xt (φst ) as an individual investor’s contribution to aggregate investment; aggregate

capital investment is

Xt (φst ) ≡ xt (φst )NI . (63)

The assumptions on f imply aggregate investment is increasing in the market price of the equity

shares of capital, i.e.,

X ′t (φst ) = − f ′t (gt (φst ))

(φst )
2 f ′′t (gt (φst ))

NI > 0.

The law of motion of the aggregate capital stock is

Ast+1 = η (Ast +Xt) , (64)

where Xt is aggregate investment added to the capital stock at the end of period t, and As0 ∈ R+

is given.38

The definition of equilibrium for the economy with capital accumulation is the same as

Definition 1, but with two additional equilibrium variables, namely
{
Xt, A

s
t+1

}∞
t=0

, and two

additional equilibrium conditions, namely Xt = Xt (φst ) and (64). A RNE is a nonmonetary

equilibrium with the structure described in Definition 2. A RME is a monetary equilibrium in

which: (i) real equity prices (general goods per equity share) are time-invariant linear functions

38Since agents can now augment the stock of productive units, the beginning-of-period exogenous lump-sum
endowment is no longer needed to offset the depreciation in the aggregate capital stock due to the idiosyncratic
obsolesence shock that affects each individual unit of capital.
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of the aggregate dividend, i.e., φst = φsyt, ptφ
m
t ≡ φ̄

s
mt = φ̄

s
myt, and pt/qt ≡ φ̄

s
bt = φ̄

s
byt for some

φs, φ̄
s
m, φ̄

s
b ∈ R+; and (ii) real money balances are a constant proportion of aggregate output,

i.e., φmt A
m
t = ZAstyt for some Z ∈ R++. Hence in a RME, ε∗t = (ptφ

m
t − φst ) 1

yt
= φ̄

s
m−φs ≡ ε∗,

ε∗∗t = (pt/qt − φst ) 1
yt

= φ̄
s
b − φs ≡ ε∗∗, and nominal prices are

pt = (ε∗ + φs)
Amt
ZAst

(65)

φmt =
ZAstyt
Amt

(66)

qt =
ε∗ + φs

ε∗∗ + φs
Amt
ZAstyt

. (67)

For the analysis that follows, we generalize the money supply process of Section 2 to the

following money-growth rule
Amt+1

Amt
=
Ast+1

Ast
µ. (68)

Notice that just as in the model of Section 2, this monetary policy rule implies the gross inflation

rate (as measured by the growth in the nominal price of equity shares) is constant and equal

to µ, i.e., pt+1/pt = µ. In the special case with Ast = As, (68) reduces to Amt+1/A
m
t = µ, namely

the money growth process in our baseline model.

In a recursive equilibrium (monetary or nonmonetary), once the asset price φs has been

found, aggregate investment is given by Xt = Xt (φsyt), and the aggregate capital stock follows

the stochastic difference equation Ast+1 = η [Ast +Xt (φsyt)]. If the equilibrium is monetary, once

(ε∗, ε∗∗, φs, Z) have been found, the implied equilibrium stochastic processes for the nominal

prices, {pt, φmt , qt}, are given by (65), (66), and (67). Thus, along a RME, (ε∗, ε∗∗, φs, Z, χ11)

are constant, while nominal prices {pt, φmt , qt} are random variables whose evolutions over time

are driven by the stochastic dividend process {yt}, and possibly also by transitional dynamics.39

To streamline the presentation, we assume

ft (n) = $tn
σ, with σ ∈ (0, 1) , and $t ≡ (σyt)

−σ . (69)

Let Xt (∆) denote aggregate investment in the recursive equilibrium of the discrete-time

economy where the length of the time period is ∆, and let Xt ≡ lim∆→0
1
∆Xt (∆) (i.e., Xt is the

39By way of example, notice that if ft = f and yt = y for all t, then (62) implies aggregate investment
is constant, i.e., Xt (φsyt) = X (φsy) for all t, and Ast+1 converges monotonically to the unique steady state
Ās = η

1−ηX (φsy) from any initial condition As0. Given the deterministic transition path Ast+1 = η [Ast +X (φsy)],
the money supply process {Amt }, and nominal prices {pt, φmt , qt}, just follow (68), (65), (66), and (67).
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investment rate). Then as ∆→ 0, (64) can be approximated by

Ȧst = Xt − δAst . (70)

Next, we characterize the RNE and RME for the limiting economy as ∆→ 0.

Proposition 7 Consider the limiting economy (as ∆ → 0) with capital accumulation, and

α ∈ (0, 1).

(i) There exists a unique recursive nonmonetary equilibrium, (εn, ϕn,X n). Moreover, (εn, ϕn)

are as described in Proposition 1, aggregate investment rate is X n = (ϕn/ρ)
σ

1−σ NI , and the cap-

ital stock follows (70) with Xt = X n.

(ii) If 0 ≤ ι < ῑ (λ), there exists a unique recursive monetary equilibrium, (ε∗, ε∗∗, χ, ϕ,Z,X ).

Moreover, (ε∗, ε∗∗, χ, ϕ,Z) are as described in Proposition 2, aggregate investment rate is X =

(ϕ/ρ)
σ

1−σ NI , and the capital stock follows (70) with Xt = X .

Proposition 7 delivers a link between the asset price, i.e., the relative price of capital in

terms of consumption goods (ϕn in the RNE or ϕ in the RME), and aggregate investment.

A.2 Unsecured credit

In our baseline formulation, we modeled credit in the form of margin loans mainly because

it is the most common form of credit used in financial markets. In this section we verify the

robustness of our main results to an alternative credit arrangement where in the OTC round,

investors are able to issue unsecured debt up to a given limit. The only relevant difference in

the model is that the last constraint in the bargaining problem (2) is replaced by

− B̄t ≤ abt , (71)

where B̄t ≥ 0 is the credit limit faced by an individual agent in the OTC round of period t.

Suppose a broker extends an investor a loan of L dollars in order to purchase A dollars worth

of an asset. Suppose, as will be the case in the model, that the investor chooses to borrow the

maximum amount possible, i.e., L = B̄t. In this case, the margin is M = 1− B̄t/A, leverage is

L = A/
(
A− B̄t

)
, and the loan-to-value ratio is R = B̄t/A.

We focus on recursive equilibria. To this end, let

B̄t ≡ Λ
(pt/qt)A

s

NI
(72)
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for some Λ > 0. In a nonmonetary economy, φ̄
s
t ≡ pt/qt, and therefore (72) amounts to assuming

B̄t ≡ Λ φ̄
s
tA

s

NI
. Formulation (72) corresponds to an economy (monetary or nonmonetary) where

the aggregate real borrowing capacity of investors expressed in terms of general goods, i.e.,

NIB̄t, is a multiple Λ of the real value (expressed in terms of general goods) of the equity

shares outstanding, (pt/qt)A
s.

The structure of the recursive equilibrium is as described in Definition 2 and Definition 3.

We again consider the limiting economy as ∆ → 0, and as before, let ϕ ≡ ρφs, Z ≡ ρZ, and

ι ≡ ip/ρ. For the following result it is convenient to define

ς̄0 ≡
ε̄− εL + θ

∫ εn
εL

(εn − ε) dG (ε)

ε̄+ θ
∫ εn
εL

(εn − ε) dG (ε)

ς̂0 ≡
∫ εH
εn (ε− εn) dG(ε)

ε̄+
∫ εn
εL

(εn − ε) dG (ε)
,

where εn ∈ [εL, εH ] is the unique solution to

G (εn) =
Λ

1 + Λ
.

Proposition 8 Consider the limiting economy (as ∆ → 0) with individual borrowing limit

(72), and α ∈ [0, 1]. Let

ϕn0 ≡ lim
α→0

ϕn = ε̄+ θ

∫ εn

εL

(εn − ε) dG(ε).

As α→ 0,

(i) If ς̂0 < ι < ς̄0, then

Z
ϕ
→ 0

V → ∞

ϕ→ ϕn0 + (1− θ)
∫ ε∗

εL

(ε∗ − ε) dG (ε) ,

where ε∗ ∈ (εL, ε
n) is the unique solution to

(1− θ)
∫ εH
ε∗ (ε− ε∗) dG(ε) + θ

[
(εn − ε∗)G(εn) +

∫ εH
εn (ε− ε∗) dG(ε)

]
ε̄+ (1− θ)

∫ ε∗
εL

(ε∗ − ε) dG (ε) + θ
∫ εn
εL

(εn − ε) dG (ε)
= ι.
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(ii) If 0 < ι ≤ ς̂0, then

Z
ϕ
→ G (ε∗)− [1−G (ε∗)] Λ

1−G (ε∗)

V → G(ε∗) [1−G (ε∗)]

G (ε∗)− [1−G (ε∗)] Λ

ϕ→ ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε) ,

where ε∗ ∈ [εn, εH) is the unique solution to∫ εH
ε∗ (ε− ε∗) dG(ε)

ε̄+
∫ ε∗
εL

(ε∗ − ε) dG (ε)
= ι.

Proposition 8, which is analogous to Proposition 6, considers the limiting economy as the

fraction of investors who do not have access to margin loans vanishes.

For the limiting economy as α→ 0, Figure 3 illustrates in the space of parameters ι (vertical

axis) and Λ (horizontal axis), the regions where the equilibria described in parts (i) and (ii) of

Proposition 8 exist. Notice that ς̄0 and ς̂0 are functions of εn, which is in turn a function of Λ,

so to make this dependence explicit, we can write ς̄0 (Λ) and ς̂0 (Λ). The boundaries ι = ς̄0 (Λ)

and ι = ς̂0 (Λ) define three regions.40 First, if the nominal policy rate is very high, i.e., if

ς̄0 (Λ) ≤ ι, then the monetary equilibrium does not exist. Second, if the nominal policy rate is

relatively low, i.e., if 0 < ι ≤ ς̂0 (Λ) as in part (ii) of Proposition 8, then the aggregate money

demand from investors without access to credit vanishes in the limit, but the aggregate money

demand from investors with access to credit who have low valuation remains positive in the

limit, and therefore real balances and velocity converge to positive limits. Third, if the nominal

policy rate is relatively high, i.e., if ς̂0 (Λ) < ι < ς̄0 (Λ) as in part (i) of Proposition 8, then real

balances converge to zero and transaction velocity diverges to infinity as α→ 0. The economic

rationale for these results is as explained in the context of Proposition 6. And again, the key

40It is easy to prove that ς̂0 (Λ) ≤ ς̄0 (Λ) for all Λ ≥ 0 (with “=” only if Λ = 0), and that

lim
Λ→∞

ς̂0 (Λ) = 0 < ς̄0 (0) = ς̂0 (0) =
ε̄− εL
ε̄

≤ lim
Λ→∞

ς̄0 (Λ) =
θ (εH − εL) + (1− θ) (ε̄− εL)

ε̄+ θ (εH − ε̄)
,

where the second inequality is strict unless θ = 0. Also,

∂ς̂0
∂εn

< 0 ≤ θG (εn) εL[
ε̄+ θ

∫ εn
εL

(εn − ε) dG (ε)
]2 =

∂ς̄0
∂εn

.

Hence, dς̂0
dΛ

< 0 ≤ dς̄0
dΛ

.
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result is that even though real balances and velocity converge to their nonmonetary equilibrium

levels as α → 0, the real equity price in this cashless limit of the monetary economy exceeds

the (corresponding limit of the) nonmonetary-equilibrium price by the value of a resale-option

term. Since ε∗ is a function of ι, the asset price is still responsive to monetary policy in the

cashless limit, and that the magnitude of this response remains bounded away from zero even

though real balances converge to zero.

B Efficiency and welfare

In this section we pose and solve the planner problems corresponding to the baseline model

with fixed capital of Section 2, and the model with capital accumulation of Section A.1. In

both cases we consider a social planner who wishes to maximize the sum of all agents’ expected

discounted utilities subject to the same meeting frictions that individual agents face in the

decentralized formulation. Specifically, in the first subperiod of every period, the planner can

reallocate assets among all investors. We restrict attention to symmetric allocations (identical

agents receive equal treatment). For each of the two economies, we also provide a measure of

welfare along an equilibrium path, based on the (equally weighted) sum of all agents’ expected

discounted utilities at the beginning of a period.

B.1 Endowment economy

Let ckt and hkt denote consumption and production of the homogeneous consumption good in

the second subperiod of period t of an agent of type k ∈ {B, I}. Let ãIt denote the beginning-of-

period t (before depreciation) equity holding of an individual investor. Let āIt denote a measure

on F ([εL, εH ]), the Borel σ-field defined on [εL, εH ]. The measure āIt is interpreted as the

distribution of post-OTC-trade asset holdings among investors with different valuations in the

first subperiod of period t.

With this notation, and letting

Π ≡
{
ãIt+1, ā

I
t , [c

k
t , h

k
t ]k∈{B,I}

}∞
t=0

,

the planner’s problem for the model with fixed capital is

W ∗ (y0) = max
Π

E0

∞∑
t=0

βt

{∫ εH

εL

εytā
I
t (dε)NI +

∑
k∈{B,I}

(
ckt − hkt

)
Nk

}
(73)
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subject to

ãItNI ≤ As (74)∫ εH

εL

āIt (dε) ≤ aIt (75)∑
k∈{B,I}

(
ckt − hkt

)
Nk ≤ 0 (76)

aItNI = ηãItNI + (1− η)As, (77)

and subject to the allocation Π being nonnegative (the expectation operator E0 is with re-

spect to the probability measure induced by the dividend process). The following proposition

characterizes the efficient allocation and the maximum value of the planner’s problem.

Proposition 9 Consider the limiting economy (as ∆ → 0) with exogenous capital. The effi-

cient allocation is characterized by āIt (E) = As

NI
I{εH∈E} for all t, where I{εH∈E} is an indicator

function that takes the value 1 if εH ∈ E, and 0 otherwise, for any E ∈ F ([εL, εH ]). The

welfare achieved by the planner is

W∗ (yt) =
εH
r − g

Asyt. (78)

According to Proposition 9, the optimal allocation is characterized by the following simple

property: only those investors with the highest valuation hold equity shares at the end of the

OTC round of trade. In this context, εH can be interpreted as the (flow) shadow value of the

asset for the planner, i.e., it is the analogue of ϕn in Proposition 1 or ϕ in Proposition 2. Recall

that, ϕn ≤ ϕ ≤ εH (part (i) of Proposition 3).

In Appendix D (part (i) of Lemma 27), we show that along the path of a RNE of the

limiting continuous-time economy with exogenous capital, welfare is

Vn (yt) =
ϕn1
r − g

Asyt, (79)

where

ϕn1 ≡ ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

]
, (80)

and εn satisfies (33). Notice that ϕn1 is the stock price in the RNE of an economy with θ = 1.

In D (part (ii) of Lemma 27), we show that along the path of a RME of the limiting

continuous-time economy with exogenous capital, welfare is

Vm (Z, yt) =
1

r − g

(
uz1
Z
ϕ

+ ϕ1

)
Asyt, (81)
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where

uz1 ≡ α
∫ εH

ε∗
(ε− ε∗) dG(ε) + (1− α)

[
ε∗∗ − ε∗ +

1

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
(82)

us1 ≡ α
∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λ

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
, (83)

(ε∗, ε∗∗, ϕ,Z) satisfy the equilibrium conditions in Proposition 2, and

ϕ1 ≡ ε̄+ us1 = ε∗ + uz1 (84)

is the normalized (i.e., multiplied by ρ) stock price in the RME of an economy with θ = 1.

The following result is a corollary of Proposition 2, part (i) of Proposition 3, Proposition 9,

Proposition 11, (79), and (81).

Corollary 1 Consider the limiting economy (as ∆→ 0) with exogenous capital stock. Then

Vn (yt) ≤ Vm (Z, yt) ≤ W∗ (yt) ,

where the first inequality is strict unless ι = ῑ (λ), and the second inequality is strict unless

ι = 0.

The following result, a corollary of (81)-(83) and Lemma 6, describes welfare in the limiting

economy with exogenous capital where all agents have access to credit.

Corollary 2 Consider the limiting economy (as ∆ → 0) with exogenous capital stock, with

α ∈ [0, 1] and λ ∈ (0, 1]. As α→ 0,

(i) If ς̂ (0) < ι < ς̄ (0), then

lim
α→0
Vm (Z, yt) = lim

α→0
Vn (yt) =

ϕ̃n1
r − g

Asyt.

where

ϕ̃n1 ≡ lim
α→0

ϕn1 = ε̄+

∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε) . (85)

(ii) If 0 < ι ≤ ς̂ (0), then

lim
α→0
Vn (yt) < lim

α→0
Vm (Z, yt) =

ϕ̃z1
r − g

Asyt,
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where

ϕ̃z1 ≡ ϕ̃1 + ũz1
G (ε∗)− λ
1−G (ε∗)

(86)

ϕ̃1 ≡ ε̄+ ũs1 (87)

with

ũz1 ≡
1

1− λ

∫ εH

ε∗
(ε− ε∗) dG(ε) (88)

ũs1 ≡
∫ ε∗

εL

(ε∗ − ε) dG (ε) +
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG (ε) , (89)

and ε∗ satisfies (54).

Part (i) of Corollary 2 corresponds to the parametrizations characterized in part (i) Propo-

sition 6 for which the limiting economy as α→ 0, is cashless. In this case, welfare in the cashless

limit of the monetary economy equals welfare in the nonmonetary equilibrium. Thus, although

monetary policy affects the stock price in the cashless limit (part (i) of Proposition 6), it does

not affect welfare, which is identical to welfare in an economy with no money. This result is in

part due to the fact that, since the capital stock, As, is exogenous, changes in the market price

of capital, φst , have no effect on the allocation of resources in the cashless limit. This result,

however, is driven by the fact that the capital stock is exogenous in this formulation.

B.2 Economy with capital accumulation

Next, we turn to the efficient allocation for the economy with capital accumulation. As in

Proposition 7, we continue to assume (69). The notation for the planner’s problem is as before,

except that now we use hI1t to denote the quantity of general goods used for consumption, hI2t to

denote the quantity of general goods used as input to produce new capital, and hIt = hI1t + hI2t

to denote the labor input (effort) devoted to production of general goods (equal to the quantity

of general goods produced). In this case, letting

Π ≡
{
ãIt+1, c

I
t , h

I
1t, h

I
2t, ā

I
t , Xt, c

B
t , h

B
t

}∞
t=0

,

the planner’s problem is

W ∗ (A0, y0) = max
Π

E0

∞∑
t=0

βt

{∫ εH

εL

εytā
I
t (dε)NI +

∑
k∈{B,I}

(
ckt − hkt

)
Nk

}
(90)

65



subject to

ãIt+1NI ≤ Ast +Xt (91)

aIt+1NI = Ast+1 = η (Ast +Xt) (92)

Xt = ft
(
hI2t
)
NI (93)∑

k∈{B,I}

cktNk ≤ hI1tNI + hBt NB (94)

∫ εH

εL

āIt (dε) ≤ aIt , (95)

and subject to the allocation Π being nonnegative. Let X ∗ denote optimal aggregate investment

rate (i.e., X ∗∆ is optimal investment over a time interval of length ∆).

Proposition 10 Consider the limiting economy (as ∆ → 0) with capital accumulation. The

efficient allocation is characterized by the following conditions: (i) āIt (E) =
Ast
NI

I{εH∈E} for all

t, where I{εH∈E} is an indicator function that takes the value 1 if εH ∈ E, and 0 otherwise, for

any E ∈ F ([εL, εH ]); (ii) X ∗ = (εH/ρ)
σ

1−σ NI for all t; and (iii) the capital stock follows (70)

with Xt = X ∗. The welfare achieved by the planner is

W∗ (Ast , yt) =

[
εH
ρ
Ast +

1

r − g
(1− σ)

(
εH
ρ

) 1
1−σ

NI

]
yt. (96)

In the setup with capital accumulation the planner optimizes along two margins: the re-

allocation of the asset, and the investment margin. Optimal reallocation in the OTC trading

round is as in the model with exogenous capital, while the optimal investment decision involves

equating the marginal rate of substitution between labor and general goods to the optimal

shadow price of capital, εH .

Next, we characterize the welfare function for the economy of Section A.1). As in Proposition

7, we assume (69).

In Appendix D (part (i) of Lemma 28), we show that along the path of a RNE of an economy

with capital accumulation, welfare is

Vn (Ast , yt) =

[
ϕn1
ρ
Ast +

1

r − g

(
ϕn1
ϕn
− σ

)(
ϕn

ρ

) 1
1−σ

NI

]
yt, (97)

where ϕn is given by (32) (with εn given by (33)), ϕn1 is given in (80), and the capital stock

follows (70) with Xt = (ϕn/ρ)
σ

1−σ NI .
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In Appendix D (part (ii) of Lemma 28), we show that along the path of a RME of an

economy with capital accumulation, welfare is

Vm (Z, Ast , yt) =

[
ϕz1
ρ
Ast +

1

r − g

(
ϕz1
ϕ
− σ

)(
ϕ

ρ

) 1
1−σ

NI

]
yt, (98)

where

ϕz1 ≡ ϕ1 + uz1
Z
ϕ
,

uz1 and us1 are given by (82) and (83), ϕ1 is given in (84), the capital stock follows (70) with

Xt = (ϕ/ρ)
σ

1−σ NI , and (ε∗, ε∗∗, ϕ,Z) satisfy the equilibrium conditions in Proposition 2.

The following result is a corollary of Proposition 2, part (i) of Proposition 3, Proposition

10, Proposition 11, (97), and (98).

Corollary 3 Consider the limiting economy (as ∆→ 0) with capital accumulation and initial

condition (Ast , yt) = (As0, y0). Then

Vn (As0, y0) ≤ Vm (Z, As0, y0) ≤ W∗ (As0, y0) ,

where the first inequality is strict unless ι = ῑ (λ), and the second inequality is strict unless

ι = 0.

The following result, a corollary of (98) and Lemma 6, describes welfare in the limiting

economy with capital accumulation where all agents have access to credit.

Corollary 4 Consider the limiting economy with capital accumulation (as ∆→ 0) and initial

condition (Ast , yt) = (As0, y0), with α ∈ [0, 1] and λ ∈ (0, 1]. As α→ 0,

lim
α→0
Vn (As0, y0) =

[
ϕ̃n1
ρ
As0 +

1

r − g

(
ϕ̃n1
ϕ̃n
− σ

)(
ϕ̃n

ρ

) 1
1−σ

NI

]
y0,

with ϕ̃n and ϕ̃n1 given by (46) and (85). Moreover,

(i) If ς̂ (0) < ι < ς̄ (0), then

0 ≤ lim
α→0

[Vm (Z, As0, y0)− Vn (As0, y0)]

=
1

r − g

[(
ϕ̃n1
ϕ̃
− σ

)(
ϕ̃

ρ

) 1
1−σ
−
(
ϕ̃n1
ϕ̃n
− σ

)(
ϕ̃n

ρ

) 1
1−σ
]
NIy0,
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with “<” if θ ∈ [0, 1), where ϕ̃ given by (49) (with εn given by (33), and ε∗ given by (50)).

(ii) If 0 < ι ≤ ς̂ (0),

0 < lim
α→0

[Vm (Z, As0, y0)− Vn (As0, y0)]

=

{
1

ρ
(ϕ̃z1 − ϕ̃n1 )As0 +

1

r − g

[(
ϕ̃z1
ϕ̃
− σ

)(
ϕ̃

ρ

) 1
1−σ
−
(
ϕ̃n1
ϕ̃n
− σ

)(
ϕ̃n

ρ

) 1
1−σ
]
NI

}
y0,

where

ϕ̃z1 ≡ ũz1
G (ε∗)− λ
1−G (ε∗)

+ ϕ̃1,

with ϕ̃ given by (53) (with ε∗ given by (54)), ϕ̃1 given by (87), and ũz1 given by (88).

In Corollary 4, the thought experiment consists of taking the limit as α→ 0 while keeping

the initial capital stock, As0, the same. Part (i) is an economy where money is dominated in rate

of return by bonds (i.e., it corresponds to part (i) of Proposition 6). In this case, for a given As0,

welfare in the cashless limit of the monetary economy is strictly higher than in the nonmonetary

economy, provided θ < 1. In the cashless limit of the monetary economy the equilibrium capital

stock is Ast = e−δtAs0+
(
1− e−δt

)
(ϕ̃/ρ)

σ
1−σ NI/δ, while in the nonmonetary economy the capital

stock is Ast = e−δtAs0 +
(
1− e−δt

)
(ϕ̃n/ρ)

σ
1−σ NI/δ, so aggregate consumption (of the dividend

good), Ct = ytA
s
t , is higher in the former.

C Monetary policy, asset prices, and real activity

In this section we study the effects of monetary policy on asset prices and real activity. We

first characterize optimal monetary policy, and then turn to positive considerations.

Proposition 11 As ι→ 0, the recursive monetary equilibrium allocation of the limiting econ-

omy (as ∆ → 0), both with exogenous and with endogenous capital stock, converges to the

efficient allocation.

Let Ex|y denote the elasticity of variable x with respect to variable y, i.e., Exy ≡ ∂x
∂y

y
x . The

following result characterizes the effect of monetary policy on real asset prices.

Proposition 12 Consider the limiting economy (as ∆→ 0). Let z ≡ Z/ϕ, then:
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(i) If ι̂ (λ) < ι < ῑ (λ),

Eϕ|ι = − ι

ι+ (1−α)θ+[α+(1−α)(1−θ)][1−G(ε∗)]
[α+(1−α)(1−θ)]G(ε∗)

= − ι

ι+ α−(1−α)(1−θ)z
[α+(1−α)(1−θ)]z

,

where ε∗ is given in part (i) of Proposition 2 .

(ii) If 0 < ι ≤ ι̂ (λ),

Eϕ|ι = − ι

ι+
[α+(1−α)(1+θ λ

1−λ)][1−G(ε∗)]

G(ε∗)−(1−α)θ λ
1−λ [1−G(ε∗)]

= − ι

ι+
α+(1−α)(1+θ λ

1−λ)
(1−α)(1−θ) λ

1−λ+[α+(1−α) 1
1−λ ]z

,

where ε∗ is given in part (ii) of Proposition 2.

Proposition 12 provides analytical expressions for the elasticity of the asset price, ϕ, with

respect to the policy rate, ι, both for high and low inflation regimes. In every case the elasticity

is negative. In a recursive equilibrium, φmt A
m
t = ZAstyt, so z ≡ Z/ϕ as given in Proposition 2 is

the value of equilibrium real money balances, φmt A
m
t , relative to the value of the total output,

φstA
s
t , (measured in terms of the dividend good). When written in terms of z, the expressions

indicate that keeping the market-structure parameters α and θ constant, the impact of monetary

policy on asset prices would tend to be larger in economies where aggregate real balances are

a larger fraction of aggregate output.

The following corollary of Proposition 12 reports the elasticity of the real asset price to

monetary policy in the limit as α→ 0.

Corollary 5 Consider the limiting economy (as ∆ → 0) with α ∈ [0, 1] and λ ∈ (0, 1]. As

α→ 0,

(i) If ι̂ (λ) < ι < ῑ (λ),

Eϕ|ι → −
ι

ι+ θ+(1−θ)[1−G(ε∗)]
(1−θ)G(ε∗)

where ε∗ is given in part (i) of Proposition 2 .

(ii) If 0 < ι ≤ ι̂ (λ),

Eϕ|ι → −
ι

ι+
(1+θ λ

1−λ)[1−G(ε∗)]

G(ε∗)−θ λ
1−λ [1−G(ε∗)]

=
ι

ι+ 1−(1−θ)λ
(1−θ)λ+z

,
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where ε∗ is given in part (ii) of Proposition 2.

The corollary shows that when ι̂ (λ) < ι < ῑ (λ), the elasticity of the asset price with respect

to monetary policy is negative and remains bounded away from zero even as z converges to

zero.

To conclude, notice that in the economy with capital accumulation with production tech-

nology given by (69), the elasticity of investment with respect to ι is

EX|ι =
σ

1− σ
Eϕ|ι.

D Proofs

D.1 Bargaining and portfolio problems

The investor’s second-subperiod value function can be written as

Wt(at, a
b
t , kt) = φmt a

m
t + φsta

s
t + abt − kt + W̄t (99)

with

W̄t ≡ Tt + max
(ãmt+1,ã

s
t+1)∈R2

+

[
−φmt ãmt+1 − φst ãst+1

+ βEt
∫
Vt+1

[
ãmt+1, ηã

s
t+1 + (1− η)As, ε

]
dG(ε)

]
. (100)

Proof of Lemma 1. In a nonmonetary economy, (99) reduces to

Wt(at, a
b
t , kt) = φsta

s
t + abt − kt + W̄t.

(i) In a nonmonetary equilibrium (1) implies âst (a
s
t , ε) = arg max0≤âst≤ast (εyt + φst ) â

s
t .

(ii) In a nonmonetary economy, (2) implies
[
ast (ast , ε) , a

b
t (ast , ε) , kt (ast , ε)

]
is the solution to

max
(ast ,kt)∈R2

+,a
b
t∈R

[
(εyt + φst ) (ast − ast ) + abt − kt

]θ
k1−θ
t

s.t. φ̄
s
ta
s
t + abt = φ̄

s
ta
s
t (101)

−λφstast ≤ abt . (102)

Notice that the first-order condition with respect to kt implies

kt (ast , ε) = (1− θ)
{

(εyt + φst ) [ast (a
s
t , ε)− ast ] + abt(a

s
t , ε)

}
, (103)
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so the bargaining solution can be found by solving the following auxiliary problem

max
ast∈R+,abt∈R

[
(εyt + φst ) (ast − ast ) + abt

]
s.t. (101), and (102).

Since (101) implies abt = φ̄
s
t (a

s
t − ast ),

ast (ast , ε) = arg max
ast

(ε− εnt ) ast s.t. 0 ≤ ast and
(
φ̄
s
t − λφst

)
ast ≤ φ̄

s
ta
s
t .

The problem has no solution (for ε > εnt ) if φ̄
s
t − λφst ≤ 0. Provided φ̄

s
t − λφst > 0, the solution

exists for all ε and is given by (10). Given ast (ast , ε), a
b
t (ast , ε) = φ̄

s
t [ast − ast (ast , ε)] as in (11),

and kt (ast , ε) is given by (103), or equivalently, (12).

Proof of Lemma 2.

(i) With (99), it is easy to show that the solution to the optimization problem in (1) is

given by (16) and (17).

(ii) With (99), (2) can be written as

max
(amt ,a

s
t ,kt)∈R3

+,a
b
t∈R

{
(εyt + φst ) [ast − âst (at, ε)] + φmt [amt − âmt (at, ε)] + abt − kt

}θ
k1−θ
t

s.t. amt + pta
s
t + qta

b
t = amt + pta

s
t (104)

−λφstast ≤ abt . (105)

Notice that the first-order condition with respect to kt implies (22) so the bargaining solution

can be found by solving the following auxiliary problem

max
(amt ,a

s
t )∈R2

+,a
b
t∈R

{
(εyt + φst ) [ast − âst (at, ε)] + φmt [amt − âmt (at, ε)] + abt

}
s.t. (104), and (105).

Once the solution amt (at, ε), a
s
t (at, ε), and abt(at, ε) to this problem has been found, kt (at, ε) is

given by (22). If we use (104) to substitute for abt , the auxiliary problem is equivalent to

max
(amt ,a

s
t )∈R2

+

[(
εyt + φst −

1

qt
pt

)
ast +

(
φmt −

1

qt

)
amt

]
(106)
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s.t. 0 ≤ amt + pta
s
t − amt − (pt − λqtφst ) ast . (107)

This problem has no solution if pt ≤ λqtφst . To see this, assume pt ≤ λqtφst . Set āmt = amt +pta
s
t

(a feasible choice), and notice (107) is satisfied by any āst ∈ R+. Thus, the value of (106) is

bounded below by (
φmt −

1

qt

)
(amt + pta

s
t ) + max

ast∈R+

[εyt + (1− λ)φst ] a
s
t ,

which is arbitrarily large. Hence, condition (18) is necessary for the bargaining problem to have

a solution. The Lagrangian corresponding to the auxiliary problem (106) is

L =

(
εyt + φst −

1

qt
pt

)
ast +

(
φmt −

1

qt

)
amt

+ ξb [amt + pta
s
t − amt − (pt − λqtφst ) ast ] + ξmamt + ξsast ,

where ξb, ξm, and ξs are the multipliers on the constraints (107), 0 ≤ amt , and 0 ≤ ast , respec-

tively. The first-order conditions are

εyt + φst −
1

qt
pt + ξs − (pt − λqtφst ) ξb = 0

φmt −
1

qt
+ ξm − ξb = 0.

By working out the eight possible binding patterns for the multipliers
(
ξb, ξm, ξs

)
and collecting

the optimal allocations along with the inequality restrictions implied by each case, we obtain

(19)-(22).

D.2 Value functions

In this section we derive the value functions for brokers and investors, in a monetary economy

(Lemma 3), and in a nonmonetary economy (Lemma 4).

Lemma 3 Consider an economy with money.

(i) The value function of a broker at the beginning of the OTC round of period t is

V B
t = Ξt + W̄B

t , (108)

where Ξt ≡ αB
∫
kt (ãt, ε) dHt (ãt, ε) and W̄B

t ≡ βEtV B
t+1.
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(ii) The value function of an investor who enters the OTC round of period t with portfolio

at and valuation ε is

Vt (at, ε) = vmIt (ε) amt + vsIt (ε) ast + W̄t, (109)

where

vmIt (ε) ≡ φmt + [α+ (1− α) (1− θ)] I{ε∗t<ε} (ε− ε∗t ) yt
1

pt

+ (1− α) θI{qtφmt <1}

(
1

qt
− φmt

)
+ (1− α) θI{ε∗∗t <ε} (ε− ε∗∗t ) yt

1

pt − λqtφst
vsIt (ε) ≡ εyt + φst + [α+ (1− α) (1− θ)] I{ε<ε∗t } (ε∗t − ε) yt

+ (1− α) θ

(
φmt −

1

qt

)
I{1<qtφmt }λqtφ

s
t

+ (1− α) θ (ε− ε∗∗t ) yt
λqtφ

s
t − I{ε<ε∗∗t }pt
pt − λqtφst

.

Proof. (i) The broker’s value function (108) is immediate from (4) and (6).

(ii) With (99), the value function (5) becomes

Vt (at, ε) = W̄t + α [(εyt + φst ) â
s
t (at, ε) + φmt â

m
t (at, ε)]

+ (1− α)
[
(εyt + φst ) ā

s
t (at, ε) + φmt ā

m
t (at, ε) + ābt (at, ε)− kt (at, ε)

]
. (110)

Substitute kt (at, ε) and ābt (at, ε) with (22) and (21), respectively, to obtain

Vt (at, ε) = W̄t + (εyt + φst ) a
s
t + φmt a

m
t

+ [α+ (1− α) (1− θ)] {(εyt + φst ) [âst (at, ε)− ast ] + φmt [âmt (at, ε)− amt ]}

+ (1− α) θ

{(
εyt + φst −

1

qt
pt

)
[āst (at, ε)− ast ] +

(
φmt −

1

qt

)
[āmt (at, ε)− amt ]

}
.

Then use Lemma 2 to replace the post-trade allocations âst (at, ε), â
m
t (at, ε), ā

s
t (at, ε), and

āmt (at, ε), and rearrange terms to arrive at (109).

Lemma 4 Consider an economy without money.

(i) The value function of a broker at the beginning of the OTC round of period t is

V B
t = Ξt + W̄B

t , (111)

where Ξt ≡ αB
∫
kt (ãst , ε) dHt (ãst , ε) and W̄B

t ≡ βEtV B
t+1.
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(ii) The value function of an investor who enters the OTC round of period t with equity

holding ast and valuation ε is

Vt (ast , ε) =

{
εyt + φst + (1− α) θ (ε− εnt ) yt

[
χ (εnt , ε)

φ̄
s
t

φ̄
s
t − λφst

− 1

]}
ast + W̄t, (112)

where

W̄t ≡ max
ãst+1∈R+

[
−φst ãst+1 + βEt

∫
Vt+1

[
ηãst+1 + (1− η)As, ε

]
dG(ε)

]
. (113)

Proof. (i) The broker’s value function (111) is immediate from (4) and (6) under the

assumption that investors carry no money.

(ii) In a nonmonetary economy, (99) reduces to

Wt(a
s
t , a

b
t , kt) = φsta

s
t + abt − kt + W̄t, (114)

where W̄t is given by (113). With (114) and Lemma 1, (5) reduces to (112).

D.3 Euler equations

In this section we derive the Euler equations that characterize the optimal portfolio choices

in the second subperiod, in a monetary economy (Lemma 5) and in a nonmonetary economy

(Lemma 6).

Lemma 5 Consider an economy with money. Let
(
ãmIt+1, ã

s
It+1

)
denote an individual investor’s

portfolio choice in the second subperiod of period t. The portfolio
(
ãmIt+1, ã

s
It+1

)
is optimal if

and only if it satisfies (
φmt − βEtv̄mIt+1

)
ãmIt+1 = 0 ≤ φmt − βEtv̄mIt+1 (115)(

φst − βηEtv̄sIt+1

)
ãsIt+1 = 0 ≤ φst − βηEtv̄sIt+1, (116)

where

v̄mIt+1 ≡ φmt+1 + (1− α) θ

(
1

qt+1
− φmt+1

)
I{qt+1φ

m
t+1<1}

+ [α+ (1− α) (1− θ)]
∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1

1

pt+1
dG(ε)

+ (1− α) θ
1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG(ε),
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and

v̄sIt+1 ≡ ε̄yt+1 + φst+1 + (1− α) θ

(
φmt+1 −

1

qt+1

)
I{1<qt+1φ

m
t+1}λqt+1φ

s
t+1

+ [α+ (1− α) (1− θ)]
∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG (ε)

+ (1− α) θ

[∫ ε∗∗t+1

εL

(
ε∗∗t+1 − ε

)
yt+1dG (ε) +

λqt+1φ
s
t+1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG (ε)

]
.

Proof. With (109) and (100), the portfolio problem of an investor in the second subperiod

can be written as

W̄t ≡ Tt + βEt
[
W̄t+1 + v̄sIt+1 (1− η)As

]
+ max

(ãmt+1,ã
s
t+1)∈R2

+

[(
βEtv̄mIt+1 − φmt

)
ãmt+1 +

(
βηEtv̄sIt+1 − φst

)
ãst+1

]
,

where v̄kIt+1 ≡
∫
vkIt+1 (ε) dG(ε) for k ∈ {m, s}.

Lemma 6 Consider an economy with no money. Let ãsIt+1 denote equity holding chosen by an

individual investor in the second subperiod of period t. Then ãsIt+1 is optimal if and only if it

satisfies

− φst + βηEt

{
ε̄yt+1 + φst+1 + (1− α) θ

[∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

+
λφst+1

φ̄
s
t+1 − λφst+1

∫ εH

εnt+1

(
ε− εnt+1

)
yt+1dG(ε)

]}
≤ 0, with“ = ” if ãsIt+1 > 0. (117)

Proof. With (112) and (113), the portfolio problem of an investor in the second subperiod

can be written as

max
ãst+1∈R+

[
−φst + βηEt

{
ε̄yt+1 + φst+1 + (1− α) θ

[∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

+
λφst+1

φ̄
s
t+1 − λφst+1

∫ εH

εnt+1

(
ε− εnt+1

)
yt+1dG(ε)

]}]
ãst+1.
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D.4 Market-clearing conditions

In this section we derive the market-clearing conditions for equity and bonds in the OTC round,

in a monetary economy (Lemma 7) and in a nonmonetary economy (Lemma 8).

Lemma 7 In a monetary equilibrium, the market-clearing conditions for equity, ÂsIt+Ā
s
It = As,

and bonds, ĀbIt = 0, in the OTC round are:

0 = α [1−G (ε∗t )]
Amt + ptA

s

pt
+ (1− α) [1−G (ε∗∗t )]

Amt + ptA
s

pt − λqtφst
−As (118)

0 = (1− α)

{{
1− I{1<qtφmt } − I{qtφmt =1} [1− χ (1, qtφ

m
t )]
}
G (ε∗∗t )

− λqtφ
s
t

pt − λqtφst
[1−G (ε∗∗t )]

}
Amt + ptA

s

qt
. (119)

Proof. By Lemma 2, the investors’ aggregate post-trade holdings of equity in the OTC

round of period t are

ĀsIt = (1− α)NI

∫
ast (at, ε)dHt(at, ε) = (1− α) [1−G (ε∗∗t )]

Amt + ptA
s

pt − λqtφst

ÂsIt = αNI

∫
âst (at, ε)dHt(at, ε) = α [1−G (ε∗t )]

Amt + ptA
s

pt

and the the investors’ aggregate post-trade holdings of bonds in the OTC round of period t are

ĀbIt = (1− α)NI

∫
abt(at, ε)dHt(at, ε)

= (1− α)

{{
1− I{1<qtφmt } − I{qtφmt =1} [1− χ (1, qtφ

m
t )]
}
G (ε∗∗t )

− λqtφ
s
t

pt − λqtφst
[1−G (ε∗∗t )]

}
Amt + ptA

s

qt
.

Lemma 8 In a nonmonetary equilibrium, the market-clearing condition for equity ÂsIt+ ĀsIt =

As (or bonds, ĀbIt = 0) in the OTC round is:

1 = [1−G (εnt )]
φ̄
s
t

φ̄
s
t − λφst

. (120)
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Proof. By Lemma 1, the investors’ aggregate post-trade holdings of equity in the OTC

round of period t are

ĀsIt = (1− α)NI

∫
ast (at, ε)dHt(at, ε) = (1− α)

∫
χ (εnt , ε)

φ̄
s
t

φ̄
s
t − λφst

AsdG (ε)

ÂsIt = αNI

∫
âst (at, ε)dHt(at, ε) = αAs

and the the aggregate post-trade holdings of bonds for agents who trade in the bond market in

the OTC round of period t are

ĀbIt = (1− α)NI

∫
abt(at, ε)dHt(at, ε) = (1− α)

∫
φ̄
s
t

[
1− χ (εnt , ε)

φ̄
s
t

φ̄
s
t − λφst

]
AsdG (ε) .

D.5 Equilibrium conditions

In this section we state the operational definitions of monetary and nonmonetary equilibrium

that are used in the analysis.

D.5.1 Sequential nonmonetary equilibrium

Definition 4 A (sequential) nonmonetary equilibrium is an allocation
{
ãsIt+1

}∞
t=0

and a se-

quence of prices, {φst , φ̄
s
t}∞t=0, that satisfy the portfolio-optimality condition, (117) (with ãkIt+1 =

ÃkIt+1), and the market-clearing conditions ÃsIt+1 = As and (120).

Definition 4 follows from Definition 1 after recognizing that all investors choose the same

end-of-period portfolio that is characterized by the Euler equations derived in Lemma 6, and

using the explicit version of the market clearing condition for equity and bonds in the OTC

round derived in Lemma 8. Given the equilibrium objects in Definition 4, the bargaining

outcomes, which are part of Definition 1 but not Definition 4, are immediate from Lemma 1.

According to Definition 4, a nonmonetary equilibrium can be characterized by sequence of

prices, {φst , φ̄
s
t}∞t=0 and an allocation

{
ÃsIt+1

}∞
t=0

that satisfy the market-clearing conditions

As = ÃsIt+1 (121)

1 = [1−G (εnt )]
φ̄
s
t

φ̄
s
t − λφst

(122)
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and the portfolio-optimality condition

− φst + βηEt

{
ε̄yt+1 + φst+1 + (1− α) θ

[∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

+
λφst+1

φ̄
s
t+1 − λφst+1

∫ εH

εnt+1

(
ε− εnt+1

)
yt+1dG(ε)

]}
≤ 0, with“ = ” if ÃsIt+1 > 0, (123)

where εnt is given by (8).

D.5.2 Recursive nonmonetary equilibrium

The following result summarizes the conditions that characterize a recursive nonmonetary equi-

librium (RNE).

Lemma 9 A recursive nonmonetary equilibrium is a vector (εn, φs, ÃsI) that satisfies the fol-

lowing conditions

0 = ÃsI −As

1 = [1−G (εn)]
εn + φs

εn + (1− λ)φs

φs ≥ β̄η
{
ε̄+ φs + (1− α) θ

[∫ εn

εL

(εn − ε) dG(ε) +
λφs

εn + (1− λ)φs

∫ εH

εn
(ε− εn) dG(ε)

]}
with “=” if ÃsI > 0.

Proof. The equilibrium conditions in the statement of the lemma are obtained from (121)-

(123) by using φst = φsyt, φ̄
s
t = φ̄

s
yt, Ã

s
It = ÃsI , and εnt =

(
φ̄
s
t − φst

)
1
yt

= φ̄
s − φs ≡ εn.

The first equation in the statement of Lemma 9 is the second-subperiod market-clearing

condition for equity. The second equation is the first-subperiod market-clearing condition for

equity (or bonds). The third condition is the investor’s Euler equation for equity.

D.5.3 Sequential monetary equilibrium

Definition 5 A (sequential) monetary equilibrium is an allocation
{

(ãkIt+1)k∈{m,s}
}∞
t=0

and a

sequence of prices, {pt, qt, φmt , φst}∞t=0, that satisfy the two optimality conditions, (115) and (116)

(with ãkIt+1 = ÃkIt+1), and the four market-clearing conditions, ÃsIt+1 = As, ÃmIt+1 = Amt+1,

(118), and (119).
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Definition 5 follows from Definition 1 after recognizing that all investors choose the same

end-of-period portfolio that is characterized by the Euler equation derived in Lemma 5, and

using the explicit version of the market clearing condition for equity in the OTC round derived

in Lemma 7. Given the equilibrium objects in Definition 5, the bargaining outcomes, which are

part of Definition 1 but not Definition 5, are immediate from Lemma 2.

According to Definition 5, a monetary equilibrium can be characterized by sequence of prices,

{pt, qt, φmt , φst}∞t=0 and an allocation {(ÃkIt+1)k∈{m,s}}∞t=0 that satisfy the following market-

clearing conditions

0 = ÃsIt+1 −As

0 = ÃmIt+1 −Amt+1

0 = α [1−G (ε∗t )]
Amt + ptA

s

pt
+ (1− α) [1−G (ε∗∗t )]

Amt + ptA
s

pt − λqtφst
−As

0 = (1− α)

{[
1− I{1<qtφmt } − I{qtφmt =1} (1− χ11)

]
G (ε∗∗t )− λqtφ

s
t

pt − λqtφst
[1−G (ε∗∗t )]

}
Amt + ptA

s

qt

and optimality conditions(
φmt − βEtv̄mIt+1

)
ÃmIt+1 = 0 ≤ φmt − βEtv̄mIt+1(

φst − βηEtv̄sIt+1

)
ÃsIt+1 = 0 ≤ φst − βηEtv̄sIt+1,

where ε∗t is given by (14), ε∗∗t is given by (15), imt ≡ 1
qtφ

m
t
− 1, and

v̄mIt+1 ≡ φmt+1 + (1− α) θ

(
1

qt+1
− φmt+1

)
I{qt+1φ

m
t+1<1}

+ [α+ (1− α) (1− θ)]
∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1

1

pt+1
dG(ε)

+ (1− α) θ
1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG(ε)

v̄sIt+1 ≡ ε̄yt+1 + φst+1 + (1− α) θ

(
φmt+1 −

1

qt+1

)
I{1<qt+1φ

m
t+1}λqtφ

s
t+1

+ [α+ (1− α) (1− θ)]
∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG (ε)

+ (1− α) θ

[∫ ε∗∗t+1

εL

(
ε∗∗t+1 − ε

)
yt+1dG (ε) +

λqt+1φ
s
t+1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG (ε)

]
.
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D.5.4 Sequential monetary equilibrium with credit

The following result states that the credit market would be inactive if the net nominal interest

rate on bonds, imt ≡ 1
qtφ

m
t
− 1, were negative.

Lemma 10 Consider a monetary equilibrium. If the bond market is active in period t, then

qtφ
m
t ≤ 1.

Proof. In an equilibrium with 1 < qtφ
m
t the market-clearing condition (119) becomes

0 = (1− α)
λφst

pt − λqtφst
[1−G (ε∗∗t )] (Amt + ptA

s) .

This condition can only hold if [1−G (ε∗∗t )] (Amt + ptA
s) = 0, i.e., if the bond market is inactive.

The condition 1 < qtφ
m
t implies bond demand is nil, so the bond market can only clear with no

trade.

According to Lemma 10, a monetary equilibrium with an active bond market can be char-

acterized by sequence of prices, {pt, qt, φmt , φst}∞t=0 and an allocation {(ÃkIt+1)k∈{m,s}}∞t=0 that

satisfy the following market-clearing conditions

0 = ÃsIt+1 −As

0 = ÃmIt+1 −Amt+1

0 = α [1−G (ε∗t )]
Amt + ptA

s

pt
+ (1− α) [1−G (ε∗∗t )]

Amt + ptA
s

pt − λqtφst
−As

0 = (1− α)

{[
1− I{qtφmt =1} (1− χ11)

]
G (ε∗∗t )− λqtφ

s
t

pt − λqtφst
[1−G (ε∗∗t )]

}
Amt + ptA

s

qt

and optimality conditions(
φmt − βEtv̄mIt+1

)
ÃmIt+1 = 0 ≤ φmt − βEtv̄mIt+1(

φst − βηEtv̄sIt+1

)
ÃsIt+1 = 0 ≤ φst − βηEtv̄sIt+1,
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where

v̄mIt+1 ≡ φmt+1 + (1− α) θ

(
1

qt+1
− φmt+1

)
+ [α+ (1− α) (1− θ)]

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1

1

pt+1
dG(ε)

+ (1− α) θ
1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG(ε)

v̄sIt+1 ≡ ε̄yt+1 + φst+1

+ [α+ (1− α) (1− θ)]
∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG (ε)

+ (1− α) θ

[∫ ε∗∗t+1

εL

(
ε∗∗t+1 − ε

)
yt+1dG (ε) +

λqt+1φ
s
t+1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG (ε)

]
.

D.5.5 Recursive monetary equilibrium with credit

The following result summarizes the conditions that characterize a recursive monetary equilib-

rium (RME).

Lemma 11 A recursive monetary equilibrium (with credit) is a vector (ε∗, ε∗∗, φs, Z) that sat-

isfies

0 =

{
α [1−G (ε∗)] + (1− α) [1−G (ε∗∗)]

ε∗∗ + φs

ε∗∗ + (1− λ)φs

}(
Z

ε∗ + φs
+ 1

)
− 1

0 = (1− α)

{
G (ε∗∗)

[
1− I{ε∗=ε∗∗} (1− χ11)

]
− [1−G (ε∗∗)]

λφs

ε∗∗ + (1− λ)φs

}
(Z + ε∗ + φs)

where χ11 ∈ [0, 1], and

ip = (1− α) θ

(
ε∗∗ + φs

ε∗ + φs
− 1

)
+ [α+ (1− α) (1− θ)] 1

ε∗ + φs

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
ε∗∗ + φs

ε∗ + φs
1

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

1− β̄η
β̄η

φs = ε̄+ [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λφs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

Proof. The equilibrium conditions in the statement of the lemma are obtained from the ones

in Section D.5.4 by using φst = φsyt, ptφ
m
t ≡ φ̄

s
mt = φ̄

s
myt, pt/qt ≡ φ̄

s
bt = φ̄

s
byt, φ

m
t A

m
t = ZAsyt,
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ε∗t = (ptφ
m
t − φst ) 1

yt
= φ̄

s
m − φs ≡ ε∗, ε∗∗t = (pt/qt − φst ) 1

yt
= φ̄

s
b − φs ≡ ε∗∗, pt =

(ε∗+φs)Amt
ZAs ,

φmt = ZAsyt
Amt

, qt =
(ε∗+φs)Amt

(ε∗∗+φs)ZAsyt
, φst+1/φ

s
t = φ̄

s
mt+1/φ̄

s
mt = φ̄

s
bt+1/φ̄

s
bt = γt+1, pt+1/pt = µ, and

φmt /φ
m
t+1 = qt+1/qt = µ/γt+1.

The first and second equations in Lemma 11 are the first-subperiod market-clearing condi-

tion for equity and bonds, respectively. The remaining two conditions are the investor’s Euler

equations for money and equity, respectively.

D.6 Continuous-time limiting economy

In this section we derive the equilibrium conditions for the continuous-time limiting economy.

D.6.1 Equilibrium conditions

Lemma 12 Consider the limiting economy (as ∆→ 0). A recursive nonmonetary equilibrium

is a pair (εn, ϕ) that satisfies

1 =
1−G (εn)

1− λ

ϕ = ε̄+ (1− α) θ

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]
.

Proof. From Lemma 9, if the period length is ∆, an equilibrium is a pair (εn,Φs (∆)) that

satisfies

1 = [1−G (εn)]
εn + Φs (∆)

εn + (1− λ) Φs (∆)

Φs (∆) = β̄η

{
ε̄+ Φs (∆) + (1− α) θ

[∫ εn

εL

(εn − ε) dG(ε)

+
λΦs (∆)

εn + (1− λ) Φs (∆)

∫ εH

εn
(ε− εn) dG(ε)

]}
This can be written as

1 = [1−G (εn)]
εn∆ + Φs (∆) ∆

εn∆ + (1− λ) Φs (∆) ∆

r + δ − g + gδ∆

(1 + g∆) (1− δ∆)
Φs (∆) ∆ = ε̄+ (1− α) θ

[∫ εn

εL

(εn − ε) dG(ε)

+
λΦs (∆) ∆

εn∆ + (1− λ) Φs (∆) ∆

∫ εH

εn
(ε− εn) dG(ε)

]
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Take the limit as ∆→ 0 to arrive at the conditions in the statement of the lemma.

Lemma 13 Consider the limiting economy (as ∆ → 0). A recursive monetary equilibrium

(with credit) is a vector (ε∗, ε∗∗, ϕ,Z) that satisfies

0 =

{
α [1−G (ε∗)] + (1− α) [1−G (ε∗∗)]

1

1− λ

}(
Z
ϕ

+ 1

)
− 1 (124)

0 = G (ε∗∗)
[
1− I{ε∗=ε∗∗} (1− χ11)

]
− [1−G (ε∗∗)]

λ

1− λ
(125)

where χ11 ∈ [0, 1], and

ιϕ = (1− α) θ (ε∗∗ − ε∗) + [α+ (1− α) (1− θ)]
∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
1

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε) (126)

ϕ = ε̄+ [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λ

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
. (127)

Proof. If the period length is ∆, the equilibrium conditions in Lemma 11 generalize to

0 =

{
α [1−G (ε∗)] + (1− α) [1−G (ε∗∗)]

ε∗∗ + Φs (∆)

ε∗∗ + (1− λ) Φs (∆)

}(
Z (∆)

ε∗ + Φs (∆)
+ 1

)
− 1

0 = (1− α)

{
G (ε∗∗)

[
1− I{ε∗=ε∗∗} (1− χ11)

]
− [1−G (ε∗∗)]

λΦs (∆)

ε∗∗ + (1− λ) Φs (∆)

}
[Z (∆) + ε∗ + Φs (∆)]
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where χ11 ∈ [0, 1], and

ip = (1− α) θ
ε∗∗ − ε∗

ε∗ + Φs (∆)

+ [α+ (1− α) (1− θ)] 1

ε∗ + Φs (∆)

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
ε∗∗ + Φs (∆)

ε∗ + Φs (∆)

1

ε∗∗ + (1− λ) Φs (∆)

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

r + δ − g + gδ∆

(1 + g∆) (1− δ∆)
Φs (∆) ∆ = ε̄+ [α+ (1− α) (1− θ)]

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε)

+
λΦs (∆)

ε∗∗ + (1− λ) Φs (∆)

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

These conditions can be rewritten as

0 =

{
α [1−G (ε∗)] + (1− α) [1−G (ε∗∗)]

ε∗∗∆ + Φs (∆) ∆

ε∗∗∆ + (1− λ) Φs (∆) ∆

}(
Z (∆) ∆

ε∗∆ + Φs (∆) ∆
+ 1

)
− 1

0 = (1− α)

{
G (ε∗∗)

[
1− I{ε∗=ε∗∗} (1− χ11)

]
− [1−G (ε∗∗)]

λΦs (∆) ∆

ε∗∗∆ + (1− λ) Φs (∆) ∆

}
[Z (∆) ∆ + ε∗∆ + Φs (∆) ∆]

where χ11 ∈ [0, 1], and

ip

∆
= (1− α) θ

ε∗∗ − ε∗

ε∗∆ + Φs (∆) ∆

+ [α+ (1− α) (1− θ)] 1

ε∗∆ + Φs (∆) ∆

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
ε∗∗∆ + Φs (∆) ∆

ε∗∆ + Φs (∆) ∆

1

ε∗∗∆ + (1− λ) Φs (∆) ∆

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

r + δ − g + gδ∆

(1 + g∆) (1− δ∆)
Φs (∆) ∆ = ε̄+ [α+ (1− α) (1− θ)]

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε)

+
λΦs (∆) ∆

ε∗∗∆ + (1− λ) Φs (∆) ∆

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

Take the limit as ∆→ 0 to arrive at the conditions in the statement of the lemma.
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D.6.2 Existence of equilibrium

Proof of Proposition 1. The conditions (32) and (33) in the statement of the proposition

are the equilibrium conditions derived in Lemma 12. Clearly for any λ ∈ [0, 1] there is a unique

εn that satisfies (33), and given εn, the normalized equity price ϕ is given by (32).

Lemma 14 In a RNE,

dεn

dλ
=

1

G′ (εn)
> 0

dϕn

dλ
= (1− α) θ

1

(1− λ)2

∫ εH

εn
(ε− εn) dG(ε) > 0.

Proof. The first result is obtained by implicitly differentiating (33). For the second result,

differentiate (32):

d

dλ
ϕn = (1− α) θ

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]
= (1− α) θ

[
G (εn)

dεn

dλ
− λ

1− λ
[1−G (εn)]

dεn

dλ
+

1

(1− λ)2

∫ εH

εn
(ε− εn) dG(ε)

]
= (1− α) θ

1

(1− λ)2

∫ εH

εn
(ε− εn) dG(ε).

Proof of Proposition 2. The equilibrium conditions are (124)-(127), with χ11 ∈ [0, 1],

as reported in Lemma 13. These are four equations in four unknowns. The unknowns are

(ε∗, ε∗∗, ϕ,Z) if ε∗ < ε∗∗, or (ε∗, χ11, ϕ,Z) if ε∗ = ε∗∗ (recall (15) and Lemma 10 imply ε∗ ≤ ε∗∗

in a monetary equilibrium with credit). We consider each case in turn.

(i) Suppose ε∗ < ε∗∗. In this case, (125) implies ε∗∗ = εn, where εn ∈ [εL, εH ] is the unique

solution to G (εn) = λ. Combined, conditions (126) and (127) imply a single equation in the
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unknown ε∗ that can be written as T (ε∗) = 0, where

T (x) ≡ (1− α) θ (εn − x) + [α+ (1− α) (1− θ)]
∫ εH

x
(ε− x) dG(ε)

+ (1− α) θ
1

1− λ

∫ εH

εn
(ε− εn) dG(ε)

− ι

{
ε̄+ [α+ (1− α) (1− θ)]

∫ x

εL

(x− ε) dG (ε)

+ (1− α) θ

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

]}
.

Differentiate T and evaluate the derivative at x = ε∗ to obtain

T ′ (ε∗) = −{(1− α) θ + [α+ (1− α) (1− θ)] {[1−G (ε∗)] + ιG (ε∗)}} < 0.

Hence, if there is a ε∗ that satisfies T (ε∗) = 0, it is unique. Notice that

T (εL) = (1− α) θ (εn − εL) + [α+ (1− α) (1− θ)] (ε̄− εL) + (1− α) θ
1

1− λ

∫ εH

εn
(ε− εn) dG(ε)

− ι
{
ε̄+ (1− α) θ

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

]}
,

so 0 < T (εL) if and only if ι < ῑ (λ), where ῑ (λ) is defined in the statement of the proposition.

Also,

T (εn) =

[
α+ (1− α)

(
1 + θ

λ

1− λ

)]∫ εH

εn
(ε− εn) dG(ε)

− ι
{
ε̄+

∫ εn

εL

(εn − ε) dG (ε) + (1− α) θ
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

}
,

so T (εn) < 0 if and only if ι̂ (λ) < ι. Thus, if ι̂ (λ) < ι < ῑ (λ), there exists a unique ε∗ that

satisfies T (ε∗) = 0, and ε∗ ∈ (εL, ε
n). Given ε∗ and ε∗∗, ϕ is given by (127). Finally, given ε∗,

ε∗∗, and ϕ, Z is given by (124), which can be written as (37). From this expression, it is clear

that 0 < Z ⇔ α > 0 and εL < ε∗ (and the latter condition is implied by ι < ῑ (λ)).
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(ii) Suppose ε∗ = ε∗∗. In this case, (124)-(127) become

1 = [1−G (ε∗)]

(
α+

1− α
1− λ

)(
Z
ϕ

+ 1

)
(128)

χ11 =
λ

1− λ
1−G (ε∗)

G (ε∗)
(129)

ιϕ =

[
α+ (1− α)

(
1− θ + θ

1

1− λ

)]∫ εH

ε∗
(ε− ε∗) dG(ε) (130)

ϕ = ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α)θ
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG (ε) . (131)

Conditions (130) and (131) imply a single equation in the unknown ε∗ that can be written as

T (ε∗) = 0, where

T (ε∗) ≡
{
α+ (1− α)

[
1 + (1− ι) θ λ

1− λ

]}∫ εH

ε∗
(ε− ε∗) dG(ε)

− ι

[
ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε)

]
.

Differentiate T and evaluate the derivative at the ε∗ that solves T (ε∗) = 0 to obtain

T ′ (ε∗) = −ι

{
ε̄+

∫ ε∗
εL

(ε∗−ε)dG(ε)∫ εH
ε∗ (ε−ε∗)dG(ε)

[1−G(ε∗)] +G(ε∗)

}
≤ 0,

with “=” only if ι = 0. Hence, if there is a ε∗ that satisfies T (ε∗) = 0, it is unique. Notice that

T (εH) = −ιεH , so T (εH) < 0 if and only if 0 < ι. Also,

T (εn) =

{
α+ (1− α)

[
1 + (1− ι) θ λ

1− λ

]}∫ εH

εn
(ε− εn) dG(ε)

− ι
[
ε̄+

∫ εn

εL

(εn − ε) dG (ε)

]
,

so 0 ≤ T (εn) if and only if ι ≤ ι̂ (λ). Thus, if 0 < ι ≤ ι̂ (λ), there exists a unique ε∗ that

satisfies T (ε∗) = 0, and ε∗ ∈ [εn, εH) (with ε∗ = εn only if ι = ι̂ (λ)). Given ε∗, χ11 ∈ [0, 1] is

given by (129) and ϕ is given by (131). Finally, given ε∗ and ϕ, (128) implies Z.

Lemma 15 The real asset price in the RME is higher than the real asset price in the RNE,

i.e.,

(i) If ι̂ (λ) < ι < ῑ (λ), then

0 < [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε) ≤ ϕ− ϕn. (132)
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(ii) If 0 < ι ≤ ι̂ (λ), then

0 < [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε) ≤ ϕ− ϕn. (133)

Moreover, in any RME, ϕ ≤ εH , with “=” only if ι = 0.

Proof. (i) If ι̂ (λ) < ι < ῑ (λ), (132) is immediate from (36). (ii) If 0 < ι ≤ ι̂ (λ), use (32)

and the expression for ϕ in part (ii) of Proposition 2 to write

ϕ− ϕn = α

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α)θ
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG (ε)

− (1− α) θ

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]
.

Define

Υ (x) ≡
∫ x

εL

(x− ε) dG(ε) +
λ

1− λ

∫ εH

x
(ε− x) dG(ε) (134)

and notice that for all x ∈ [εn, εH ],

Υ′ (x) = G (x)− λ

1− λ
[1−G (x)] ≥ 0, with “ = ” only if x = εn. (135)

Thus, since 0 < ι ≤ ι̂ (λ) implies εn ≤ ε∗, we have

ϕ− ϕn ≥ α
∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α)θ
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG (ε)

− (1− α) θ

[∫ ε∗

εL

(ε∗ − ε) dG(ε) +
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG(ε)

]
,

which implies (133).

To show that ϕ ≤ εH , we again consider two cases. First, suppose ι̂ (λ) < ι < ῑ (λ). In this

case,

ϕ− εH = α

[∫ ε∗

εL

(ε∗ − ε) dG (ε)− (εH − ε̄)

]

+ (1− α)

[
θΥ (εn) + (1− θ)

∫ ε∗

εL

(ε∗ − ε) dG (ε)− (εH − ε̄)

]
< 0.
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Second, suppose 0 < ι ≤ ι̂ (λ). In this case,

ϕ− εH = α

[∫ ε∗

εL

(ε∗ − ε) dG (ε)− (εH − ε̄)

]

+ (1− α)

[∫ ε∗

εL

(ε∗ − ε) dG (ε) + θ
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG (ε)− (εH − ε̄)

]

≤ α

[∫ ε∗

εL

(ε∗ − ε) dG (ε)− (εH − ε̄)

]
+ (1− α) [Υ (ε∗)− (εH − ε̄)]

≤ 0.

To conclude, notice the last inequality is strict unless ι → 0, which implies ε∗ → εH , and

therefore ϕ→ εH .

Proof of Proposition 3. Part (i) is an immediate corollary of Lemma 15. For part (ii), we

consider two cases in turn.

If ι̂ (λ) < ι < ῑ (λ), then

dε∗

dι
= −

∂T (ε∗)
∂ι

T ′ (ε∗)
= − −ϕ
−{(1− α) θ + [α+ (1− α) (1− θ)] {[1−G (ε∗)] + ιG (ε∗)}}

< 0,

where T (·) is the equilibrium map defined in part (i) of the proof of Proposition 2. Then, from

(36),
dϕ

dι
= [α+ (1− α) (1− θ)]G (ε∗)

dε∗

dι
< 0.

If 0 < ι ≤ ι̂ (λ), then

dε∗

dι
= −

∂T (ε∗)
∂ι

T ′ (ε∗)
= − −ϕ

−ι

{
ε̄+

∫ ε∗
εL

(ε∗−ε)dG(ε)∫ εH
ε∗ (ε−ε∗)dG(ε)

[1−G(ε∗)] +G(ε∗)

} < 0,

where T (·) is the equilibrium map defined in part (ii) of the proof of Proposition 2. Then,

differentiating the expression for ϕ in part (ii) of the statement of Proposition 2,

dϕ

dι
=

[
G (ε∗)− (1− α) θ

λ

1− λ
[1−G (ε∗)]

]
dε∗

dι
.
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Notice that

0 =

[
G (εn)− λ

1− λ
[1−G (εn)]

]
≤
[
G (ε∗)− λ

1− λ
[1−G (ε∗)]

]
< G (ε∗)− (1− α) θ

λ

1− λ
[1−G (ε∗)] ,

where the first inequality follows because G (x)− λ
1−λ [1−G (x)] is increasing in x, and εn ≤ ε∗

for all 0 < ι ≤ ι̂ (λ). Hence, dϕ/dι < 0.

D.7 Cashless limits

Proof of Proposition 4. Without loss of generality, we compute the relevant limits along

a trajectory starting from any economy indexed by the (λ, ι) such that ι ∈ [̂ι (λ) , ῑ (λ)]. As

λ→ 1, the mapping T defined in part (i) of the proof of Proposition 2 converges uniformly to

the mapping Tλ=1 defined by

Tλ=1 (x) ≡ (1− α) θ (εH − x) + [α+ (1− α) (1− θ)]
∫ εH

x
(ε− x) dG(ε)

− ι
{
ε̄+ [α+ (1− α) (1− θ)]

∫ x

εL

(x− ε) dG (ε) + (1− α)θ (εH − ε̄)
}
.

(This follows from the fact that limλ→1
1

1−λ
∫ εH
εn (ε− εn) dG (ε) = limλ→1

1−G(εn)
G′(εn) = 0.) Differ-

entiate Tλ=1 and evaluate the derivative at x = ε∗ to obtain

T ′λ=1 (ε∗) = −{(1− α) θ + [α+ (1− α) (1− θ)] {[1−G (ε∗)] + ιG (ε∗)}} < 0.

Hence, if there is a ε∗ that satisfies T (ε∗) = 0, it is unique. Notice that

Tλ=1 (εL) = [ε̄+ (1− α) θ (εH − ε̄)] [̄ι (1)− ι] ,

so 0 < T (εL) if and only if ι < ῑ (1). Also,

Tλ=1 (εH) = −ιεH

so T (εH) < 0 if and only if 0 < ι. Thus, if 0 ≤ ι ≤ ῑ (1), there exists a unique ε∗ that satisfies

Tλ=1 (ε∗) = 0 (or equivalently, (42)), and ε∗ ∈ [εL, εH ]. The limiting expressions (39) and (41)

are immediate from (37) and (36). Finally, (40) is the limit of the upper branch of (38).
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Proof of Proposition 5. Without loss of generality, we compute the relevant limits along a

trajectory starting from any economy indexed by the (λ, ι) such that ι ∈ [̂ι (λ) , ῑ (λ)]. From

part (i) of the proof of Proposition 2, we know that ε∗ → εL as ι→ ῑ (λ), so (36) implies (45),

(37) implies (43), and the top branch of (38) implies (44).

Proof of Proposition 6. The expression for velocity, (38), can be written as

V =


{α[1−G(ε∗)]+1−α}[αG(ε∗)+(1−α)λ]

αG(ε∗) if ς̂ (α) < ι < ς̄ (α)

(α+ 1−α
1−λ )G(ε∗)[1−G(ε∗)]

αG(ε∗)+ 1−α
1−λ [G(ε∗)−λ]

if 0 < ι ≤ ς̂ (α) .
(136)

First, notice that ς̂ (α) ≤ ς̄ (α) for all α ∈ [0, 1], with “=” only if λ = 0. Hereafter, assume

λ > 0, and fix some ι ∈ (0, ῑ (0)).

(i) For ι ∈ (ς̂ (0) , ς̄ (0)) and α small enough, part (i) of Proposition 2 implies the monetary

equilibrium is a vector (ε∗, ε∗∗, ϕ,Z), where

ϕ = ε̄+

{
(1− α) θ

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]

+ [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε)

}
(137)

Z =
αG (ε∗)

α [1−G (ε∗)] + 1− α
ϕ, (138)

ε∗∗ = εn, and ε∗ is the unique ε∗ ∈ (εL, ε
n) that satisfies T̃ (ε∗;α) = 0, where for any ε∗ ∈

[εL, εH ], T̃ (·;α) is a real-valued function defined by

T̃ (ε∗;α) ≡ (1− α) θ (εn − ε∗) + [α+ (1− α) (1− θ)]
∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
1

1− λ

∫ εH

εn
(ε− εn) dG(ε)

− ι

{
ε̄+ [α+ (1− α) (1− θ)]

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

]}
.
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As α→ 0, the function T̃ (·;α) converges uniformly to

T̃ (ε∗; 0) ≡ θ (εn − ε∗) + (1− θ)
∫ εH

ε∗
(ε− ε∗) dG(ε) + θ

1

1− λ

∫ εH

εn
(ε− εn) dG(ε)

− ι

{
ε̄+ (1− θ)

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ θ

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

]}
.

Then (50) is equivalent to T̃ (ε∗; 0) = 0, while (47), (48), and (49) are obtained from (138),

(136), and (137), respectively, by taking the limit as α→ 0.

(ii) For ι ∈ (0, ς̂ (0)] and α small enough, part (ii) of Proposition 2 implies the monetary

equilibrium is a vector (ε∗, χ, ϕ,Z) that satisfies χ = λ
1−λ

1−G(ε∗)
G(ε∗) ,

ϕ = ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α) θ
λ

1− λ

∫ εH

ε∗
(ε− ε∗) dG (ε) (139)

Z =
αG (ε∗) + (1− α) 1

1−λ [G (ε∗)− λ]

[1−G (ε∗)]
[
α+ (1− α) 1

1−λ

] ϕ, (140)

and ε∗ = ε∗∗, where ε∗ ∈ [εn, εH) (with ε∗ = εn only if ι = ς̂ (0)) is the unique solution to

T̃ (ε∗;α) = 0, where for any ε∗ ∈ [εL, εH ], T̃ (·;α) is a real-valued function defined by

T̃ (ε∗;α) ≡
{
α+ (1− α)

[
1 + (1− ι) θ λ

1− λ

]}∫ εH

ε∗
(ε− ε∗) dG(ε)

− ι

[
ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε)

]
.

As α→ 0, the function T̃ (·;α) converges uniformly to

T̃ (ε∗; 0) ≡
[
1 + (1− ι) θ λ

1− λ

] ∫ εH

ε∗
(ε− ε∗) dG(ε)− ι

[
ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε)

]
.

Then (54) is equivalent to T̃ (ε∗; 0) = 0, while while (51), (52), and (53) are obtained from

(140), (136), and (139), respectively, by taking the limit as α→ 0.

D.8 Capital accumulation

Definition 6 A sequential nonmonetary equilibrium for the economy with investment is an

allocation
{
Xt, A

s
t+1

}∞
t=0

and a sequence of prices, {εnt , φst , φ̄
s
t}∞t=0, that satisfy: φ̄

s
t = εnt yt + φst ,
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the law of motion for the capital stock,

Ast+1 = η (Ast +Xt) ,

the market-clearing condition for bonds

1 = [1−G (εnt )]
φ̄
s
t

φ̄
s
t − λφst

,

and the individual optimality conditions

Xt = Xt (φst )

and

φst = βηEt

{
ε̄yt+1 + φst+1 + (1− α) θ

[∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

+
λφst+1

φ̄
s
t+1 − λφst+1

∫ εH

εnt+1

(
ε− εnt+1

)
yt+1dG(ε)

]}
.

Notice that the structure of the equilibrium conditions in Definition 6 is recursive, i.e.,

one can solve for {εnt , φst}∞t=0 independently of
{
Xt, A

s
t+1

}∞
t=0

, and then given {φst}∞t=0, one gets

{Xt}∞t=0 = {Xt (φst )}
∞
t=0, and given {Xt}∞t=0,

{
Ast+1

}∞
t=0

follows from the law of motion for the

capital stock. Moreover, notice the equations that characterize {εnt , φst}∞t=0 in this economy with

endogenous capital accumulation are identical to the conditions that characterize {εnt , φst}∞t=0

in the baseline economy that assumes Ast = As for all t.

Definition 7 A sequential monetary equilibrium for the economy with investment is an allo-

cation
{
Xt, A

s
t+1

}∞
t=0

and a sequence of prices, {ε∗t , ε∗∗t , pt, qt, φmt , φst}∞t=0, that satisfy: ε∗∗t =

(pt
1
qt
− φst ) 1

yt
, ε∗t = (ptφ

m
t − φst ) 1

yt
, χ11 ≡ χ (1, 1) ∈ [0, 1], the law of motion for capital,

Ast+1 = η (Ast +Xt) ,

the market clearing conditions for equity and bonds,

0 = α [1−G (ε∗t )]
Amt + ptA

s
t

pt
+ (1− α) [1−G (ε∗∗t )]

Amt + ptA
s
t

pt − λqtφst
−Ast

0 =
[
1− I{qtφmt =1} (1− χ11)

]
G (ε∗∗t )− λqtφ

s
t

pt − λqtφst
[1−G (ε∗∗t )] ,
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and the individual optimality conditions,

Xt = Xt (φst ) ,

and

φmt = βEt
{
φmt+1 + (1− α) θ

(
1

qt+1
− φmt+1

)
+ [α+ (1− α) (1− θ)]

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1

1

pt+1
dG(ε)

+ (1− α) θ
1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG(ε)

}
φst = βηEt

{
ε̄yt+1 + φst+1 + [α+ (1− α) (1− θ)]

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG (ε)

+ (1− α) θ

[∫ ε∗∗t+1

εL

(
ε∗∗t+1 − ε

)
yt+1dG (ε) +

λqt+1φ
s
t+1

pt+1 − λqt+1φ
s
t+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG (ε)

]}
.

Notice that the structure of the equilibrium conditions in Definition 7 is recursive, i.e., one

can solve for prices and marginal valuations independently of
{
Xt, A

s
t+1

}∞
t=0

, and then given

{φst}∞t=0, one gets {Xt}∞t=0 = {Xt (φst )}
∞
t=0, and given {Xt}∞t=0,

{
Ast+1

}∞
t=0

follows from the law

of motion for the capital stock.

Example 1 Suppose

ft (n) = $tn
σ (141)

for σ ∈ (0, 1). Then the optimal amount of general goods that the investor devotes to the

production of capital goods is

gt (φst ) = (σ$tφ
s
t )

1
1−σ (142)

and the quantity of new capital created by an individual investor is

xt (φst ) = σ
σ

1−σ$
1

1−σ
t (φst )

σ
1−σ . (143)

Assume

$t = (σyt)
−σ . (144)
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(i) Consider the baseline discrete-time formulation. Given φst = φsyt, (142) and (143) with

(144) imply

gt (φst ) = σ (φs)
1

1−σ yt

xt (φst ) = (φs)
σ

1−σ . (145)

(ii) Consider the generalized discrete-time economy with period length ∆. Given the asset price

is Φs
t (∆) = Φs (∆) yt∆, (142) and (143) with (144) imply

gt (Φs
t (∆)) = σ [Φs (∆) ∆]

1
1−σ yt

xt (Φs
t (∆)) = [Φs (∆) ∆]

σ
1−σ

and therefore, since lim∆→0 Φs (∆) ∆ = φs,

lim
∆→0

gt (Φs
t (∆)) = σ (φs)

1
1−σ yt (146)

lim
∆→0

xt (Φs
t (∆)) = (φs)

σ
1−σ . (147)

Thus, in the continuous-time approximation, (146) and (147) are the effort rate devoted to

investment, and the investment rate, respectively.

Proof of Proposition 7. Notice the equations that characterize prices and marginal valua-

tions in Definitions 6 and 7 are identical to the conditions that characterize prices and marginal

valuations in the baseline economy that assumes Ast = As for all t. Hence, the conditions that

characterize prices and marginal valuations in the recursive equilibrium, and in the recursive

equilibrium with ∆ → 0, are also the same in the economy with endogenous capital accumu-

lation as in the economy that assumes Ast = As for all t. Given the production function (141)

with (144), the aggregate investment rate is immediate from (147).

D.9 Unsecured credit

In this section we develop the model with unsecured credit outlined in Section A.2.

The bargaining solutions for investors without access to credit are as before. The bargaining

solutions for investors with access to credit are summarized in the following two results.
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Lemma 16 Consider the economy with no money. If the investor contacts a credit broker, the

post-trade portfolio is

ast (ast , ε) = χ (εnt , ε)

(
ast +

B̄t

φ̄
s
t

)
(148)

abt (ast , ε) = φ̄
s
t

[
ast − χ (εnt , ε)

(
ast +

B̄t

φ̄
s
t

)]
(149)

and the intermediation fee for the broker is

kt (ast , ε) = (1− θ) (ε− εnt ) yt

[
χ (εnt , ε)

(
ast +

B̄t

φ̄
s
t

)
− ast

]
. (150)

Proof. In a nonmonetary economy, (2) implies
[
ast (ast , ε) , a

b
t (ast , ε) , kt (ast , ε)

]
is the solution

to

max
(ast ,kt)∈R2

+,a
b
t∈R

[
(εyt + φst ) (ast − ast ) + abt − kt

]θ
k1−θ
t

s.t. φ̄
s
ta
s
t + abt = φ̄

s
ta
s
t (151)

−B̄t ≤ abt . (152)

Notice that the first-order condition with respect to kt implies (103), so the bargaining solution

can be found by solving the following auxiliary problem

max
ast∈R+,abt∈R

[
(εyt + φst ) (ast − ast ) + abt

]
s.t. (151), and (152).

Since (151) implies abt = φ̄
s
t (a

s
t − ast ),

ast (ast , ε) = arg max
ast

(ε− εnt ) ast s.t. 0 ≤ ast and ast ≤ ast +
B̄t

φ̄
s
t

.

The solution is given by (148). Given ast (ast , ε), a
b
t (ast , ε) = φ̄

s
t [ast − ast (ast , ε)] as in (149), and

kt (ast , ε) is given by (103), or equivalently, (150).

Lemma 17 Consider the economy with money, and let ε̄∗∗t = max (ε∗t , ε
∗∗
t ), where

ε∗∗t ≡
pt

1
qt
− φst
yt

(153)

and ε∗t is as defined in (14). Consider an investor who enters the OTC round of period t with

portfolio at and valuation ε in an economy with money. If the investor contacts a credit broker,
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the post-trade portfolio is

amt (at, ε) =

{
I{1<qtφmt }

[
I{ε<ε̄∗∗t } + I{ε=ε̄∗∗t }χ (ε̄∗∗t , ε)

]
+ I{qtφmt =1}I{ε<ε̄∗∗t }χ (qtφ

m
t , 1)

}(
amt + pta

s
t + qtB̄t

)
+ I{qtφmt =1}I{ε=ε̄∗∗t }ã

m
t (154)

ast (at, ε) =
{
I{ε̄∗∗t <ε} +

[
1− I{qtφmt =1}

]
I{ε=ε̄∗∗t }χ (ε̄∗∗t , ε)

}[
ast +

1

pt

(
amt + qtB̄t

)]
+ I{qtφmt =1}I{ε=ε̄∗∗t }ã

s
t (155)

abt(at, ε) = − 1

qt
{[amt (at, ε)− amt ] + pt [ast (at, ε)− ast ]} , (156)

where

(ãmt , ã
s
t ) ∈

{
R2

+ : ãmt + ptã
s
t ≤ amt + pta

s
t + qtB̄t

}
,

and the intermediation fee is

kt (at, ε) = (1− θ)
{

(εyt + φst ) [ast (at, ε)− âst (at, ε)]

+ φmt [amt (at, ε)− âmt (at, ε)] + abt(at, ε)
}
. (157)

Proof. With (99), (2) can be written as

max
(amt ,a

s
t ,kt)∈R3

+,a
b
t∈R

{
(εyt + φst ) [ast − âst (at, ε)] + φmt [amt − âmt (at, ε)] + abt − kt

}θ
k1−θ
t

s.t. amt + pta
s
t + qta

b
t = amt + pta

s
t (158)

−B̄t ≤ abt . (159)

Notice that the first-order condition with respect to kt implies (22) so the bargaining solution

can be found by solving the following auxiliary problem

max
(amt ,a

s
t )∈R2

+,a
b
t∈R

{
(εyt + φst ) [ast − âst (at, ε)] + φmt [amt − âmt (at, ε)] + abt

}
s.t. (158), and (159).

Once the solution amt (at, ε), a
s
t (at, ε), and abt(at, ε) to this problem has been found, kt (at, ε) is

given by (22). If we use (158) to substitute for abt , the auxiliary problem is equivalent to

max
(amt ,a

s
t )∈R2

+

[(
εyt + φst −

1

qt
pt

)
ast +

(
φmt −

1

qt

)
amt

]
(160)
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s.t. − qtB̄t ≤ amt − amt + pt (ast − ast ) . (161)

The Lagrangian corresponding to the auxiliary problem (160) is

L =

(
εyt + φst −

1

qt
pt

)
ast +

(
φmt −

1

qt

)
amt

+ ξb
[
amt − amt + pt (ast − ast ) + qtB̄t

]
+ ξmamt + ξsast ,

where ξb, ξm, and ξs are the multipliers on the constraints (161), 0 ≤ amt , and 0 ≤ ast , respec-

tively. The first-order conditions are

εyt + φst −
1

qt
pt + ξs − ptξb = 0

φmt −
1

qt
+ ξm − ξb = 0.

There are eight possible binding patterns for the multipliers
(
ξb, ξm, ξs

)
. Case 1. Assume

0 < ξm, 0 < ξs, 0 < ξb. Then amt = ast = 0 and amt + pta
s
t + qtB̄t = 0. Since 0 ≤ B̄t, this kind of

solution has abt = 0 and is only possible if as = am = B̄t = 0. Case 2. Assume 0 < ξm, 0 < ξs,

ξb = 0. Then amt = ast = 0, qta
b
t = amt + pta

s
t , ξ

s =
[(

pt
qt
− φst

)
1
yt
− ε
]
yt, and ξm = 1

qt
− φmt .

This kind of solution is only possible if qtφ
m
t < 1 and εyt <

1
qt
pt − φst . Case 3. Assume 0 < ξm,

ξs = 0, 0 < ξb. Then amt = 0, ast = ast + 1
pt

(
qtB̄t + amt

)
, abt = −B̄t, ptξb = εyt + φst − 1

qt
pt, and

ptξ
m = εyt + φst − ptφmt . This kind of solution is only possible if max (qtφ

m
t , 1) 1

qt
pt − φst < εyt.

Case 4. Assume ξm = 0, 0 < ξs, 0 < ξb. Then amt = amt + pta
s
t + qtB̄t, a

s
t = 0, abt = −B̄t,

ξs = ptφ
m
t −φst−εyt, and ptξ

b = (qtφ
m
t − 1) 1

qt
pt. This kind of solution is only possible if 1 < qtφ

m
t

and εyt < ptφ
m
t − φst . Case 5. Assume 0 < ξm, ξs = 0, ξb = 0. Then amt = 0, ξm = 1

qt
− φmt ,

and
(
ast , a

b
t

)
is any pair that satisfies

(
ast , a

b
t

)
∈ [0,∞)× [−B̄t,∞) and qta

b
t + pta

s
t = amt + pta

s
t .

This kind of solution is only possible if qtφ
m
t < 1 and εyt = 1

qt
pt − φst . Case 6. Assume

ξm = 0, ξs = 0, 0 < ξb. Then ptξ
b = (qtφ

m
t − 1) 1

qt
pt = εyt + φst − 1

qt
pt, (amt , a

s
t ) is any pair

that satisfies (amt , a
s
t ) ∈ [0,∞) × [0,∞) and amt − amt + pt (ast − ast ) + qtB̄t = 0, and abt = −B̄t.

This kind of solution is only possible if 1 < qtφ
m
t and εyt = ptφ

m
t − φst . Case 7. Assume

ξm = 0, 0 < ξs, ξb = 0. Then ast = 0, ξs = 1
qt
pt − φst − εyt, and

(
amt , a

b
t

)
is any pair that

satisfies
(
amt , a

b
t

)
∈ [0,∞)× [−B̄t,∞) and amt + qta

b
t = amt + pta

s
t . This kind of solution is only

possible if qtφ
m
t = 1 and εyt <

1
qt
pt − φst . Case 8. Assume ξm = 0, ξs = 0, ξb = 0. Then(

amt , a
s
t , a

b
t

)
∈ [0,∞)× [0,∞)× [−B̄t,∞) is any triple that satisfies amt +pta

s
t +qta

b
t = amt +pta

s
t .

This kind of solution is only possible if qtφ
m
t = 1 and εyt = 1

qt
pt−φst . By collecting the solutions

along with the inequality restrictions implied by the eight cases, we obtain (154)-(157).
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Next, we derive the market-clearing conditions for equity and bonds in the OTC round, in

a nonmonetary economy (Lemma 18), and in a monetary economy (Lemma 19).

Lemma 18 In a nonmonetary equilibrium, the market-clearing condition for equity, Âst +Āst =

As (or bonds, Ābt = 0) in the OTC round is:

1 = [1−G (εnt )]

(
1 +

NIB̄t

φ̄
s
tA

s

)
(162)

where

Λt ≡ NIB̄t. (163)

Proof. The investors’ aggregate post-trade holdings of equity in the OTC round of period

t are

Āst = (1− α)NI

∫
ast (at, ε)dHt(at, ε) = (1− α) [1−G (εnt )]

(
As +

NIB̄t

φ̄
s
t

)
Âst = αNI

∫
âst (at, ε)dHt(at, ε) = αAs

and the investors’ aggregate post-trade holdings of bonds in the OTC round of period t are

Ābt = (1− α)NI

∫
abt(at, ε)dHt(at, ε) = (1− α) φ̄

s
t

[
As − [1−G (εnt )]

(
As +

NIB̄t

φ̄
s
t

)]
.

Lemma 19 In a monetary equilibrium, the market-clearing conditions for equity, Âst+Ā
s
t = As,

and bonds, Ābt = 0, in the OTC round are, respectively:

0 = α [1−G (ε∗t )]
Amt + ptA

s

pt
+ (1− α) [1−G (ε̄∗∗t )]

Amt + ptA
s + qtNIB̄t
pt

−As

0 =
{
G (ε̄∗∗t )

[
I{1<qtφmt } + I{qtφmt =1}χ (qtφ

m
t , 1)

]
+ 1−G (ε̄∗∗t )

} Amt + ptA
s + qtNIB̄t
pt

−
(
As +

Amt
pt

)
.

Proof. The investors’ aggregate post-trade holdings of equity in the OTC round of period

t are

Āst = (1− α)NI

∫
ast (at, ε)dHt(at, ε) = (1− α) [1−G (ε̄∗∗t )]

[
As +

1

pt

(
Amt + qtNIB̄t

)]
Âst = αNI

∫
âst (at, ε)dHt(at, ε) = α [1−G (ε∗t )]

Amt + ptA
s

pt
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and the investors’ aggregate post-trade holdings of bonds in the OTC round of period t are

Ābt = (1− α)NI

∫
abt(at, ε)dHt(at, ε) = −pt

qt
(1− α)

{{
G (ε̄∗∗t )

[
I{1<qtφmt } + I{qtφmt =1}χ (qtφ

m
t , 1)

]
+ 1−G (ε̄∗∗t )

}
Amt + ptA

s + qtNIB̄t
pt

−
(
As +

Amt
pt

)}
.

The following result states that the credit market would be inactive if the net nominal

interest rate on bonds, imt ≡ 1
qtφ

m
t
− 1, were negative.

Lemma 20 Consider a monetary equilibrium. If the bond market is active in period t, then

qtφ
m
t ≤ 1.

Proof. In an equilibrium with 1 < qtφ
m
t , the bond-market clearing condition in Lemma 19

becomes

0 =

[
As +

1

pt

(
Amt + qtNIB̄t

)]
−
(
As +

Amt
pt

)
.

This condition can only hold if B̄t = 0, i.e., if the bond market is inactive at all dates. The

condition 1 < qtφ
m
t implies bond demand is nil, so the bond market can only clear with no

trade.

In what follows, we focus on monetary equilibria with an active credit market, i.e., equilibria

with qtφ
m
t ≤ 1. Notice this implies ε̄∗∗t = ε∗∗t for all t in any monetary equilibrium.

Next, we derive an investor’s value function in a nonmonetary economy (Lemma 21), and

in a monetary economy (Lemma 22).

Lemma 21 Consider an economy without money. The value function of an investor who enters

the OTC round of period t with equity holding ast and valuation ε is

Vt (ast , ε) =
[
εyt + φst + (1− α) θI{ε<εnt } (εnt − ε) yt

]
ast + W̃t (ε) , (164)

where

W̃t (ε) ≡ W̄t + (1− α) θI{εnt <ε} (ε− εnt ) yt
B̄t

φ̄
s
t

W̄t ≡ max
ãst+1∈R+

[
−φst ãst+1 + βEt

∫
Vt+1

[
ηãst+1 + (1− η)As, ε

]
dG(ε)

]
.
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Proof. With (114), and Lemma 16, (5) reduces to

Vt (ast , ε) = W̄t + (εyt + φst ) a
s
t

+ (1− α) θ (ε− εnt ) yt

[
I{εnt <ε}

(
ast +

B̄t

φ̄
s
t

)
− ast

]
,

which can be written as (164).

Lemma 22 Consider an economy with money. The value function of an investor who enters

the OTC round of period t with portfolio at and valuation ε is

Vt (at, ε) = vmIt (ε) amt + vsIt (ε) ast + W̃t (ε) , (165)

where

vmIt (ε) ≡ φmt + [α+ (1− α) (1− θ)] I{ε∗t<ε} (ε− ε∗t ) yt
1

pt

+ (1− α) θ (ε− ε̄∗∗t ) ytI{ε̄∗∗t <ε}
1

pt

+ (1− α) θ

(
1

qt
− φmt

){
I{qtφmt <1} + I{1<qtφmt }I{ε=ε̄∗∗t } [1− 2χ (ε̄∗∗t , ε)]

}
vsIt (ε) ≡ εyt + φst + [α+ (1− α) (1− θ)] (ε∗t − ε) ytI{ε<ε∗t }

+ (1− α) θ (ε̄∗∗t − ε) ytI{ε<ε̄∗∗t }

+ (1− α) θ

(
1

qt
− φmt

)
I{1<qtφmt }I{ε=ε̄∗∗t } [1− 2χ (ε̄∗∗t , ε)] pt

W̃t (ε) ≡ W̄t + (1− α) θ

{
(ε− ε̄∗∗t ) ytI{ε̄∗∗t <ε}

1

pt

+

(
φmt −

1

qt

)
I{1<qtφmt }

{
1 + I{ε=ε̄∗∗t } [2χ (ε̄∗∗t , ε)− 1]

}}
qtB̄t.

Proof. With (99), the value function (5) becomes (110), which after substituting kt (at, ε)

and ābt (at, ε) (using (157) and (156), respectively), becomes

Vt (at, ε) = W̄t + (εyt + φst ) a
s
t + φmt a

m
t

+ [α+ (1− α) (1− θ)] {(εyt + φst ) [âst (at, ε)− ast ] + φmt [âmt (at, ε)− amt ]}

+ (1− α) θ

{(
εyt + φst −

1

qt
pt

)
[āst (at, ε)− ast ] +

(
φmt −

1

qt

)
[āmt (at, ε)− amt ]

}
.
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Then replace the post-trade allocations âst (at, ε) and âmt (at, ε) (using Lemma 2), and āst (at, ε),

and āmt (at, ε) (using Lemma 17), and rearrange terms to arrive at (165).

Next, we derive the Euler equations that characterize the investor’s optimal portfolio choices

in the second subperiod, in a nonmonetary economy (Lemma 23) and in a nonmonetary economy

(Lemma 24).

Lemma 23 Consider an economy with no money. Let ãsIt+1 denote equity holding chosen by

an investor in the second subperiod of period t. Then ãsIt+1 is optimal if and only if it satisfies

φst ≥ βηEt
[
ε̄yt+1 + φst+1 + (1− α) θ

∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

]
with “ = ” if ãsIt+1 > 0.

Proof. With (164), the portfolio problem of an investor in the second subperiod (i.e., the

maximization on the right side of (3)) can be written as

max
ãst+1∈R+

{
−φst + βηEt

[
ε̄yt+1 + φst+1 + (1− α) θ

∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

]}
ãst+1.

Lemma 24 Consider an economy with money. Let
(
ãmIt+1, ã

s
It+1

)
denote the portfolio choice

of an investor in the second subperiod of period t. The portfolio
(
ãmIt+1, ã

s
It+1

)
is optimal if and

only if it satisfies (
φmt − βEtv̄mIt+1

)
ãmIt+1 = 0 ≤ φmt − βEtv̄mIt+1 (166)(

φst − βηEtv̄sIt+1

)
ãsIt+1 = 0 ≤ φst − βηEtv̄sIt+1, (167)

where

v̄mIt+1 ≡ φmt+1 + [α+ (1− α) (1− θ)]
∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1dG(ε)

1

pt+1

+ (1− α) θ
1

pt+1

∫ εH

ε̄∗∗t+1

(
ε− ε̄∗∗t+1

)
yt+1dG(ε)

+ (1− α) θ

(
1

qt+1
− φmt+1

)
I{qt+1φ

m
t+1<1}

and

v̄sIt+1 ≡ ε̄yt+1 + φst+1 + [α+ (1− α) (1− θ)]
∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG (ε)

+ (1− α) θ

∫ ε̄∗∗t+1

εL

(
ε̄∗∗t+1 − ε

)
yt+1dG (ε) .
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Proof. With (165), the portfolio problem of an equity broker in the second subperiod (i.e.,

the maximization on the right side of (3)) can be written as

max
ãt+1∈R2

+

[
−φmt ãmt+1 − φst ãst+1 + βEt

(
v̄mIt+1ã

m
t+1 + ηv̄sIt+1ã

s
t+1

)]
,

where v̄kIt+1 ≡
∫
vkIt+1 (ε) dG(ε) for k ∈ {m, s}.

Next, we define sequential nonmonetary equilibrium and monetary equilibrium (with an

active credit market).

Definition 8 A (sequential) nonmonetary equilibrium is a sequence {εnt , φst , φ̄
s
t}∞t=0, that satis-

fies

0 = [1−G (εnt )]

(
As +

NIB̄t
εnt yt + φst

)
−As

φst = βηEt
[
ε̄yt+1 + φst+1 + (1− α) θ

∫ εnt+1

εL

(
εnt+1 − ε

)
yt+1dG(ε)

]
φ̄
s
t = εnt yt + φst .

The first condition in Definition 8 is the bond-market clearing condition (162), the second

is the investor’s Euler equation from Lemma 23, and the last is the definition of εnt (8).

Definition 9 A (sequential) monetary equilibrium is a sequence {ε∗t , ε∗∗t , pt, qt, φmt , φst}∞t=0, that

satisfy ε∗∗t = (pt
1
qt
− φst )

1
yt

, ε∗t = (ptφ
m
t − φst ) 1

yt
, χBL ≡ χ (1, 1) ∈ [0, 1], the market clearing

conditions,

0 = α [1−G (ε∗t )]
Amt + ptA

s

pt
+ (1− α) [1−G (ε∗∗t )]

Amt + ptA
s + qtNIB̄t
pt

−As

0 =
{
G (ε∗∗t )

[
I{1<qtφmt } + I{qtφmt =1}χ

B
L

]
+ [1−G (ε∗∗t )]

} Amt + ptA
s + qtNIB̄t
pt

−
(
As +

Amt
pt

)
,
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the Euler equations,

φmt = βEt

{
φmt+1 + [α+ (1− α) (1− θ)]

∫ εH

ε∗t+1

(
ε− ε∗t+1

)
yt+1dG(ε)

1

pt+1

+ (1− α) θ
1

pt+1

∫ εH

ε∗∗t+1

(
ε− ε∗∗t+1

)
yt+1dG(ε)

+ (1− α) θ

(
1

qt+1
− φmt+1

)
I{qt+1φ

m
t+1<1}

}

φst = βηEt

{
ε̄yt+1 + φst+1 + [α+ (1− α) (1− θ)]

∫ ε∗t+1

εL

(
ε∗t+1 − ε

)
yt+1dG (ε)

+ (1− α) θ

∫ ε∗∗t+1

εL

(
ε∗∗t+1 − ε

)
yt+1dG (ε)

}
.

Next, we define RNE and RME (with an active credit market). To this end, hereafter we

assume B̄t is as defined in (72). As before, a RNE is a nonmonetary equilibrium in which

real equity prices (general goods per equity share) are time-invariant linear functions of the

aggregate dividend, i.e., φst = φsyt and φ̄
s
t = φ̄

s
yt for some φs, φ̄

s ∈ R+. Hence in a RNE,

εnt =
(
φ̄
s
t − φst

)
1
yt

= φ̄
s − φs ≡ εn. Similarly, a RME is a monetary equilibrium in which:

(i) real equity prices (general goods per equity share) are time-invariant linear functions of

the aggregate dividend, i.e., φst = φsyt, ptφ
m
t ≡ φ̄

s
mt = φ̄

s
myt, and pt/qt ≡ φ̄

s
bt = φ̄

s
byt for

some φs, φ̄
s
m, φ̄

s
b ∈ R+; and (ii) real money balances are a constant proportion of output, i.e.,

φmt A
m
t = ZAsyt for some Z ∈ R++. Hence in a RME, ε∗t = (ptφ

m
t − φst ) 1

yt
= φ̄

s
m − φs ≡ ε∗,

ε∗∗t = (pt/qt − φst ) 1
yt

= φ̄
s
b − φs ≡ ε∗∗, pt =

(ε∗+φs)Amt
ZAs , φmt = ZAsyt

Amt
, and qt is given by (27).

Definition 10 A recursive nonmonetary equilibrium of the economy with borrowing limit (72),

is a triple (εn, φs, φ̄
s
), that satisfies φ̄

s
= εn + φs,

0 = [1−G (εn)] (1 + Λ)− 1

1− β̄η
β̄η

φs = ε̄+ (1− α) θ

∫ εn

εL

(εn − ε) dG(ε).

Definition 11 A recursive monetary equilibrium of the economy with borrowing limit (72), is
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a vector (ε∗, ε∗∗, φs, Z, χBL ) that satisfies χBL ∈ [0, 1], and

0 = α [1−G (ε∗)]

(
1 +

Z

ε∗ + φs

)
+ (1− α) [1−G (ε∗∗)]

(
1 + Λ +

Z

ε∗ + φs

)
− 1

0 =
{
G (ε∗∗) I{ε∗=ε∗∗}χBL + [1−G (ε∗∗)]

}(
1 + Λ +

Z

ε∗ + φs

)
−
(

1 +
Z

ε∗ + φs

)
ip = [α+ (1− α) (1− θ)] 1

ε∗ + φs

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
1

ε∗ + φs

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε) + (1− α) θ

ε∗∗ − ε∗

ε∗ + φs
I{ε∗<ε∗∗}

1− β̄η
β̄η

φs = ε̄+ [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α) θ

∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) .

In a nonmonetary equilibrium, pt/qt = φ̄
s
t ≡ εnt yt + φst , and therefore the borrowing limit

(72) becomes

B̄t ≡ Λ
(εnt yt + φnt )As

NI
. (168)

In a monetary equilibrium, pt/qt = ε∗∗t yt + φst , and therefore the borrowing limit (72) becomes

B̄t ≡ Λ
(ε∗∗t yt + φst )A

s

NI
. (169)

In the discrete-time economy with period length equal to ∆, (168) generalizes to

B̄t (∆) = Λ
[εnt yt∆ + Φn

t (∆)]As

NI
(170)

and (169) generalizes to

B̄t ≡ Λ
[ε∗∗t yt∆ + Φs

t (∆)]As

NI
. (171)

In a RNE, εnt = εn and Φn
t (∆) = Φn (∆) yt∆, so (170) specializes to

B̄t (∆) = Λ
[εn + Φn (∆)]As

NI
yt∆.

In a RME, ε∗∗t = ε∗∗ and Φs
t (∆) = Φs (∆) yt∆, so (171) specializes to

B̄t (∆) = Λ
[ε∗∗ + Φs (∆)]As

NI
yt∆.

Next, we report the equilibrium conditions for the continuous-time limiting economy as ∆→ 0.
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Lemma 25 Consider the limiting economy (as ∆→ 0) with borrowing limit (72). A recursive

nonmonetary equilibrium is a pair (εn, ϕ) that satisfies

G (εn) =
Λ

1 + Λ

ϕ = ε̄+ (1− α) θ

∫ εn

εL

(εn − ε) dG(ε).

Proof. The first equilibrium condition is immediate from the first condition in Definition

10. The second condition is obtained by recognizing that, in a discrete-time economy with

period length ∆, the second condition in Definition 10 is

r + δ − g + gδ∆

(1 + g∆) (1− δ∆)
Φs (∆) ∆ = ε̄+ (1− α) θ

∫ εn

εL

(εn − ε) dG(ε)

and letting ∆→ 0.

Lemma 26 Consider the limiting economy (as ∆→ 0) with borrowing limit (72). A recursive

monetary equilibrium is a vector (ε∗, ε∗∗, ϕ,Z, χBL ) that satisfies χBL ∈ [0, 1], and

0 = α [1−G (ε∗)]

(
1 +
Z
ϕ

)
+ (1− α) [1−G (ε∗∗)]

(
1 + Λ +

Z
ϕ

)
− 1

0 =
{
G (ε∗∗) I{ε∗=ε∗∗}χBL + [1−G (ε∗∗)]

}(
1 + Λ +

Z
ϕ

)
−
(

1 +
Z
ϕ

)
ιϕ = [α+ (1− α) (1− θ)]

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ

[
(ε∗∗ − ε∗) I{ε∗<ε∗∗} +

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
ϕ = ε̄+ [α+ (1− α) (1− θ)]

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α) θ

∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) .

Proof. In a discrete-time economy with period length ∆, the equilibrium conditions in

Definition 11 generalize to

0 = α [1−G (ε∗)]

(
1 +

Z (∆) ∆

ε∗∆ + Φs (∆) ∆

)
+ (1− α) [1−G (ε∗∗)]

[
1 + Λ +

Z (∆) ∆

ε∗∆ + Φs (∆) ∆

]
− 1

0 =
{
G (ε∗∗) I{ε∗=ε∗∗}χBL + [1−G (ε∗∗)]

} [
1 + Λ +

Z (∆) ∆

ε∗∆ + Φs (∆) ∆

]
−
(

1 +
Z (∆) ∆

ε∗∆ + Φs (∆) ∆

)
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ip

∆
Φs (∆) ∆ =

Φs (∆) ∆

ε∗∆ + Φs (∆) ∆

{
[α+ (1− α) (1− θ)]

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ

[
(ε∗∗ − ε∗) I{ε∗<ε∗∗} +

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]}

r + δ − g + gδ∆

(1 + g∆) (1− δ∆)
Φs (∆) ∆ = ε̄+ [α+ (1− α) (1− θ)]

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) .

Take the limit as ∆→ 0 to obtain the conditions in the statement of the lemma.

Proof of Proposition 8. As α→ 0, the equilibrium conditions in Lemma 26 become

0 = [1−G (ε∗∗)]

(
1 + Λ +

Z
ϕ

)
− 1 (172)

0 =
{
G (ε∗∗) I{ε∗=ε∗∗}χBL + [1−G (ε∗∗)]

}(
1 + Λ +

Z
ϕ

)
−
(

1 +
Z
ϕ

)
(173)

ιϕ = (1− θ)
∫ εH

ε∗
(ε− ε∗) dG(ε) + θ

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

+ θ (ε∗∗ − ε∗) I{ε∗<ε∗∗} (174)

ϕ = ε̄+ (1− θ)
∫ ε∗

εL

(ε∗ − ε) dG (ε) + θ

∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) (175)

where χBL ∈ [0, 1]. These are four equations in four unknowns. The unknowns are (ε∗, ε∗∗, φs, Z)

if ε∗ < ε∗∗, or (ε∗, χBL , φ
s, Z) if ε∗ = ε∗∗. We consider each case in turn.

(i) Suppose ε∗ < ε∗∗. In this case, (172) and (173) imply Zϕ = 0 and ε∗∗ = εn. Combined,

conditions (174) and (175) imply a single equation in the unknown ε∗ that can be written as

T (ε∗) = 0, where

T (x) ≡ θ (εn − x) + (1− θ)
∫ εH

x
(ε− x) dG(ε) + θ

∫ εH

εn
(ε− εn) dG(ε)

− ι
[
ε̄+ (1− θ)

∫ x

εL

(x− ε) dG (ε) + θ

∫ εn

εL

(εn − ε) dG (ε)

]
.

Differentiate T and evaluate the derivative at x = ε∗ to obtain

T ′ (ε∗) = −{θ + (1− θ) [1−G (ε∗) + ιG (ε∗)]} < 0.
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Hence, if there is a ε∗ that satisfies T (ε∗) = 0, it is unique. Notice that

T (εL) = θ (εn − εL) + (1− θ) (ε̄− εL) + θ

∫ εH

εn
(ε− εn) dG(ε)

− ι
[
ε̄+ θ

∫ εn

εL

(εn − ε) dG (ε)

]
,

so 0 < T (εL) if and only if ι < ς̄0. Also,

T (εn) =

∫ εH

εn
(ε− εn) dG(ε)− ι

[
ε̄+

∫ εn

εL

(εn − ε) dG (ε)

]
,

so T (εn) < 0 if and only if ς̂0 < ι. Thus, if ς̂0 < ι < ς̄0, there exists a unique ε∗ that satisfies

T (ε∗) = 0, and ε∗ ∈ (εL, ε
n). Given ε∗ and ε∗∗, ϕ is given by (172).

(ii) Suppose ε∗ = ε∗∗. In this case, (172)-(175) become

0 = [1−G (ε∗)]

(
1 + Λ +

Z
ϕ

)
− 1 (176)

0 =
{
G (ε∗)χBL + [1−G (ε∗)]

}(
1 + Λ +

Z
ϕ

)
−
(

1 +
Z
ϕ

)
(177)

ιϕ =

∫ εH

ε∗
(ε− ε∗) dG(ε) (178)

ϕ = ε̄+

∫ ε∗

εL

(ε∗ − ε) dG (ε) . (179)

Combined, conditions (178) and (179) imply a single equation in the unknown ε∗ that can be

written as T (ε∗) = 0, where

T (x) ≡
∫ εH

x
(ε− x) dG(ε)− ι

[
ε̄+

∫ x

εL

(x− ε) dG (ε)

]
.

Differentiate T and evaluate the derivative at x = ε∗ to obtain

T ′ (ε∗) = − [1−G (ε∗) + ιG (ε∗)] < 0.

Hence, if there is a ε∗ that satisfies T (ε∗) = 0, it is unique. Notice that

T (εn) =

∫ εH

εn
(ε− εn) dG(ε)− ι

[
ε̄+

∫ εn

εL

(εn − ε) dG (ε)

]
,

so 0 ≤ T (εn) if and only if ι ≤ ς̂0. Also,

T (εH) = −ιεH ≤ 0, with “ = ” only if ι = 0.
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Thus, if 0 < ι ≤ ς̂0, there exists a unique ε∗ that satisfies T (ε∗) = 0, and ε∗ ∈ [εn, εH) (with

ε∗ = εn only if ι = ς̂0). Given ε∗, ϕ is given by (179). Given ε∗ and ϕ, (176) implies

Z =
G (ε∗)− [1−G (ε∗)] Λ

1−G (ε∗)
ϕ.

Finally, given, ε∗, ϕ, and Z, (177) implies

χBL = 1− 1−G (ε∗)

G (ε∗)
Λ.

D.10 Efficiency

Proof of Proposition 9. The constraint (76) must bind for every t at an optimum, so the

planner’s problem is equivalent to

max
{ãIt+1,ā

I
t }∞t=0

E0

∞∑
t=0

βt
∫ εH

εL

εytā
I
t (dε)NI

s.t. (74), (77), and

∫ εH

εL

āIt (dε) ≤ aIt .

Then clearly,

W ∗ (y0) ≤ εHAs
(
E0

∞∑
t=0

βtyt

)
. (180)

The allocation consisting of ãIt = As/NI and the Dirac measure āIt (E) = As

NI
I{εH∈E} defined in

the statement of the proposition achieve the value on the right side of (180) and therefore solve

the planner’s problem. Notice that E0
∑∞

t=0 β
tyt = β̄

1−β̄ y0, so

W ∗ (y0) =
β̄

1− β̄
εHA

sy0.

Hence, in the discrete-time economy with period of length ∆, welfare is

W∗ (y0) =
1 + g∆

(r − g) ∆
εHA

sy0∆.

Rearrange this expression and take the limit as ∆→ 0 to arrive at (78).

Proof of Proposition 10. The constraint (94) must bind for every t at an optimum, so the

planner’s problem is equivalent to

max
{ãIt+1,ā

I
t ,h

I
2t,Xt}∞t=0

E0

∞∑
t=0

βt
[∫ εH

εL

εytā
I
t (dε)− hI2t

]
NI
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s.t. (91), (92), (93), and

∫ εH

εL

āIt (dε) ≤ aIt .

Clearly,

W ∗ (As0, y0) ≤ max
{hI2t}∞t=0

E0

∞∑
t=0

βt
(
εHA

s
tyt − hI2tNI

)
s.t. Ast+1 = η

[
Ast + ft

(
hI2t
)
NI

]
. (181)

Once
{
hI2t
}∞
t=0

has been found, we can use (93) to get Xt = ft
(
hI2t
)
NI , and (91) at equality to

get ãIt+1 =
Ast+Xt
NI

. Let W̄ ∗ (A0, y0) denote the value of the right side of (181); it satisfies

W̄ ∗ (Ast , yt) = max
0≤h

[
εHA

s
tyt − hNI + βEtW̄ ∗

(
Ast+1, yt+1

)]
(182)

s.t. Ast+1 = η [Ast + ft (h)NI ] .

It is easy to show the optimal value function that satisfies (182) is W̄ ∗ (Ast , yt) = (BAst + C) yt,

where

B =
εH

1− β̄η

C =
1

1− β̄
(1− σ)

(
β̄η

1− β̄η
εH

) 1
1−σ

NI .

The decision rule implied by (182) is

h (yt) = σ

(
β̄η

1− β̄η
εH

) 1
1−σ

yt (183)

and the implied aggregate investment is

ft [h (yt)]NI =

(
β̄η

1− β̄η
εH

) σ
1−σ

NI . (184)

Hence,

W̄ ∗ (Ast , yt) =

(
εH

1− β̄η
Ast +

1

1− β̄
(1− σ)

(
β̄η

1− β̄η
εH

) 1
1−σ

NI

)
yt. (185)

The OTC-market allocation consisting of the Dirac measure āIt (E) =
Ast
NI

I{εH∈E} defined in the

statement of the proposition along with the decision rules (183) and (184) achieve the value on

the right side of (181) and therefore solve the planner’s problem, i.e., W ∗ (Ast , yt) = W̄ ∗ (Ast , yt).

Next consider the generalization to a time period of length ∆. In this case, (182) becomes

W̄ ∗ (Ast , yt) = max
0≤h

[
εHA

s
tyt∆−∆hNI + βEtW̄ ∗

(
Ast+∆, yt+∆

)]
(186)

s.t. Ast+∆ = η [Ast + ∆ft (h)NI ] ,
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where yt, h, and ft (h) are now the per-unit-time dividend, effort, and output, respectively. It is

easy to verify that the optimal value function is still W̄ ∗ (Ast , yt) = (BAst + C) yt (proportional

to the dividend rate), but with

B =
1

1− β̄η
εH∆ =

1

1− (1+g∆)(1−δ∆)
1+r∆

εH∆ =
1 + r∆

r + δ − g + δg∆
εH

C =
1

1− β̄
(1− σ)

(
β̄η

1− β̄η
εH∆

) 1
1−σ

NI∆ =
1 + r∆

r − g
(1− σ)

[
(1 + g∆) (1− δ∆)

r + δ − g + gδ∆
εH

] 1
1−σ

NI .

The decision rule for the effort rate is h (yt) = σ
(
β̄ηB

) 1
1−σ yt and the implied aggregate invest-

ment rate is ft [h (yt)]NI =
(
β̄ηB

) σ
1−σ , or explicitly,

h (yt) = σ

[
(1 + g∆) (1− δ∆)

r − g + δ + gδ∆
εH

] 1
1−σ

yt

ft [h (yt)]NI =

[
(1 + g∆) (1− δ∆)

r − g + δ + gδ∆
εH

] σ
1−σ

NI .

Hence,

W̄ ∗ (Ast , yt) =

{
1 + r∆

r + δ − g + δg∆
εHA

s
t +

1 + r∆

r − g
(1− σ)

[
(1 + g∆) (1− δ∆)

r + δ − g + gδ∆
εH

] 1
1−σ

NI

}
yt.

Take the limit as ∆→ 0 and let W∗ (Ast , yt) = lim∆→0 W̄
∗ (Ast , yt) to arrive at (96).

Proof of Proposition 11. From Proposition 2, we know that ε∗ = ε∗∗ → εH , and ϕ→ εH as

ι→ 0.

D.11 Equilibrium welfare

The following result characterizes equilibrium welfare for the economy with exogenous capital.

Lemma 27 Consider the limiting economy as ∆ → 0 with exogenous capital. Along the path

of the recursive equilibrium, we have:

(i) If the equilibrium is nonmonetary, the welfare function is

Vn (yt) =
ϕn1
r − g

Asyt (187)

with

ϕn1 ≡ ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG (ε)

]
.
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(ii) If the equilibrium is monetary, the welfare function is

Vm (Z, yt) =
1

r − g

(
uz1
Z
ϕ

+ ε̄+ us1

)
Asyt, (188)

where

uz1 ≡ α
∫ εH

ε∗
(ε− ε∗) dG(ε) + (1− α)

[
ε∗∗ − ε∗ +

1

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
us1 ≡ α

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α)

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λ

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

Proof. (i) Consider an economy with no money. From (112), the beginning-of-period

expected discounted utility of an investor along a recursive equilibrium where he holds as

equity shares at the beginning of every period is∫
Vt (as, ε) dG (ε) =

{
ε̄+ (1− α) θ

[
εn + φn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)− (ε̄− εn)

]}
asyt

+ βEt
∫
Vt+1 (as, ε) dG(ε).

Notice we can write
∫
Vt (as, ε) dG (ε) = V̄ (as) yt, where V̄ (as) is given by

(
1− β̄

)
V̄ (as) =

{
ε̄+ (1− α) θ

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
as. (189)

Since there are NI investors, along a recursive equilibrium path each investor is holding as =

As/NI , and the sum of expected utility across all investors is NI V̄ (As/NI) yt = V̄ (As) yt.

The expected discounted utility of a broker at the beginning of a period is given by (111),

i.e.,

V B
t = αB

∫
kt (ast , ε) dHt (ast , ε) + βEtV B

t+1. (190)

Since there are NB bond brokers, the sum of expected utility across all bond brokers is

NBV
B
t = αBNB

∫
kt (ast , ε) dHt (ast , ε) + βEtNBV

B
t+1

= (1− α)NI

∫
kt (ast , ε) dHt (ast , ε) + βEtNBV

B
t+1.
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From (12), NI

∫
kt (ast , ε) dHt (ast , ε) = Ξ̄ (As) yt, where

Ξ̄ (As) ≡ (1− θ)
[∫ εn

εL

(εn − ε) dG (ε) +
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]
As. (191)

Hence, we can write NBV
B
t = V̄ B (As) yt and therefore (190) implies(

1− β̄
)
V̄ B (As) = (1− α) Ξ̄ (As) . (192)

Along a RNE path, total welfare can be written as Vt =
∑

k∈{B,I} V̄
k (As) yt (equity brokers

earn no fees so their utility is zero and they contribute nothing to welfare). Combine (189) and

(192) to obtain

Vt =
1

1− β̄

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε) +
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
Asyt.

In the discrete-time economy with time-period of length ∆, the expression for Vt generalizes to

Vt =
1 + r∆

(r − g) ∆

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε)

+
λΦn (∆)

εn + (1− λ) Φn (∆)

∫ εH

εn
(ε− εn) dG (ε)

]}
Asyt∆.

Take the limit as ∆→ 0 and let Vn (yt) ≡ lim∆→0 Vt to arrive at (187).

(ii) Consider a monetary economy. From (109), the beginning-of-period expected welfare

of an investor along a recursive equilibrium where he holds portfolio (amt , a
s) at the beginning

of every period is ∫
V I
t (amt , a

s, ε) dG (ε) = v̄mIta
m
t + v̄sIta

s + W̄ I
t , (193)

where W̄ I
t is given by (100), and v̄mIt and v̄sIt are defined in Lemma 5 and can be written as

v̄mIt = v̄z
1

pt
yt

v̄sIt = v̄syt,

113



where

v̄z ≡ ε∗ + φs + (1− α) θ (ε∗∗ − ε∗)

+ [α+ (1− α) (1− θ)]
∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
ε∗∗ + φs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε) (194)

v̄s ≡ ε̄+ φs + [α+ (1− α) (1− θ)]
∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α) θ

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λφs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
. (195)

Along the path of a recursive equilibrium an individual investor is holding portfolio (amt+1, a
s) =(

Amt+1/NI , A
s/NI

)
at the end of period t (and at the beginning of period t+ 1). Therefore,

W̄ I
t = Tt − φmt

Amt+1

NI
− φst

As

NI
+ βEt

∫
V I
t+1

(
Amt+1/NI , A

s/NI , ε
)
dG(ε). (196)

Substitute (196) into (193), and use the government budget constraint, NITt = φmt
(
Amt+1 −Amt

)
,

to get the sum of expected utility across all investors

NI

∫
V I
t (Amt /NI , A

s/NI , ε) dG (ε) = v̄z
1

pt
Amt yt + v̄sytA

s − φmt Amt − φstAs

+ βEtNI

∫
V I
t+1

(
Amt+1/NI , A

s/NI , ε
)
dG(ε).

Then, since in a recursive equilibrium, pt =
(ε∗+φs)Amt

ZAs and φmt A
m
t = ZAsyt, we have

NI

∫
V I
t (Amt /NI , A

s/NI , ε) dG (ε) =

(
v̄z

ε∗ + φs
− 1

)
ZAsyt + (v̄s − φs)Asyt

+ βEtNI

∫
V I
t+1

(
Amt+1/NI , A

s/NI , ε
)
dG(ε).

Hence, we can write NI

∫
V I
t (Amt /NI , A

s/NI , ε) dG (ε) = V̄ I (Z,As) yt, and therefore

V̄ I (Z,As) =

(
v̄z − ε∗ − φs

ε∗ + φs
Z + v̄s − φs

)
As + β̄V̄ I (Z,As)

so (
1− β̄

)
V̄ I (Z,As) =

(
uz

ε∗ + φs
Z + ε̄+ us

)
As, (197)
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where

uz ≡ v̄z − (ε∗ + φs) (198)

us ≡ v̄s − (ε̄+ φs) , (199)

with v̄z and v̄s given by (194) and (195).

The expected welfare of a broker at the beginning of a period is given by (108), i.e.,

V B
t = αB

∫
kt (at, ε) dHt (at, ε) + βEtV B

t+1. (200)

Since there are NB bond brokers, the sum of expected utility across all bond brokers is

NBV
B
t = αBNB

∫
kt (at, ε) dHt (at, ε) + βEtNBV

B
t+1

= (1− α)NI

∫
kt (at, ε) dHt (at, ε) + βEtNBV

B
t+1.

From (22),

NI

∫
kt (at, ε) dHt (at, ε) = (1− θ)

[
pt

pt − λqtφst

∫ εH

ε∗∗t

(ε− ε∗∗t ) dG (ε)

+ (ε∗∗t − ε∗t )−
∫ εH

ε∗t

(ε− ε∗t ) dG (ε)

]
1

pt
(Amt + ptA

s) yt.

In a recursive equilibrium, NI

∫
kt (at, ε) dHt (at, ε) = Ξ̄ (Z,As) yt, where

Ξ̄ (Z,As) = (1− θ)

[
ε∗∗ + φs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

+ (ε∗∗ − ε∗)−
∫ εH

ε∗
(ε− ε∗) dG (ε)

](
Z

ε∗ + φs
+ 1

)
As. (201)

Hence, we can write NBV
B
t = V̄ B (Z,As) yt and therefore (200) implies(

1− β̄
)
V̄ B (Z,As) = (1− α) Ξ̄ (Z,As) . (202)

Notice that (201) can be used to write (198) and (199) as

uz =

∫ εH

ε∗
(ε− ε∗) dG(ε) + (1− α) θ

Ξ̄ (Z,As)

(1− θ)
(

Z
ε∗+φs +As

) (203)

us =

∫ ε∗

εL

(ε∗ − ε) dG (ε) + (1− α) θ
Ξ̄ (Z,As)

(1− θ)
(

Z
ε∗+φs +As

) . (204)
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Along a RNE, total welfare is Vt =
∑

k∈{B,I} V̄
k (Z,As) yt. With (197) and (202), we obtain

Vt =
1

1− β̄

[(
uz

ε∗ + φs
Z + ε̄+ us

)
As + (1− α) Ξ̄ (Z,As)

]
yt

and substituting (201), (203) and (204), we arrive at

Vt =
1

1− β̄

(
ũz1

Z

ε∗ + φs
+ ε̄+ ũs1

)
Asyt

with

ũz1 ≡ α
∫ εH

ε∗
(ε− ε∗) dG(ε) + (1− α)

[
ε∗∗ − ε∗ +

ε∗∗ + φs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
ũs1 ≡ α

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λφs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

For the discrete-time formulation with time-period of length ∆, the expression for Vt generalizes

to

Vt =
1 + r∆

(r − g) ∆

[
ũz1 (∆)

Z (∆)

ε∗ + Ξ̄s (∆)
+ ε̄+ ũs1 (∆)

]
Asyt∆

with

ũz1 (∆) ≡ α
∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α)

[
ε∗∗ − ε∗ +

ε∗∗ + Φs (∆)

ε∗∗ + (1− λ) Φs (∆)

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
ũs1 (∆) ≡ α

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λΦs (∆)

ε∗∗ + (1− λ) Φs (∆)

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

Take the limit as ∆→ 0 and let Vm (Z, yt) ≡ lim∆→0 Vt to arrive at (188).

The following result characterizes equilibrium welfare for the economy with capital accu-

mulation with production technology given by (69).

Lemma 28 Consider the limiting economy (as ∆ → 0) with capital accumulation. Along the

path of the recursive equilibrium:
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(i) If the equilibrium is nonmonetary, the welfare function is

Vn (Ast , yt) =

[
ϕn1
ρ
Ast +

1

r − g

(
ϕn1
ϕn
− σ

)(
ϕn

ρ

) 1
1−σ

NI

]
yt (205)

with ϕn1 as defined in part (i) of Lemma 27.

(ii) If the equilibrium is monetary, the welfare function is

Vm (Z, Ast , yt) =
1

r − g

{(
uz1
ρ

Z
ϕ

+
ϕ1

ρ

)[
(r − g)Ast +

(
ϕ

ρ

) σ
1−σ

NI

]

−σ
(
ϕ

ρ

) 1
1−σ

NI

}
yt (206)

with ϕ1 ≡ ε̄+ us1 and uz1 and us1 as defined in part (ii) of Lemma 27.

Proof. (i) Consider an economy with no money. From (112), the sum of expected dis-

counted utility across all investors at the beginning of period t along a recursive equilibrium

where each investor holds Ast/NI equity shares, is

NI

∫
V I
t (Ast/NI , ε) dG (ε) = NI

{
ε̄+ φn + (1− α) θ

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
Ast
NI

yt +NIW̄
I
t ,

where

W̄ I
t ≡ max

h2t∈R+

[φnytft (h2t)− h2t]

+ max
ãst+1∈R+

[
−φnytãst+1 + βEt

∫
V I
t+1

(
ηãst+1, ε

)
dG(ε)

]
.

Along a RNE path with φst = φnyt, we have h2t = gt (φnt ) = σ (φn)
1

1−σ yt, ft (h2t) = xt (φnt ) =

(φn)
σ

1−σ , ãst+1 = (Ast +Xt) /NI , and Xt = NIxt (φnt ), as described in Section A.1 (where as in

Section 3), so

W̄ I
t ≡ −

[
σ (φn)

1
1−σ + φn

Ast
NI

]
yt + βEt

∫
V I
t+1

[
η
(
Ast/NI + (φn)

σ
1−σ
)
, ε
]
dG(ε).

Also, along a recursive equilibrium where each investor holds Ast/NI equity shares at the begin-

ning of each period t, the sum of expected utility across all bond brokers in any given period is

117



NBα
BΞ̄ (Ast/NI) yt = NI (1− α) Ξ̄ (Ast/NI) yt, with Ξ̄ (·) as defined in (191). Hence in a RNE,

total welfare (the sum of expected utility across all investors and bond brokers), V (Ast , yt),

satisfies the following recursion

V (Ast , yt) = NI

{
ε̄+ φn + (1− α) θ

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
Ast
NI

yt

+NI (1− α) Ξ̄ (Ast/NI) yt −
[
σ (φn)

1
1−σ + φn

Ast
NI

]
NIyt

+ βEtV
[
η
(
Ast + (φn)

σ
1−σ NI

)
, yt+1

]
.

Substitute the expression for Ξ̄ (Ast/NI) yt to obtain

V (Ast , yt) =

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
Astyt

− σ (φn)
1

1−σ NIyt + βEtV
[
η
(
Ast + (φn)

σ
1−σ NI

)
, yt+1

]
. (207)

It is easy to show V (Ast , yt) = (BAst + C) yt, where

(
1− β̄η

)
B = ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε) +
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]
(
1− β̄

)
C =

{
β̄η

1− β̄η

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
(φn)

σ
1−σ − σ (φn)

1
1−σ

}
NI .
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Hence,

(
1− β̄

)
V (Ast , yt) =

1− β̄
1− β̄η

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
Astyt

+

{
β̄η

1− β̄η

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε)

+
λφn

εn + (1− λ)φn

∫ εH

εn
(ε− εn) dG (ε)

]}
(φn)

σ
1−σ − σ (φn)

1
1−σ

}
ytNI .

In the economy where the period length is ∆, the recursion (207) generalizes to

V (Ast , yt) =

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε)

+
λΦn (∆)

εn + (1− λ) Φn (∆)

∫ εH

εn
(ε− εn) dG (ε)

]}
Astyt∆

− σ (Φn (∆) ∆)
1

1−σ NIyt∆ + βEtV
[
η
(
Ast + (Φn (∆) ∆)

σ
1−σ NI∆

)
, yt+∆

]
,

where σ (Φn (∆) ∆)
1

1−σ yt is the individual effort rate devoted to investment, and (Φn (∆) ∆)
σ

1−σ

is the individual investment rate. It is easy to show that the value function for this problem is

V (Ast , yt) = [B (∆)Ast + C (∆)] yt (proportional to the dividend rate, yt), with

B (∆) =
∆

1− β̄η

{
ε̄+ (1− α)

[∫ εn

εL

(εn − ε) dG (ε) +
λΦn (∆)

εn + (1− λ) Φn (∆)

∫ εH

εn
(ε− εn) dG (ε)

]}
C (∆) =

∆

1− β̄

[
β̄ηB (Φn (∆) ∆)

σ
1−σ − σ (Φn (∆) ∆)

1
1−σ
]
NI .

Notice that

lim
∆→0

B (∆) =
ϕn1
ρ

lim
∆→0

C (∆) =
1

r − g

(
ϕn1
ϕn
− σ

)(
ϕn

ρ

) 1
1−σ

NI .

Hence, the limiting expression V (Ast , yt) ≡ lim∆→0 V (Ast , yt) is as in (205).

(ii) Consider a monetary economy. From (109), the sum of expected discounted utility across

all investors at the beginning of period t along a recursive equilibrium where each investor holds
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Amt /NI dollars and Ast/NI equity shares, is

NI

∫
V I
t

(
Amt
NI

,
Ast
NI

, ε

)
dG (ε) = NI

(
v̄z

1

pt
yt
Amt
NI

+ v̄syt
Ast
NI

)
+NIW̄

I
t , (208)

where v̄z and v̄s are given in (194) and (195), and

W̄ I
t ≡ Tt + max

h2t∈R+

[φstft (h2t)− h2t]

+ max
ãt+1∈R2

+

[
−φtãt+1 + βEt

∫
V I
t+1 (at+1, ε) dG(ε)

]
.

Along a RME path, we have φmt A
m
t = ZAstyt, φ

s
t = φsyt, h2t = gt (φst ) = σ (φs)

1
1−σ yt, ft (h2t) =

xt (φst ) = (φs)
σ

1−σ , ãmt+1 = Amt+1/NI , ã
s
t+1 = (Ast +Xt) /NI , and Xt = NIxt (φst ), as described in

Section A.1. Also, the government budget constraint is NITt = φmt
(
Amt+1 −Amt

)
. Hence,

W̄ I
t ≡ −

[
σ (φs)

1
1−σ +

(Z + φs)Ast
NI

]
yt

+ βEt
∫
V I
t+1

[
Amt+1/NI , η

(
Ast/NI + (φs)

σ
1−σ
)
, ε
]
dG(ε). (209)

Substitute (209) into (208) and use the fact that pt =
(ε∗+φs)Amt

ZAst
to get

NI

∫
V I
t

(
Amt
NI

,
Ast
NI

, ε

)
dG (ε) =

(
v̄z − ε∗ − φs

ε∗ + φs
Z + v̄s − φs

)
Astyt − σ (φs)

1
1−σ NIyt

+ βEtNI

∫
V I
t+1

[
Amt+1

NI
, η

(
Ast
NI

+ (φs)
σ

1−σ

)
, ε

]
dG(ε).

Also, along a recursive equilibrium where each investor holds portfolio (Amt /NI , A
s
t/NI) at

the beginning of each period t, the sum of expected utility across all bond brokers in any

given period is NBα
BΞ̄ (ZAst/NI , A

s
t/NI) yt = NI (1− α) Ξ̄ (ZAst/NI , A

s
t/NI) yt, with Ξ̄ (·, ·) as

defined in (201). Hence in a RME, total welfare (the sum of expected utility across all investors

and bond brokers), denoted V (ZAst , A
s
t , yt), satisfies the following recursion

V (ZAst , A
s
t , yt) =

(
v̄z − ε∗ − φs

ε∗ + φs
Z + v̄s − φs

)
Astyt

+NI (1− α) Ξ̄ (ZAst/NI , A
s
t/NI) yt − σ (φs)

1
1−σ NIyt

+ βEtV
[
Zη
(
Ast + (φs)

σ
1−σ NI

)
, η
(
Ast + (φs)

σ
1−σ NI

)
, yt+1

]
.

Substitute the expression for Ξ̄ (ZAst/NI , A
s
t/NI) to obtain

V (ZAst , A
s
t , yt) =

(
v̄z1 − ε∗ − φs

ε∗ + φs
Z + v̄s1 − φs

)
Astyt

− σ (φs)
1

1−σ NIyt + βEtV
[
Zη
(
Ast + (φs)

σ
1−σ NI

)
, η
(
Ast + (φs)

σ
1−σ NI

)
, yt+1

]
,
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where

v̄z1 ≡ ε∗ + φs + α

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α)

[
ε∗∗ − ε∗ +

ε∗∗ + φs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
v̄s1 ≡ ε̄+ φs + α

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λφs

ε∗∗ + (1− λ)φs

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

It is easy to show V (ZAst , A
s
t , yt) = (BAst + C) yt, where

(
1− β̄η

)
B =

v̄z1 − ε∗ − φs

ε∗ + φs
Z + v̄s1 − φs(

1− β̄
)
C =

β̄η

1− β̄η

[
v̄z1 − ε∗ − φs

ε∗ + φs
Z + v̄s1 − φs

]
(φs)

σ
1−σ NI − σ (φs)

1
1−σ NI .

Hence,

(
1− β̄

)
V (ZAst , A

s
t , yt) =

1− β̄
1− β̄η

[
v̄z1 − ε∗ − φs

ε∗ + φs
Z + v̄s1 − φs

]
Astyt

+
β̄η

1− β̄η

[
v̄z1 − ε∗ − φs

ε∗ + φs
Z + v̄s1 − φs

]
(φs)

σ
1−σ NIyt

− σ (φs)
1

1−σ NIyt.

In the discrete-time economy where the period length is ∆, this value function generalizes to

(r − g) ∆

1 + r∆
V (Z (∆) ∆Ast , A

s
t , yt)

=

{[
v̄z1 (∆)− ε∗ − Φs (∆)

ε∗ + Φs (∆)
Z (∆) + v̄s1 (∆)− Φs (∆)

]
yt∆

}{ (r−g)∆
1+r∆

r+δ−g+gδ∆
1+r∆ ∆

Ast

+
(1 + g∆) (1− δ∆)

(r + δ − g + gδ∆) ∆
[Φs (∆) ∆]

σ
1−σ ∆NI

}
− σ [Φs (∆) ∆]

1
1−σ NIyt∆,
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with

v̄z1 (∆) ≡ ε∗ + Φs (∆) + α

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α)

[
ε∗∗ − ε∗ +

ε∗∗ + Φs (∆)

ε∗∗ + (1− λ) Φs (∆)

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]
v̄s1 (∆) ≡ ε̄+ Φs (∆) + α

∫ ε∗

εL

(ε∗ − ε) dG (ε)

+ (1− α)

[∫ ε∗∗

εL

(ε∗∗ − ε) dG (ε) +
λΦs (∆)

ε∗∗ + (1− λ) Φs (∆)

∫ εH

ε∗∗
(ε− ε∗∗) dG (ε)

]
.

As usual, σ (Φs (∆) ∆)
1

1−σ yt is the individual effort rate devoted to investment (so the effort

accumulated over a period of length ∆ is σ (Φs (∆) ∆)
1

1−σ yt∆), and (Φs (∆) ∆)
σ

1−σ is the in-

dividual investment rate (so (Φs (∆) ∆)
σ

1−σ ∆ is the investment accumulated over a period of

length ∆). Notice that lim∆→0 [v̄z1 (∆)− ε∗ − Φs (∆)] = uz1, lim∆→0 [v̄s1 (∆)− Φs (∆)] = ϕ1

(with uz1 and ϕ1 as defined in part (ii) of Lemma 27), and lim∆→0
Z(∆)

ε∗+Φs(∆) = Z
ϕ , so taking the

limit as ∆→ 0 and letting V (Z, Ast , yt) ≡ lim∆→0 V (Z (∆) ∆Ast , A
s
t , yt), we arrive at (206).

Proof of Corollary 1. The fact that Vn (yt) ≤ Vm (Z, yt), with “=” only if ι = ῑ (λ) is

immediate from part (i) of Proposition 3 and the fact that 0 ≤ Z. To show Vm (Z, yt) ≤ W∗ (yt),

use (84) to rewrite Vm (Z, yt) as follows

Vm (Z, yt) =
1

r − g

[
ε∗ +

(
1 +
Z
ϕ

)
uz1

]
Asyt.

Then substitute (82) to get

r − g
Asyt

Vm (Z, yt) = ε∗ +

(
1 +
Z
ϕ

){
α

∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α)

[
ε∗∗ − ε∗ +

1

1− λ

∫ εH

ε∗∗
(ε− ε∗∗) dG(ε)

]}
.

Next we consider two cases. Case 1: If ι̂ (λ) < ι < ῑ (λ), then Z/ϕ is given by (37), and ε∗∗ = εn,
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and therefore

r − g
Asyt

Vm (Z, yt) = ε̄+

{
α

[1−G (ε∗)]α+ 1− α

∫ εH

ε∗
(ε− ε̄) dG(ε)

+
1− α

[1−G (ε∗)]α+ 1− α

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]}

≤ ε̄+

{
[1−G (ε∗)]α

[1−G (ε∗)]α+ 1− α
(εH − ε̄)

+
1− α

[1−G (ε∗)]α+ 1− α

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]}
< εH =

r − g
Asyt

W∗ (yt) .

The last inequality follows from (134) and (135) that imply∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε) < εH − ε̄. (210)

Case 2: If 0 < ι ≤ ι̂ (λ), then Z/ϕ is given by the expression in part (ii) of Proposition 2, and

ε∗ = ε∗∗, and therefore

r − g
Asyt

Vm (Z, yt) = ε∗ +
1

1−G (ε∗)

∫ εH

ε∗
(ε− ε∗) dG(ε)

≤ ε∗ +
1

1−G (ε∗)

∫ εH

ε∗
(εH − ε∗) dG(ε)

= εH =
r − g
Asyt

W∗ (yt) ,

where the inequality is strict unless ι = 0 (which implies ε∗ = εH).

Proof of Corollary 3. First, note that

(r − g) [Vm (Z, Ast , yt)− Vn (Ast , yt)]
1

yt
=
r − g
ρ

(
uz1
Z
ϕ

+ ϕ1 − ϕn1
)
Ast

+

(
uz1
Z
ϕ + ϕ1

ϕ
− σ

)(
ϕ

ρ

) 1
1−σ

NI

−
(
ϕn1
ϕn
− σ

)(
ϕn

ρ

) 1
1−σ

NI . (211)

The first term is strictly positive unless ι = ῑ (λ) (because ϕn1 ≤ ϕ1 by Proposition 3, and 0 ≤ Z,

and both inequalities are strict unless ι = ῑ (λ)). Hence, to show Vn (Ast , yt) ≤ Vm (Z, Ast , yt),

123



it is sufficient to show that the sum of the last two terms in (211) is nonnegative (and positive

unless ι = ῑ (λ) and θ = 1). Define

Ω (x, y) ≡
(y
x
− σ

)(x
ρ

) 1
1−σ

.

Notice

∂

∂y
Ω (x, y) =

1

x

(
x

ρ

) 1
1−σ

> 0 (212)

∂

∂x
Ω (x, y) =

(y
x
− 1
) 1

ρ

σ

1− σ

(y
x

) σ
1−σ

> 0 if and only if x < y. (213)

Then (
uz1
Z
ϕ + ϕ1

ϕ
− σ

)(
ϕ

ρ

) 1
1−σ
−
(
ϕn1
ϕn
− σ

)(
ϕn

ρ

) 1
1−σ
≥ Ω (ϕ,ϕ1)− Ω (ϕn, ϕn1 )

≥ Ω (ϕ,ϕ1)− Ω (ϕn, ϕ1)

≥ Ω (ϕn, ϕ1)− Ω (ϕn, ϕ1) = 0.

The second inequality follows from (212) and the fact that ϕn1 ≤ ϕ1. The third inequality

follows from (213) and the fact that ϕn ≤ ϕ ≤ ϕ1. Thus, Vn (Ast , yt) ≤ Vm (Z, Ast , yt), with

equality only if ι = ῑ (λ) and θ = 1 (since in this case, Z = 0 and ϕ = ϕ1 = ϕn = ϕn1 ).

To show that Vm (Z, Ast , yt) ≤ W∗ (Ast , yt), proceed as follows. From (96) and (98),

(r − g) [Vm (Z, Ast , yt)−W∗ (Ast , yt)]
1

yt

=
r − g
ρ

(
uz1
Z
ϕ

+ ϕ1 − εH
)
Ast

+

[(
uz1
Z
ϕ + ϕ1

ϕ
− σ

)(
ϕ

ρ

) 1
1−σ

NI − (1− σ)

(
εH
ρ

) 1
1−σ

NI

]
. (214)

We first show the first term in (214) is nonpositive (strictly negative unless ι = 0). To this

end, we consider two cases in turn. First, if ι̂ (λ) < ι < ῑ (λ), then Z/ϕ is given by (37), and
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ε∗∗ = εn, and therefore

uz1
Z
ϕ

+ ϕ1 = ε̄+

{
α

[1−G (ε∗)]α+ 1− α

∫ εH

ε∗
(ε− ε̄) dG(ε)

+
1− α

[1−G (ε∗)]α+ 1− α

[∫ εn

εL

(εn − ε) dG (ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]}

≤ ε̄+

{
[1−G (ε∗)]α

[1−G (ε∗)]α+ 1− α
(εH − ε̄)

+
1− α

[1−G (ε∗)]α+ 1− α

[∫ εn

εL

(εn − ε) dG(ε) +
λ

1− λ

∫ εH

εn
(ε− εn) dG(ε)

]}
< εH ,

where the last inequality follows from (134) and (135) that imply (210). Hence, the first term

in (214) is negative if ι̂ (λ) < ι < ῑ (λ). Second, if 0 < ι ≤ ι̂ (λ), then Z/ϕ is given by the

expression in part (ii) of Proposition 2, and ε∗ = ε∗∗, and therefore

uz1
Z
ϕ

+ ϕ1 = ε∗ +
1

1−G (ε∗)

∫ εH

ε∗
(ε− ε∗) dG(ε)

≤ ε∗ +
1

1−G (ε∗)

∫ εH

ε∗
(εH − ε∗) dG(ε) = εH ,

where the inequality is strict unless ι = 0 (which implies ε∗ = εH). Hence, regardless of whether

ι̂ (λ) < ι < ῑ (λ) or 0 < ι ≤ ι̂ (λ), we have uz1
Z
ϕ + ϕ1 ≤ εH (with “=” only if ι = 0), so to show

Vm (Z, Ast , yt) ≤ W∗ (Ast , yt) it is sufficient to show the second term in (214) is nonpositive.

This can be shown as follows(
uz1
Z
ϕ + ϕ1

ϕ
− σ

)(
ϕ

ρ

) 1
1−σ
− (1− σ)

(
εH
ρ

) 1
1−σ

= Ω

(
ϕ, uz1

Z
ϕ

+ ϕ1

)
− Ω (εH , εH)

≤ Ω (ϕ, εH)− Ω (εH , εH)

≤ Ω (εH , εH)− Ω (εH , εH) = 0.

The first inequality follows from (212) and uz1
Z
ϕ +ϕ1 ≤ εH . The second inequality follows from

(213) and ϕ ≤ εH . Thus, Vm (Z, Ast , yt) ≤ W∗ (Ast , yt), with “=” only if ι = 0 (since in this

case uz1
Z
ϕ + ϕ1 = ϕ = εH).

125



D.12 Effects of monetary policy

Proof of Proposition 12. (i) The condition that characterizes ε∗ in part (i) of Proposition

2 can be written as

ϕι = (1− α) θ (εn − ε∗) + [α+ (1− α) (1− θ)]
∫ εH

ε∗
(ε− ε∗) dG(ε)

+ (1− α) θ
1

1− λ

∫ εH

εn
(ε− εn) dG(ε).

Totally differentiate this condition with respect to ι to get

ϕ+ ι
dϕ

dι
= −{(1− α) θ + [α+ (1− α) (1− θ)] [1−G (ε∗)]} dε

∗

dι
. (215)

Totally differentiate (36) with respect to ι to get

dϕ

dι
= [α+ (1− α) (1− θ)]G (ε∗)

dε∗

dι
. (216)

Together, (215) and (216) imply

−dϕ
dι

ι

ϕ
=

ι

ι+ (1−α)θ+[α+(1−α)(1−θ)][1−G(ε∗)]
[α+(1−α)(1−θ)]G(ε∗)

.

(ii) The condition that characterizes ε∗ in part (ii) of Proposition 2 can be written as

ϕι =

[
α+ (1− α)

(
1 + θ

λ

1− λ

)]∫ εH

ε∗
(ε− ε∗) dG(ε).

Totally differentiate this condition to get

ϕ+ ι
dϕ

dι
= −

[
α+ (1− α)

(
1 + θ

λ

1− λ

)]
[1−G (ε∗)]

dε∗

dι
. (217)

Totally differentiate the expression for ϕ in part (ii) of Proposition 2 to get

dϕ

dι
=

{
G (ε∗)− (1− α) θ

λ

1− λ
[1−G (ε∗)]

}
dε∗

dι
. (218)

Combine (217) and (218) to get

dϕ

dι

ι

ϕ
= − ι

ι+
[α+(1−α)(1+θ λ

1−λ)][1−G(ε∗)]

G(ε∗)−(1−α)θ λ
1−λ [1−G(ε∗)]

.

This concludes the proof.
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E Quantitative robustness

In this section we assess the robustness of the quantitative results of Section 5 to alternative

calibration strategies. In our baseline, the parameters α, θ, and Σε are calibrated so that,

given the rest of the parametrization, the model is consistent with the following three facts:

(a) the real asset price falls by about 11 basis points in response to a 1 basis point increase

in the nominal policy rate, as in the high-frequency empirical estimates in Lagos and Zhang

(2019b); (b) transaction velocity of money is 25 per day, which is the average daily number of

times a dollar turns over in CHIPS (Clearing House Interbank Payments System); and (c) the

median spread on margin loans is about 2.3%, which is the current spread (over the fed funds

rate) that a typical prime broker charges a large investor. This procedure delivers α = .0406,

θ = .1612, and Σε = 2.0784. Below, we report results for three alternative calibrations that

consider alternative target values for the spread on margin loans and/or velocity.

In the first alternative calibration, denoted (AC1), α, θ, and Σε are calibrated so that, given

the rest of the parametrization, the model is consistent with the following targets: (a) the real

asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal

policy rate; (b) transaction velocity of money is 25 per day; and (c) the median spread on

margin loans is about 1.20%. This procedure delivers α = .0389, θ = .2979, and Σε = 2.3653.

Figure 10 reports S for economies indexed by (α, λ) ∈ [0, 1]×{.50, .75, .90, .99}. The calibration

ensures that S = 11 for α = .0389 and λ = .75. As in the baseline calibration, the response of

the asset price to nominal rate shocks is sizable for a wide range of values of α and λ, and it is

significant even in the pure-credit limiting economy that obtains as α→ 0. Figure 11 reports S
for economies indexed by (α, θ) ∈ [0, 1]×{.10, .30, .70, .99}. The calibration ensures that S = 11

for α = .0389 and θ = .2979. As in the baseline calibration, the response of the asset price to

nominal rate shocks is sizable for a wide range of values of α and θ, and it is significant even

in the pure-credit limiting economy that obtains as α → 0. Figure 12 reports S for economies

indexed by (α, ρp) ∈ [0, 1] × {.03, .04, .0447, .05}. The calibration ensures that S = 11 for

α = .0389 and ρp = .0447. This exercise shows that for every level of α, the asset price response

is significant, and tends to be larger in environments with a lower background nominal policy

rate. Figures 13, 14, and 15 offer a comprehensive summary of the magnitude of the effects

of monetary policy in limiting economies with α → 0. For a wide range of economies indexed

by a pair ρp and λ, Figure 13 reports the value of S in the pure-credit limit that obtains as
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α→ 0. The level sets in the right panel show it is not easy to find reasonable parametrizations

that imply a value of S below 5. Figures 14 and 15 tell a similar story. Figure 14, for example,

shows that, as predicted by the theory, S = 0 in the pure-credit cashless limit of economies

with no credit-market frictions or markups, i.e., economies with λ = θ = 1. In contrast, S is

positive and sizable in the pure-credit cashless limit of economies with θ < 1, even if 1 − θ is

relatively small.

In the second alternative calibration, denoted (AC2), α, θ, and Σε are calibrated so that,

given the rest of the parametrization, the model is consistent with the following targets: (a) the

real asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal

policy rate; (b) transaction velocity of money is about 6 per day; and (c) the median spread

on margin loans is about 25 basis points. This procedure delivers α = .0966, θ = .8337, and

Σε = 2.6429. Figure 16 reports S for economies indexed by (α, λ) ∈ [0, 1] × {.50, .75, .90, .99}.
The calibration ensures that S = 11 for α = .0966 and λ = .75. As in the baseline calibration,

the response of the asset price to nominal rate shocks is sizable for a wide range of values of

α and λ, and it is significant even in the pure-credit limiting economy that obtains as α → 0.

Figure 17 reports S for economies indexed by (α, θ) ∈ [0, 1]×{.10, .25, .83, .99}. The calibration

ensures that S = 11 for α = .0966 and θ = .8337. As in the baseline calibration, the response

of the asset price to nominal rate shocks is sizable for a wide range of values of α and θ, and it

is significant even in the pure-credit limiting economy that obtains as α→ 0. Figure 18 reports

S for economies indexed by (α, ρp) ∈ [0, 1]× {.03, .04, .0447, .05}. The calibration ensures that

S = 11 for α = .0966 and ρp = .0447. This exercise shows that for every level of α, the asset

price response is significant, and tends to be larger in environments with a lower background

nominal policy rate. Figures 19, 20, and 21 offer a comprehensive summary of the magnitude of

the effects of monetary policy in limiting economies with α→ 0. For a wide range of economies

indexed by a pair ρp and λ, Figure 19 reports the value of S in the pure-credit limit that

obtains as α → 0. The level sets in the right panel show it is not easy to find reasonable

parametrizations that imply a value of S below 5. Figures 20 and 21 tell a similar story. Figure

20, for example, shows that, as predicted by the theory, S = 0 in the pure-credit cashless limit

of economies with no credit-market frictions or markups, i.e., economies with λ = θ = 1. In

contrast, S is positive and sizable in the pure-credit cashless limit of economies with θ < 1,

even if 1− θ is relatively small.

In the third alternative calibration, denoted (AC3), we set α = 0, and λ, θ, and Σε are
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calibrated so that, given the rest of the parametrization, the model is consistent with: (a) the

real asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal

policy rate; (b) transaction velocity of money is about 25 per day; and (c) the median spread

on margin loans is about 25 basis points. This procedure delivers λ = .9159, θ = .8080, and

Σε = 3.0886. Figure 22 reports S for economies indexed by (α, λ) ∈ [0, 1] × {.50, .75, .90, .99}.
The calibration ensures that S = 11 for α = 0 and λ = .9159. As in the baseline calibration,

the response of the asset price to nominal rate shocks is sizable for a wide range of values of

α and λ, and it is significant even in the pure-credit limiting economy that obtains as α → 0.

Figure 23 reports S for economies indexed by (α, θ) ∈ [0, 1]×{.10, .25, .80, .99}. The calibration

ensures that S = 11 for α = 0 and θ = .8080. As in the baseline calibration, the response of

the asset price to nominal rate shocks is sizable for a wide range of values of α and θ, and it is

significant even in the pure-credit limiting economy that obtains as α → 0. Figure 24 reports

S for economies indexed by (α, ρp) ∈ [0, 1]× {.03, .04, .0447, .05}. The calibration ensures that

S = 11 for α = 0 and ρp = .0447. This exercise shows that for every level of α, the asset price

response is significant, and tends to be larger in environments with a lower background nominal

policy rate. Figures 25, 26, and 27 offer a comprehensive summary of the magnitude of the

effects of monetary policy in limiting economies with α → 0. For a wide range of economies

indexed by a pair ρp and λ, Figure 25 reports the value of S in the pure-credit limit that

obtains as α → 0. The level sets in the right panel show it is not easy to find reasonable

parametrizations that imply a value of S below 5. Figures 26 and 27 tell a similar story. Figure

26, for example, shows that, as predicted by the theory, S = 0 in the pure-credit cashless limit

of economies with no credit-market frictions or markups, i.e., economies with λ = θ = 1. In

contrast, S is positive and sizable in the pure-credit cashless limit of economies with θ < 1,

even if 1− θ is relatively small.
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