A Extensions

In this section we consider two extensions of the baseline model. The first generalizes the
model to allow for capital accumulation. This extension allows us to explore the transmission
of monetary policy to asset prices, and in turn, the transmission from asset prices to the real
economy. The second extension verifies the robustness of the cashless limiting results under
an alternative credit arrangement where, rather than having to use the asset as collateral,
investors are able to issue unsecured debt up to a given limit. As with the baseline model, we
formulate these extensions in discrete time, and consider the continuous-time approximation to

characterize equilibrium.

A.1 Capital accumulation

In the baseline model, the number of production units, A%, is exogenous and constant. This
means that monetary policy and the details of the OTC market structure affect asset prices
but do not affect conventional measures of real economic activity, such as aggregate output or
investment. In this section we endogenize the productive capacity of the economy by letting
agents invest to augment the stock of productive units.

The model is as in Section [2 with the following change. We regard the productive units
that yield the dividend good as a capital stock that can be accumulated. Specifically, in the
second subperiod of period ¢, investors have access to a production technology that transforms
n € R4 units of the general good into z units of capital according to z = f;(n), where
the production function f; is strictly increasing, twice differentiable, concave, and satisfies
fi(0) = lim, 00 f{ (n) = 0, and f/(0) = oo. Thus, the value of an investor in the second
subperiod is

Wilaral k)=  max [ct — b BE1 [ Vi (e, ) 4G

(ct,hit,hat,@e,@11) RS

s.b. ¢+ @y@iy1 < hiy + dpay + al — ki + ¢z + T,

with a1 = (@} 1,1a7, 1), ht = h1g + hat, and xy = f; (hat), where hy is the labor input (effort)
devoted to production of general goods (equal to the quantity of general goods produced), hiy

is the quantity of general goods used for consumption, and hsg; is the quantity of general goods
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used as input to produce new capital, x;. This problem can be written as

Wi(ay, G?7 ki) = ¢prar + CL? — ke + T

+ _max [—¢t&t+1 +5Et/Vt+1 (at+1,€) dG(e)

= 2
at-‘-1€]R+

S fr (hot) — hoyl .
+ hglgﬁi (05 fi (hat) — ha]

This value function is the same as , except for the addition of the last term that represents
the investor’s profit from producing and selling new capital at the market price ¢;. The optimal
quantity of general goods that the investor devotes to the production of capital goods, i.e., the
hot that satisfies ¢f f/ (hot) = 1, is denoted g; (¢7), i.e.,

gt (0F) = f7H (1)) (62)

The quantity of new capital created by an individual investor is z: (¢f) = fi (g:(¢7)). We
can regard z; (¢;) as an individual investor’s contribution to aggregate investment; aggregate

capital investment is
X1 (¢F) = a1 (¢F) Ni. (63)

The assumptions on f imply aggregate investment is increasing in the market price of the equity

shares of capital, i.e.,

(g (69))
CARACACH)

The law of motion of the aggregate capital stock is

Xt (7)) = - Nr > 0.

Al =n(A7 + X)), (64)

where X; is aggregate investment added to the capital stock at the end of period ¢, and Af € R4
is given@

The definition of equilibrium for the economy with capital accumulation is the same as
Definition |1} but with two additional equilibrium variables, namely {Xt,Af +1}z0, and two
additional equilibrium conditions, namely X; = X, (¢;) and . A RNE is a nonmonetary
equilibrium with the structure described in Definition 2l A RME is a monetary equilibrium in

which: (7) real equity prices (general goods per equity share) are time-invariant linear functions

38Since agents can now augment the stock of productive units, the beginning-of-period exogenous lump-sum
endowment is no longer needed to offset the depreciation in the aggregate capital stock due to the idiosyncratic
obsolesence shock that affects each individual unit of capital.
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of the aggregate dividend, i.e., ¢{ = d%ys, P& = vy = bty and pi/qe = by = Py for some
®°, ¢, ¢, € Ry; and (ii) real money balances are a constant proportion of aggregate output,
ie., o' A" = Z Ajy, for some Z € Ry . Hence in a RME, ¢} = (pi¢)* — ¢7) i = ¢ —¢° =e*,

= (pt/qt — &7) i = ¢, — ¢* = £**, and nominal prices are

Am
="+ 67) S (65)
Z A
ZA?
o = S (66)
t
>k+ S Am
P A (67)

e** 4 ¢S ZA?yt
For the analysis that follows, we generalize the money supply process of Section [2] to the

following money-growth rule

tr1 At+1 . (68)
AP A}

Notice that just as in the model of Section [2] this monetary policy rule implies the gross inflation
rate (as measured by the growth in the nominal price of equity shares) is constant and equal
to w, i.e., pi41/pr = p. In the special case with A7 = A, reduces to A7}, /A" = p, namely
the money growth process in our baseline model.

In a recursive equilibrium (monetary or nonmonetary), once the asset price ¢° has been
found, aggregate investment is given by X; = X; (¢°y:), and the aggregate capital stock follows
the stochastic difference equation A7 | = n[A7 + X; (¢*ys)]. If the equilibrium is monetary, once
(e*,e™, 0% Z) have been found, the implied equilibrium stochastic processes for the nominal
prices, {pi, ®}",q:}, are given by , , and . Thus, along a RME, (¢*, ™, ¢° Z, x11)
are constant, while nominal prices {p;, ¢;", ¢:} are random variables whose evolutions over time
are driven by the stochastic dividend process {y;}, and possibly also by transitional dynamics@

To streamline the presentation, we assume
ft (n) = wn?, with o € (0,1), and @ = (oy) 7. (69)

Let X; (A) denote aggregate investment in the recursive equilibrium of the discrete-time

economy where the length of the time period is A, and let X; = lima g %Xt (A) (i.e., Ay is the

3%By way of example, notice that if f; = f and y, = y for all ¢, then implies aggregate investment
is constant, i.e., Xi(¢°y) = X (¢°y) for all ¢, and Aj,, converges monotonically to the unique steady state
A% = X (¢°y) from any initial condition Aj. Given the deterministic transmon path A7, 1 =n[Af + X (¢°y)],

the money supply process { A"}, and nominal prices {p:, 7", g+ }, just follow . ., and ( .
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investment rate). Then as A — 0, can be approximated by
A3 =X, — 0A3. (70)
Next, we characterize the RNE and RME for the limiting economy as A — 0.

Proposition 7 Consider the limiting economy (as A — 0) with capital accumulation, and
aec(0,1).

(i) There ezists a unique recursive nonmonetary equilibrium, (", ", X™). Moreover, (", ¢™)
are as described in Proposition aggregate investment rate is X" = ((,O”/p)ﬁ Ny, and the cap-
ital stock follows (@) with X = X",

(i) If 0 < v < T (), there exists a unique recursive monetary equilibrium, (£*,e**, x, ¢, Z, X).

*

Moreover, (e*,e**, x, v, Z) are as described in Pmposz'tion@ aggregate investment rate is X =

(go/p)ﬁ Ny, and the capital stock follows (@ with X = X.

Proposition [7| delivers a link between the asset price, i.e., the relative price of capital in

terms of consumption goods (¢™ in the RNE or ¢ in the RME), and aggregate investment.

A.2 Unsecured credit

In our baseline formulation, we modeled credit in the form of margin loans mainly because
it is the most common form of credit used in financial markets. In this section we verify the
robustness of our main results to an alternative credit arrangement where in the OTC round,
investors are able to issue unsecured debt up to a given limit. The only relevant difference in

the model is that the last constraint in the bargaining problem is replaced by
- B <a, (71)

where B; > 0 is the credit limit faced by an individual agent in the OTC round of period t.
Suppose a broker extends an investor a loan of L dollars in order to purchase A dollars worth
of an asset. Suppose, as will be the case in the model, that the investor chooses to borrow the
maximum amount possible, i.e., L = B;. In this case, the margin is M = 1 — B;/A, leverage is
L =A/(A—- B), and the loan-to-value ratio is R = B;/A.

We focus on recursive equilibria. To this end, let

Bt — A(pt/Qt) A

- (72)
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for some A > 0. In a nonmonetary economy, ¢; = p;/q;, and therefore amounts to assuming
Bt = A

]i\,?s. Formulation corresponds to an economy (monetary or nonmonetary) where
the aggregate real borrowing capacity of investors expressed in terms of general goods, i.e.,
N;By, is a multiple A of the real value (expressed in terms of general goods) of the equity
shares outstanding, (p:/q:) A®.

The structure of the recursive equilibrium is as described in Definition [2] and Definition
We again consider the limiting economy as A — 0, and as before, let ¢ = p¢®, Z = pZ, and

v =P /p. For the following result it is convenient to define

. E—ep+0[ (e"—e)dG (o)
0= E—i—@f;;(s”—e)dG(e)
Jo!! (e =€) dG(e)

ST T (e —0dG ()

where €" € [er,ep] is the unique solution to

A
G(E")=—.
=171
Proposition 8 Consider the limiting economy (as A — 0) with individual borrowing limit
(79), and o € [0,1]. Let

a—0

En
o= lim " — 2 +.9/ (" — &) dG(e).
er

As a— 0,
(i) If@o <t <G, then

Z
— =0
¥

YV — o0

*

oo +1-0) [ (e -2dce),

€L

where £* € (er,€") is the unique solution to

(1—0) [ (e —e*)dG(e) + 0 [(" — e*) G(e") + [ (e — €*) dG(e)]
E+(1-0) 5 (5 —€)dG () + 0 [ (e" =€) dG (e)

£

= L.
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(ii) If 0 < v < &g, then

Z GEH)-[1-G(EM]A

E - 1 -G (%)
G(e")[1 -G (e)]

G(e*)—[1-G (") A

*

<p—>€+/€ (e —e)dG (¢e),

L

V —

where £* € [e", ep) is the unique solution to

JE (e = ) (o)

£

e+ [5 (e —e)dG (e)

Proposition [8 which is analogous to Proposition [6] considers the limiting economy as the
fraction of investors who do not have access to margin loans vanishes.

For the limiting economy as o — 0, Figure [3|illustrates in the space of parameters ¢ (vertical
axis) and A (horizontal axis), the regions where the equilibria described in parts (i) and (i) of
Proposition [8| exist. Notice that g and g are functions of €, which is in turn a function of A,
so to make this dependence explicit, we can write 5 (A) and ¢ (A). The boundaries ¢ = 5o (A)
and ¢ = o (A) define three regionsﬂ First, if the nominal policy rate is very high, i.e., if
So (A) < ¢, then the monetary equilibrium does not exist. Second, if the nominal policy rate is
relatively low, i.e., if 0 < ¢ < o (A) as in part (i) of Proposition |8, then the aggregate money
demand from investors without access to credit vanishes in the limit, but the aggregate money
demand from investors with access to credit who have low valuation remains positive in the
limit, and therefore real balances and velocity converge to positive limits. Third, if the nominal
policy rate is relatively high, i.e., if o (A) < ¢ < 5o (A) as in part (i) of Proposition |8, then real
balances converge to zero and transaction velocity diverges to infinity as o — 0. The economic

rationale for these results is as explained in the context of Proposition [} And again, the key

0Tt is easy to prove that ¢ (A) < Go (A) for all A > 0 (with “=" only if A = 0), and that

s _ ~ . _E—-¢L A _O(eg—eL)+(1—-0)(E—e€r)
A o) =0<c@=00)="2"7< lm o) =", =

where the second inequality is strict unless 6 = 0. Also,
§§2<0§ iG(S)aL 2:%.
€ [E +0 [ (e —e)dG (a)} €

Hence, %S <0< %{).
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result is that even though real balances and velocity converge to their nonmonetary equilibrium
levels as @ — 0, the real equity price in this cashless limit of the monetary economy exceeds
the (corresponding limit of the) nonmonetary-equilibrium price by the value of a resale-option
term. Since €* is a function of ¢, the asset price is still responsive to monetary policy in the
cashless limit, and that the magnitude of this response remains bounded away from zero even

though real balances converge to zero.

B Efficiency and welfare

In this section we pose and solve the planner problems corresponding to the baseline model
with fixed capital of Section [2| and the model with capital accumulation of Section In
both cases we consider a social planner who wishes to maximize the sum of all agents’ expected
discounted utilities subject to the same meeting frictions that individual agents face in the
decentralized formulation. Specifically, in the first subperiod of every period, the planner can
reallocate assets among all investors. We restrict attention to symmetric allocations (identical
agents receive equal treatment). For each of the two economies, we also provide a measure of
welfare along an equilibrium path, based on the (equally weighted) sum of all agents’ expected

discounted utilities at the beginning of a period.

B.1 Endowment economy

Let ¢f and hf denote consumption and production of the homogeneous consumption good in
the second subperiod of period ¢ of an agent of type k € {B, I}. Let @ denote the beginning-of-
period t (before depreciation) equity holding of an individual investor. Let @ denote a measure
on F ([er,en]), the Borel o-field defined on [e,ex]. The measure @ is interpreted as the
distribution of post-OTC-trade asset holdings among investors with different valuations in the
first subperiod of period t.

With this notation, and letting

[e.e]

_J-1 I [k 1k
= {at—‘,—l’ a,[cfs ht]ke{B,I}}t_O )

the planner’s problem for the model with fixed capital is

W* (yo) = maxEo > 5t{ / Yepal @) N+ Y (cF - nf) Nk} (73)
t=0 €L

ke{B,I}
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subject to

a; Ny < A (74)
/ ” al (de) < al (75)
€L
3 (cf - hf) N, <0 (76)
ke{B,I}
af Ny = nai Ny + (1 —n) A°, (77)

and subject to the allocation II being nonnegative (the expectation operator Eq is with re-
spect to the probability measure induced by the dividend process). The following proposition

characterizes the efficient allocation and the maximum value of the planner’s problem.

Proposition 9 Consider the limiting economy (as A — 0) with exogenous capital. The effi-
cient allocation is characterized by al (E) = ]I?Tj]l{eHeE} for all t, where It cgy is an indicator
function that takes the value 1 if ey € E, and 0 otherwise, for any E € F ([er,en]). The
welfare achieved by the planner is

€H
r—g

According to Proposition [9] the optimal allocation is characterized by the following simple

W* (yr) =

Asyt. (78)

property: only those investors with the highest valuation hold equity shares at the end of the
OTC round of trade. In this context, ey can be interpreted as the (flow) shadow value of the
asset for the planner, i.e., it is the analogue of ¢" in Proposition [[Jor ¢ in Proposition 2] Recall
that, ¢" < ¢ < ey (part (i) of Proposition [3).

In Appendix @ (part (i) of Lemma [27), we show that along the path of a RNE of the

limiting continuous-time economy with exogenous capital, welfare is

n

V' () = Ay, (79)

where
en A 52
=+ (1—-a) [/ (" —€)dG () + —— (e—e")dG (e)], (80)
. 1—AJon
and " satisfies . Notice that ¢7 is the stock price in the RNE of an economy with 6 = 1.
In D] (part (ii) of Lemma [27)), we show that along the path of a RME of the limiting

continuous-time economy with exogenous capital, welfare is
1 Z
V(Z,) = — (w22 Ay, 81
(Z,yt) r—g(ul(p+('01> Yt (81)
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where

o = a/EH (e — ) dG(E) + (1 - a) [5** e % H (e — &™) dG(a)] (82)

*

uﬁza/s (e —€)dG (¢)

€L

e** )\ ex
+(—a) / (% — €) dG () + / (e —e™)dG (e))| | (83)
1559 1 - A E**
(e*,e™, p, Z) satisfy the equilibrium conditions in Proposition [2, and
o1 =E+u] =" +uj (84)

is the normalized (i.e., multiplied by p) stock price in the RME of an economy with 6 = 1.
The following result is a corollary of Proposition [2 part (i) of Proposition (3| Proposition |§|,

Proposition , and .

Corollary 1 Consider the limiting economy (as A — 0) with exogenous capital stock. Then
V*(ye) SV (Z,5) < W (0e)

where the first inequality is strict unless © = ©(X), and the second inequality is strict unless

.= 0.

The following result, a corollary of — and Lemma@ describes welfare in the limiting

economy with exogenous capital where all agents have access to credit.

Corollary 2 Consider the limiting economy (as A — 0) with exogenous capital stock, with
a€|0,1] and XA € (0,1]. Asa—0,
(i) If $(0) < ¢ <5 (0), then

lim V™ (2, ) = lim V" (31) = %Asyt.

a—0

where
€l

€TL
# = lim @7{254—/ (€ —e)dG () + —— [ (c—emac(e). (85)
a—0 er 1 - )\ en

(i) If 0 < v << (0), then

m V"™ (y) < Hm V™ (Z,y) = 2l Alyy,
a—0 r—g

a—0
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where

G (%) — A

PI=¢1 + @fm (86)
$1 =&+ (87)
with
~z 1 = *
ulEl—/\/* (e —€%)dG(e) (88)
e* by €H
u; = / (6" —¢e)dG () + T (e —€")dG (¢), (89)
€L e*

and €* satisfies .

Part (i) of Corollary corresponds to the parametrizations characterized in part (i) Propo-
sition[6] for which the limiting economy as a — 0, is cashless. In this case, welfare in the cashless
limit of the monetary economy equals welfare in the nonmonetary equilibrium. Thus, although
monetary policy affects the stock price in the cashless limit (part (i) of Proposition |§[), it does
not affect welfare, which is identical to welfare in an economy with no money. This result is in
part due to the fact that, since the capital stock, A%, is exogenous, changes in the market price
of capital, ¢;, have no effect on the allocation of resources in the cashless limit. This result,

however, is driven by the fact that the capital stock is exogenous in this formulation.

B.2 Economy with capital accumulation

Next, we turn to the efficient allocation for the economy with capital accumulation. As in
Proposition we continue to assume . The notation for the planner’s problem is as before,
except that now we use hi, to denote the quantity of general goods used for consumption, ki, to
denote the quantity of general goods used as input to produce new capital, and htI = h{t + hﬁt
to denote the labor input (effort) devoted to production of general goods (equal to the quantity

of general goods produced). In this case, letting
_yaI I 3l 31 =1 B ; B1®
II = {at+1,ct,hlt,th,at,Xt,Ct 7h‘t }t:07

the planner’s problem is

W™ (Ao, o) =m§xEOZBt{ [ el @y Y (k) Nk} (90)
t=0

€L ke{B,I}
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subject to

aj  N; < Af + X, (91)

a1 Nr = Afyy = 1(A7 + X) (92)

Xi = fi (hy) N1 (93)

> Nk <N+ h{Ng (94)
ke{B,I}

eH
[ el <l (95)
€L

and subject to the allocation I being nonnegative. Let X* denote optimal aggregate investment

rate (i.e., X*A is optimal investment over a time interval of length A).

Proposition 10 Consider the limiting economy (as A — 0) with capital accumulation. The
. . . . . ., Ly = A$

efficient allocation is characterized by the following conditions: (i) al (E) = Vlieyemy for all

t, where Iy, cpy is an indicator function that takes the value 1 if eg € E, and 0 otherwise, for

any E € F (ler,en)); (i) X* = (sH/p)ﬁ Ny for all t; and (iii) the capital stock follows (@

with Xy = X*. The welfare achieved by the planner is

1

(1-o0) (6;{>HNI] Yt (96)

In the setup with capital accumulation the planner optimizes along two margins: the re-

€H
W* (A7, ) = | — A +
(A, yt) P L —

allocation of the asset, and the investment margin. Optimal reallocation in the OTC trading
round is as in the model with exogenous capital, while the optimal investment decision involves
equating the marginal rate of substitution between labor and general goods to the optimal
shadow price of capital, €.

Next, we characterize the welfare function for the economy of Section. As in Proposition
we assume .

In Appendix@ (part (i) of Lemma7 we show that along the path of a RNE of an economy
with capital accumulation, welfare is

1
n 1 n n\ 1—¢
i (2 -0) (£) 7w )

r—g \¢"

Vn (Afa yt) =

where ¢" is given by (with €™ given by ), ¢} is given in , and the capital stock
follows (70) with X, = (¢"/p) T Np.
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In Appendix [D] (part (i) of Lemma [28)), we show that along the path of a RME of an

economy with capital accumulation, welfare is

1
z 1 z 1-0
ym (Z7A§7yt) = [?Af =+ <801 - J) <SO> NI] Yt, (98)

where
Z
01 = @1 +ui—,
1 1 ©

uf and uj are given by and , (1 is given in , the capital stock follows (70) with
X = (¢/ p)ﬁ Ny, and (g%, e**, ¢, Z) satisfy the equilibrium conditions in Proposition
The following result is a corollary of Proposition [2 part (i) of Proposition [3] Proposition

Proposition , and .

Corollary 3 Consider the limiting economy (as A — 0) with capital accumulation and initial

condition (A7, y:) = (A§, yo). Then
128 (AS, yO) <y" (Za AS, yO) <wr ( 87 yO) ’

where the first inequality is strict unless © = ©(X), and the second inequality is strict unless

t=0.

The following result, a corollary of and Lemma |§|, describes welfare in the limiting

economy with capital accumulation where all agents have access to credit.

Corollary 4 Consider the limiting economy with capital accumulation (as A — 0) and initial

condition (Af,y:) = (A§, o), with a € [0,1] and X € (0,1]. As o — 0,

1
) 1 ST SN\ T—g
%A8+<S~071L—0> <(p> Nt | o,
P r—g\¢ P

with @" and @7 given by (@ and . Moreover,

(i) If ¢ (0) < ¢ <5 (0), then

Olég%vn( 87y0) =

a—0
1 ~n ~\ T—o ~n ~n\ T—g
5|50 C) (G o) (5)
r—g ¥ p ¥ P
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with “<” if 6 € [0,1), where ¢ given by [49) (with e given by (33), and £* given by (50)).

(i) If 0 <+ < 2 (0),

0 < lim V™ (Z, Ag, yo0) — V" (A7 vo)]

a—0

where

with @ given by (with €* given by ), ®y given by , and uj given by .

In Corollary [4] the thought experiment consists of taking the limit as ax — 0 while keeping
the initial capital stock, A§, the same. Part (7) is an economy where money is dominated in rate
of return by bonds (i.e., it corresponds to part (i) of Proposition@. In this case, for a given A§,
welfare in the cashless limit of the monetary economy is strictly higher than in the nonmonetary
economy, provided 6 < 1. In the cashless limit of the monetary economy the equilibrium capital
stock is Af = e OtAS+ (1 — e™%) ((o/p)ﬁ N1 /4§, while in the nonmonetary economy the capital
stock is A = e A5 + (1- e*‘;t) ((,b”/p)ﬁ Ni1/é, so aggregate consumption (of the dividend
good), C; = y, A7, is higher in the former.

C DMonetary policy, asset prices, and real activity

In this section we study the effects of monetary policy on asset prices and real activity. We

first characterize optimal monetary policy, and then turn to positive considerations.

Proposition 11 As ¢ — 0, the recursive monetary equilibrium allocation of the limiting econ-
omy (as A — 0), both with exogenous and with endogenous capital stock, converges to the

efficient allocation.

Let gz‘y . The

following result characterizes the effect of monetary policy on real asset prices.

denote the elasticity of variable x with respect to variable y, i.e., & =

&g
8 ke

Proposition 12 Consider the limiting economy (as A — 0). Let z = Z/p, then:
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(i) IFi(\) <o <7 (V)

L
| 4 (—a)i+[at+(1-a)(1—0)[1—-G(")]
(=) (=0 (=)
L
a—(1-a)(1-0)z ’
Lt rI—a) 10z

&

wle = T

where €* is given in part (i) of Proposition@ .

(i) If 0 < ¢ < T (M),

. L
el — L [a+(1=a) (146125 ) |1—G ()]

G(e*)—(1—a)0 25 [1-G(e*)]
L
at(1—a)(14+0125)

(1—a)(1-0) 25 +[at(1—-a) 52

Y

L+

where €* is given in part (ii) of Proposition 3

Proposition (12| provides analytical expressions for the elasticity of the asset price, ¢, with
respect to the policy rate, ¢, both for high and low inflation regimes. In every case the elasticity
is negative. In a recursive equilibrium, ¢;* A} = ZAjy;, so z = Z/p as given in Proposition is
the value of equilibrium real money balances, ¢;* A", relative to the value of the total output,
¢; A7, (measured in terms of the dividend good). When written in terms of z, the expressions
indicate that keeping the market-structure parameters o and 6 constant, the impact of monetary
policy on asset prices would tend to be larger in economies where aggregate real balances are
a larger fraction of aggregate output.

The following corollary of Proposition reports the elasticity of the real asset price to

monetary policy in the limit as a — 0.

Corollary 5 Consider the limiting economy (as A — 0) with o € [0,1] and X € (0,1]. As
a— 0,
(i) If i (N) <t <T(N),

&

ele =7~

L
0+(1-6)[1-G(*)]
L+ e
where €* is given in part (i) of Proposition@ .
(i) If 0 < v < T (N),

L L
R (2= (T I =02y

GE )02 [1-G(e)] 1=0)2+=

&

el
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where e* is given in part (ii) of Proposition [

The corollary shows that when i (\) < ¢ < 7 (), the elasticity of the asset price with respect
to monetary policy is negative and remains bounded away from zero even as z converges to
Zero.

To conclude, notice that in the economy with capital accumulation with production tech-
nology given by , the elasticity of investment with respect to ¢ is

g
1— O.E‘P|L'

5X|L =

D Proofs
D.1 Bargaining and portfolio problems
The investor’s second-subperiod value function can be written as
Wiay, al, k) = ¢'al™ + d5a; + al — ki + Wi (99)
with

Wi=T+ max [ £ 0¢h1 — OPag
@y ,a3,,)eRY

+ BE: / Vigr [aft g mai,, + (1 —n) A% €] dG(e)|. (100)
Proof of Lemma (1, In a nonmonetary economy, (99)) reduces to
Wt(at, af, kt) d)tat + at — kt + Wt.

(7) In a nonmonetary equilibrium (] . implies a;(af,e) = argmaxo<as<as (€Yt + @) G;-

NS
ay
(4i) In a nonmonetary economy, (2) implies [a; (af,€), @} (af, ), k¢ (af, €)] is the solution to

0
max [(5% + @) (@ —ai) +a at kt} ktl_e
(a3 ,k¢)ER? ;@b eR

st. gra; +a; = pya; (101)
—A\pia; < at (102)
Notice that the first-order condition with respect to k; implies

o (af,e) = (1= 0) { (e + 00) (a3 (a5, ) — af] + a@b(at, )} (103)

70



so the bargaining solution can be found by solving the following auxiliary problem

max  |(ey: + ¢;) (@f — af) + Eﬂ s.t. (101)), and (102)).

aseR,aleR
Since ([101)) implies @’ = ¢; (af — @3),

aj (af,c) = argmax (e —e}) @} s.t. 0 <@ and (¢; — A\¢}) @} < d;a;.
a;

The problem has no solution (for & > e?) if ¢; — A¢§ < 0. Provided ¢; — A¢§ > 0, the solution
exists for all € and is given by . Given @} (af,¢), @’ (a$,€) = &, [af — @; (af, )] as in ,
and k; (af,€) is given by ([103]), or equivalently, . |

Proof of Lemma [2.

(i) With (99), it is easy to show that the solution to the optimization problem in (T)) is
given by and .

(i1) With (99), can be written as

(%
max (e +67) [@ — ailar, o)) + 07" [a" — " (ar,e)] +af — ke | k7
(@ ,ag ki) €R3 @t eR
s.t. @’ + pd@; + qa; = a’ + pay (104)
—\¢ia@; < ay. (105)

Notice that the first-order condition with respect to k; implies so the bargaining solution

can be found by solving the following auxiliary problem

max {0 a7 — a3(an,0)) + 0 [ — ' (ar, )] + @ )
(a?‘,af)GR?‘_,ageR

s.t. (104), and (T03).

Once the solution @} (ay, €), @ (a, <), and @’ (ay, ) to this problem has been found, k; (ay, ) is

given by (22). If we use (104) to substitute for @?, the auxiliary problem is equivalent to

max Ksyt I qltpt> a+ (<z>:” - 1) a%”] (106)

(@.a;)er: qt
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s.t. 0 < af* + pai —a* — (pr — \q93) @;. (107)

This problem has no solution if p; < Ag:¢;. To see this, assume p; < Aqi¢;. Set a}* = aj” + praf
(a feasible choice), and notice (107) is satisfied by any aj € R4. Thus, the value of (106) is
bounded below by

1
<¢;n _ > (a;n +ptaf) + max [ey + (1 — ) ¢ts] ay,
qt a; R+

which is arbitrarily large. Hence, condition is necessary for the bargaining problem to have
a solution. The Lagrangian corresponding to the auxiliary problem ((106]) is

1 1
L= (5% + ¢f — qtpt) a; + <¢?1 - > ay”’

qt
+ & [a” + pai —at — (pr — Aqwd}) @) + A + £°a,

where fb, &M, and &£° are the multipliers on the constraints | , 0 <a}*, and 0 < @}, respec-

tively. The first-order conditions are

1
eyt + ¢f — apt + &% — (pr — Aq197) fb =0

m 1 m
A R
di

By working out the eight possible binding patterns for the multipliers (§ bem ¢ S) and collecting

the optimal allocations along with the inequality restrictions implied by each case, we obtain

D.2 Value functions

In this section we derive the value functions for brokers and investors, in a monetary economy

(Lemma (3)), and in a nonmonetary economy (Lemma [4]).

Lemma 3 Consider an economy with money.

(i) The value function of a broker at the beginning of the OTC round of period t is
VP =2+ WP, (108)

where 2y = of [k (@4, ¢) dH, (ar,¢) and WP = BE, V2.
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(ii) The value function of an investor who enters the OTC round of period t with portfolio
a; and valuation € is
Vi(ar,€) = vf; () 4" +vj; (€) af + WA, (109)

where
m m * 1
v () = ¢ +la+ (1 —a)(1—0)] ]I{e;‘<s} (e—ef)yt—

Dbt
1

+ (1 — Oé) Hl{qt¢§”<1} <qt — ¢7tn>

1t

"pi — G @}

vip(e) = ey + ¢f +la+ (1 —a) (1 —0)] Iiecery (67 — )yt

1
+(1-a)f <¢;n - (]t> Lii<gppyrady

)\Qt(ﬁts - H{€<€;‘*}pt
Pt — A@d;

+ (1 - a) 91{6§*<5} (5 - 6;:*) Y

+(1—a)f(e -y

Proof. (i) The broker’s value function (108]) is immediate from and ().
(i1) With (99), the value function becomes

Vi(as,e) = Wi+ a[(eye + ¢7) ai (ar, ) + ¢ ay" (ay, )]
+ (1= a) (e + 67) @ (a1, ) + 67'a}" (ar,2) + af (ar,2) — ke (ag.€)| . (110)
Substitute k; (a;,¢) and a? (ay,e) with (22) and (21), respectively, to obtain
Vi (as,€) = Wi+ (eye + ¢7) af + ¢} af”
+[a+ (1 —a) (1= 0){(eye + ¢}) [af (ar, &) — ai] + & [a4" (ar, €) — ai"]}
=)0 (wet ot ) of o) ail + (o7 = ) o (ane) — ')}

Then use Lemma [2| to replace the post-trade allocations aj(ay,¢), a}* (at, ), af (at, ), and

ay” (at,e), and rearrange terms to arrive at (109)). m

Lemma 4 Consider an economy without money.

(i) The value function of a broker at the beginning of the OTC round of period t is
VP =g +W/p, (111)
where 2y = of [k, (af,e) dH, (a5,€) and WP = BEVE,.
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(ii) The value function of an investor who enters the OTC round of period t with equity

holding ai and valuation € is

Vitah,e) = e+ o+ (- @0l Du [x(eh9) 5~ 1] far W (1)
t t
where
W, = _max [—¢f<~lf+1 + PE; / Vi1 @i, + (1 —n) A% €] dG(E)} : (113)
Ay &R

Proof. (i) The broker’s value function (111) is immediate from and (6) under the
assumption that investors carry no money.

(i) In a nonmonetary economy, reduces to
Wila3, af, ki) = dfai + af — ke + Wi, (114)
where W; is given by (113). With (114]) and Lemma reduces to (112). m

D.3 Euler equations

In this section we derive the Euler equations that characterize the optimal portfolio choices
in the second subperiod, in a monetary economy (Lemma [5) and in a nonmonetary economy

(Lemma [6).

Lemma 5 Consider an economy with money. Let (&ﬁﬂ, &?Hl) denote an individual tnvestor’s
portfolio choice in the second subperiod of period t. The portfolio (EL}QH,EL?HI) is optimal if

and only if it satisfies

(o — BEY; ) afiy = 0 < ¢ — BE 7}, (115)
(@9 - BnEtﬁftH) ajp = 0 < ¢ — Bk, 4, (116)

where

] 1
Uri+1 = O + (1 - )0 <th - ¢?11) N1}

EH . 1
Hat(1=a)@=0) [ (i) pr—dG(e)
1 Pt+1
’ L o ) yerrdG
+(1-« 5 / € —¢eir1) Yyr1dG(e),
( ) P41 = Aqe1Pp1 Jepr, 1) Y dG(e)
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and
=S — = S m 1 S
Vi1 =Y+ 0+ (1 —a) 0| ¢} — @ H{1<qt+1¢;11})‘%+1¢t+1

Hat =) 1=0) [ (e - o) md6 @

€L

Ez‘il kk )\q ¢S e %k
+(1-a)f / (ert1 —€) Yr+1dG (e) + L / (e —eif1) Ye41dG (e) | -
er Pl = AGee1Pii Jerr,

Proof. With (109) and (100|), the portfolio problem of an investor in the second subperiod

can be written as

Wi =T, + BEy [Wisr + 05y (1 1) A7)

+ max [(BEf — ¢F) aity + (BnEf — 0F) Gia]
(877 1,5, 1)ERT

where 0§, = [vf, | (€)dG(e) for k € {m,s}. =

Lemma 6 Consider an economy with no money. Let a7, denote equity holding chosen by an
individual investor in the second subperiod of period t. Then aj, , is optimal if and only if it

satisfies

- (Zsf + ﬁT]Et{ﬁyﬁ_l + (,25§+1 + (1 — O[) 0

I n
/ (5t+1 - 5) Yr+1dG ()
L
APiiq /EH
+ =5 s €—e} 1 yt+1dG(€)
bip1 — AP ey ( " )
<0, with“= " if @,,, > 0. (117)

Proof. With (112) and (113]), the portfolio problem of an investor in the second subperiod

can be written as

max
&f+1 eRy

P S /aH (2 — £741) Y1 dG(e)
¢t+1 - /\¢>t+1 I

e
—¢; + BnEt{Eyt+1 + ¢t +(1—a)b [/ (efi1 —€) ye11dG(e)

€L

-
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D.4 Market-clearing conditions

In this section we derive the market-clearing conditions for equity and bonds in the OTC round,

in a monetary economy (Lemma @ and in a nonmonetary economy (Lemma .

Lemma 7 In a monetary equilibrium, the market-clearing conditions for equity, A?t—l—/_lft = A%,

and bonds, Al}t =0, in the OTC round are:

A A® A A’
0=all—GE) L0 4 (1—a)[1 - G () S22

Dt bt — )\Qtﬁﬁf
0=(1-0) { {1 = Tncgepy — Lgor=1y [1 = x (Lagy")]} G (57)
G} AP + prA®

= Mg =G () } qt

A® (118)

(119)

Proof. By Lemma [2| the investors’ aggregate post-trade holdings of equity in the OTC
round of period ¢ are
A" + peA®

tio = (1= ) N [[ai(ar.)ian.e) = (1 =) [L = G (")) S0

A + pA®

A3, = aN; / diar,e)dHi(ar,e) = o [1 = G ()]

and the the investors’ aggregate post-trade holdings of bonds in the OTC round of period ¢ are
AL, = (1-a) N[/a?(at,s)dHt(at,E)
=(1-a) { {1 = Tcqery = Lgop=1y [1 = x (1, @0}")] } G (77)
Aqdy A" + piA®

- bt — )\Qtﬁbf [1 ¢ (gt )] } qt

Lemma 8 In a nonmonetary equilibrium, the market-clearing condition for equity Aft —|—fl§t =

A* (or bonds, AS, =0) in the OTC round is:

L= [1- G ()] (ﬁfiﬁtw' (120)
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Proof. By Lemma [I] the investors’ aggregate post-trade holdings of equity in the OTC
round of period t are
(Tbs

———A%dG
O — A} ©

15, = (1- )Ny / @ (ar, ) dH, (ar,¢) = (1 — o) / X (€8) =
A3, = aNI/df(at,e)dHt(at,e) = aA’

and the the aggregate post-trade holdings of bonds for agents who trade in the bond market in
the OTC round of period t are

Ab, (1—04)N1/at(at, e)dH(ap,e) = (1 — ) /qﬁt [1— x (ef, );ﬁ ¢/\¢t A%dG ().
u

D.5 Equilibrium conditions

In this section we state the operational definitions of monetary and nonmonetary equilibrium

that are used in the analysis.

D.5.1 Sequential nonmonetary equilibrium

Definition 4 A (sequential) nonmonetary equilibrium is an allocation {d?tﬂ}zo and a se-

quence of prices, {5, ¢; 132, that satisfy the portfolio-optimality condition, (with d’}tH =
A1t+1) and the market-clearing conditions Alt+1 = A® and .

Definition [4] follows from Definition [I| after recognizing that all investors choose the same
end-of-period portfolio that is characterized by the Euler equations derived in Lemma [6] and
using the explicit version of the market clearing condition for equity and bonds in the OTC
round derived in Lemma Given the equilibrium objects in Definition the bargaining
outcomes, which are part of Definition [I] but not Definition [, are immediate from Lemma

According to Definition [4 a nonmonetary equilibrium can be characterized by sequence of

— ~ oo
prices, {¢f, ¢} }3°, and an allocation {A?t +1}t:0 that satisfy the market-clearing conditions

A= Ay (121)
¢)S

B R v

(122)
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and the portfolio-optimality condition

n

€t+1 n
/ (5t+1 - 5) Yt+1dG(e)
eL
APl /‘EH
+ = € —efy1) Yir1dG(e)
¢t+1 - A¢t+1 et ( " )
<0, with* =" if A5,.; >0, (123)

— @7 + BnEt{gytH +oi g+ (1—a)f

where ¢}’ is given by .

D.5.2 Recursive nonmonetary equilibrium

The following result summarizes the conditions that characterize a recursive nonmonetary equi-

librium (RNE).

Lemma 9 A recursive nonmonetary equilibrium is a vector (sn,d)s,flﬁ) that satisfies the fol-

lowing conditions

0= A5 — A°
1:[1—@(&)]%
¢San{g+¢S+(1_a)9[/E (6”—5)dG(6)+w/iH(e—en)dG(e)}}

with “=" if A% > 0.

Proof. The equilibrium conditions in the statement of the lemma are obtained from —
by using ¢f = ¢*yr, ¢ = &'ye, A3, = A3, and & = (¢; —¢}) L = ¢ — ¢* = €.
|

The first equation in the statement of Lemma [J is the second-subperiod market-clearing
condition for equity. The second equation is the first-subperiod market-clearing condition for

equity (or bonds). The third condition is the investor’s Euler equation for equity.

D.5.3 Sequential monetary equilibrium

Definition 5 A (sequential) monetary equilibrium is an allocation {(dlftﬂ)ke{m,s}}:io and a

sequence of prices, {pt, g, O, G5 1520, that satisfy the two optimality conditions, and @
(with &’;Hl = /Nllft+1), and the four market-clearing conditions, fl?tﬂ = A%, fl?}_ﬂ = A%,

[T8). and ({TT9).
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Definition [5| follows from Definition [I] after recognizing that all investors choose the same
end-of-period portfolio that is characterized by the Euler equation derived in Lemma [5, and
using the explicit version of the market clearing condition for equity in the OTC round derived
in Lemma |7l Given the equilibrium objects in Definition [5] the bargaining outcomes, which are
part of Definition [I] but not Definition [b] are immediate from Lemma

According to Definition[5 a monetary equilibrium can be characterized by sequence of prices,
{pe, @i, @, 65152, and an allocation {(A¥ 11)ke{m,s} Jizo that satisfy the following market-

clearing conditions

_ As s
0= It+1 — A
0= im _Am

— It+1 t+1

A;n + ptAs *ok A%n + ptAs
i S 2N C PN R Y 50 e S i
D ( )[ (t )] pt—)\Qt(bt

o G @;
0=(1— 1-1 my — Lo gmoqy (1 — G T O\
(1—-a) {[ (<gort — Lgem=1} ( xa)] G (€7 Pt — AP}

S

0=all-G )

A?l + ptAs
qt

1-G e}

and optimality conditions

(67" — BEwT; 1) ATy = 0 < )" — BE];

(67 — BnE0F41) ‘Li?t—&-l =0 < ¢} — BNEt0] 41,

where €F is given by (14)), e¥* is given by (15, i* = —= — 1, and
t t ¢ @o!

_— 1
U1 = G+ (1 - )6 <Qt+1 - ¢>§11> Voo <1}

o ) 1
+[a+(1—a)(1—0)]/ (e — £f11) yer1 ——dG ()
€141 DPt+1
0 1 EH G )
+ 1 — 3 / e — 5** d c
( ) Dit1 — AG197 11 err, ( t+1) Yr+1dG(

_ _ 1
Vi1 =1+ 9f + (1 —a) 0 <¢;11 - th> H{1<qt+1¢ﬂl}>\%¢f+1

Hat-a)1=0] [ (e -2 mnd6 @

€L

Et*:_l kk )\q ; e ok
+a-a)o | [ - wnda @+ I [T o) yaac )|
er Pr1 — Aey1074y Chind)
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D.5.4 Sequential monetary equilibrium with credit

The following result states that the credit market would be inactive if the net nominal interest

m 1 .
rate on bonds, 7} = e 1, were negative.

Lemma 10 Consider a monetary equilibrium. If the bond market is active in period t, then

@ < 1.

Proof. In an equilibrium with 1 < ¢;¢}" the market-clearing condition ((119)) becomes

AP}

0=(1 -«
( )pt_AQtQSf

[1 =G ()] (A +piA%).

This condition can only hold if [1 — G (¢}*)] (A7* + p:A®) = 0, i.e., if the bond market is inactive.
The condition 1 < ¢:¢;" implies bond demand is nil, so the bond market can only clear with no

trade. m

According to Lemma [I0] a monetary equilibrium with an active bond market can be char-
acterized by sequence of prices, {pt, ¢, ¢7", ¢; }72, and an allocation {<A];t+1)k€{m,8}}1?io that

satisfy the following market-clearing conditions

0= ~§t+1_AS
0= ~?tLJrl_ ?:L&-l
AT 4 p A8 AP+ pA°
O=a[ll-GEH]L+—"" +(1-a)[1 -G (e tis— 5
1-GE = =+ - L= G =
Gy A" + prA®

(hwl—w{h—mmwluu—xHﬂG@fw— u—G@rn}

Dt — AP} qt

and optimality conditions

(6" — BEWT 1) ATy = 0 < ¢ — BET;,

(65 — BE;,41) Afypy = 0 < ¢ — BnED;, 44,
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where

_ 1
Vi1 = 0 + (1 —a) b <Qt+1 - ¢?}rl>

. \ 1
ot (1—a)(1—6)] / (e — et1) e ——aG(e)
i1 Dt+1
9 1 €H G
+l-a / € —epy dG(e
( ) Pi+1 — )\qt+1¢f+1 ey ( t+1) Yt+1 ( )

—S - = S
Vrit1 = &Yt + P

Hat (=) 1= [ (6 - 9) wndG @

€L

i1 b\ S €H
+(1-a)f / (551 =€) ye+1dG (€) + %H@H s / (e —eif1) ye41dG (€) | -
. Per1 = AGer1Ppi Jerr,

D.5.5 Recursive monetary equilibrium with credit

The following result summarizes the conditions that characterize a recursive monetary equilib-
rium (RME).

Lemma 11 A recursive monetary equilibrium (with credit) is a vector (¢*,e**,¢° Z) that sat-

isfies
AG®

0=(1-a) {G () [1 = [ermerry (L= x11)] = [1 = G ()] } (Z +¢* + ¢°)

e+ (1-N)o¢°

where x1; € [0,1], and

# = (1-a)6 <i_:qf - 1> Hat (- 1-0] o [ - eact

E**+¢S 1 cH .
+1-a)p S 6**+(1_)\)¢s/a** (e — &™) dG(e)

*

1%7757](;38:€+[a+(1—a)(1—9)]/€i (" —2)dG (&)
—i—(l—a)@[/E (5**—€)dG(€)+E**+()\1¢i)\)¢s/T(E—a**)dG(s)].

Proof. The equilibrium conditions in the statement of the lemma are obtained from the ones
in Section by using ¢ = ¢*y, prdf" = Gpp = GonYts Pi/ Gt = by = Spui, O AT = ZASy,,
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L _ - o *LpS)AM

&= (ol — ) L =0, — 0" =t e = (/e —0f) L = 6y — 0" =&, py = S
ZAS *_i_(z)s Am — — —_ —

o = A;nyt, = 7(E£i+¢s))zjsyt, Pi1/0f = ¢fnt+1/¢fnt = ¢’Zt+1/¢zt = Vit1> Pr+1/pe = p, and

v/ = Qe /a = 1/ Ve W

The first and second equations in Lemma [11| are the first-subperiod market-clearing condi-
tion for equity and bonds, respectively. The remaining two conditions are the investor’s Euler

equations for money and equity, respectively.

D.6 Continuous-time limiting economy

In this section we derive the equilibrium conditions for the continuous-time limiting economy.

D.6.1 Equilibrium conditions

Lemma 12 Consider the limiting economy (as A — 0). A recursive nonmonetary equilibrium
is a pair (g™, ) that satisfies

1_1—G(6”)
DY
n )\ €H

gp—a—i—(l—a)@[/s (5"—5)dG(5)+ﬁ ) (e—e")dG(e)] .

Proof. From Lemma[J] if the period length is A, an equilibrium is a pair (", ®* (A)) that
satisfies

e" 4+ ®% (A)
en+ (1 —=X) P (A)

1=[1-G ()]

% (A) =Bn{5+¢5 (A)+( —04)9[/8 (e" — ) dG(e)

)\@S (A) /EH (5’ _ gn) dG(E)
A+ 3% (A) A

en+ (1—=XN)®5(A) Jon
A+ (1- N (A)A

This can be written as

1=[1-G(")]

n

/ (" — ) dG(e)

€L

r+0—g+giA
(14+g9A)(1—-04)

P (A)A=E+(1—0a)f

AD% (A) A €n .
+€"A—|—(1_)\)¢.s(A)A/€n (e —€e™)dG(e)
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Take the limit as A — 0 to arrive at the conditions in the statement of the lemma. m

Lemma 13 Consider the limiting economy (as A — 0). A recursive monetary equilibrium

(with credit) is a vector (e*,e™*, ¢, Z) that satisfies

0= {a[l _GE) 4 (1 —a) [l -G (™) 1_1A} <i + 1) 1 (124)
0=G (") [1 = Lformery (1= x11)] = [1 = G (£")] % (125)

where x1; € [0,1], and

€H

Lw—u—aW@“—fwwa+u—awrwﬂ/ (e — %) dG(e)

e*

+(1-a) 9% /H (e — &) dG(e) (126)
g0:§+[04+(1—a)(1—0)]/5 (e —¢e)dG (¢)
+(1-a)6 [/ (e — £)dG (c) + % H (e — =) dG (2) | . (127)

Proof. If the period length is A, the equilibrium conditions in Lemma [L1]| generalize to

gwfaiiﬁiw}<ﬁf$bﬂ+o_l

o=%meecw+u—wu—aww

ADS (A)
T (1= NP (A)

—[1 -G ()] e } [Z (A) 4+ e* + ° (A)]
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where x1; € [0,1], and

U S Ly 27
ot (1=0) (1=0) gy [ (6= 4GEE)
1 @0 (A |

+(1—-w)f

e+ 35 (A) e + (1— \) D (A) / (e =) dG(e)

(Iig;)g(j_gii)qﬁ (A)A =2+ [a—i—(l—a)(l—@)]/s (e* —£)dC (o)

+(1—a)6[/8** (e™ —€)dG (¢)

AP*(A) EH .
T TN @A) / (E-emde (o).

These conditions can be rewritten as

0= {a 1=GE+ A=l =G ()] s**Ag*iA(lJr—q):)(gs)(AA) A} <€*Az+($s) (AA) AT 1) !

AD® (A) A
e A+ (1—\) 0% (A)A

—[1—G ()] }[z (A)A +e*A + @ (A) A

where x; € [0,1], and

® e —¢*
NSy Ty N
ot (1-0) (1= 0] Sxrgrays [, (6 )GE)
EFA 1 05 (A) A 1 en .
Hl - S M A AT (=N A4 [ E)dCE)

r+0—g+giA
(1+gA)(1—06A)

CIDS(A)A:é+[a+(1—a)(1—9)]/€*(6*—e)dG(s)

+(1a)0[/6** (e — £)dG (¢)

APS (A /
5**A+ 1-— <I>s ) A

Take the limit as A — 0 to arrive at the conditions in the statement of the lemma. =
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D.6.2 Existence of equilibrium

Proof of Proposition The conditions and in the statement of the proposition
are the equilibrium conditions derived in Lemma Clearly for any A € [0, 1] there is a unique
€™ that satisfies , and given ", the normalized equity price ¢ is given by . [

Lemma 14 In a RNE,

o1
d\ G’ (e")

de™ 1 /EH
—=(1—-a)d—— — ™) dG(e) > 0.
= -0 [ e ace

Proof. The first result is obtained by implicitly differentiating . For the second result,
differentiate :

n

%gp" =(1-a)b [/E (e" —e)dG(e) + % :H (e — En)dG(E):|
:(1_04)9[@(5”)?—1_AA[1—G(E")]C§:+(1_1A)2/;H (e — ) dG(e)

€H

_ (1—04)9(1_1”2/ (e — e") dG(2).

n

Proof of Proposition The equilibrium conditions are -, with x;; € [0,1],
as reported in Lemma [I3] These are four equations in four unknowns. The unknowns are
(e*, e, @, Z)if e* < &, or (e%,x11, 0, Z) if e* = &** (recall and Lemmaimply e < e**
in a monetary equilibrium with credit). We consider each case in turn.

(i) Suppose £* < £**. In this case, implies ** = ", where " € [er, ep] is the unique
solution to G (¢) = A. Combined, conditions and imply a single equation in the
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unknown ¢* that can be written as 7' (¢*) = 0, where
en

T(a;)E(1—a)&(e"—x)—i—[a+(1—a)(1—9)]/ (e — ) dG(e)

xT

+(1- a)Hﬁ /EH (e —e")dG(e)

n

L{e+[oz+(1a)(l@)]/x(xs)dG’(s)

+(1—a)9[/:n(5 —¢)dG (e 1_)\ . (e—¢€" dG()]}

Differentiate T" and evaluate the derivative at x = €* to obtain
T'(Ee)=-{l-a)f+[a+(1-a)1-0){[l -G ()] +:G(e")}} <O.
Hence, if there is a ¢* that satisfies T'(¢*) = 0, it is unique. Notice that

T(er)=(1—a)0(" —ep)+la+ (1 —a)(1—0)] (E—er) + (1—a)91_1A/:H (e — &) dG(e)

—L{E+(1—a)9[/€n(€”—€)dG( )+$ EH(a—s")dG(a)]},

€L en

so 0 < T (er) if and only if ¢ <7 (\), where 7 () is defined in the statement of the proposition.
Also,

n

_L{5+/En(g”—g)dG(a)—i—(l—a)@l_/\)\/EH(a—sn)dG(E)},

€L en

T (") = {a+(1—a) (1+91_AA>] /:H (e — ") dG(e)

so T'(e™) < 0 if and only if 7 (\) < ¢. Thus, if i (\) < ¢ < (), there exists a unique * that
satisfies T (¢*) = 0, and &* € (ep,€™). Given ¢* and e**, ¢ is given by (127)). Finally, given &*,
e**, and ¢, Z is given by , which can be written as . From this expression, it is clear
that 0 < Z < o > 0 and ¢, < ¢* (and the latter condition is implied by ¢ < 7 (A)).
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(ii) Suppose ¢* = ¢**. In this case, (124)-(127) become

1=[1—G () <a+1:‘;> (‘ZH) (128)
vp = [a+(1—a) (1—9+911A)} /H (e — &) dG(e) (130)
p—c+ / (e —£)dG (e) + (1 — a)@% /H (e — £7)dG (¢). (131)

Conditions (130 and (131)) imply a single equation in the unknown £* that can be written as
T (e*) = 0, where

T(c") = {a+ (1-a) [1 . oel_AA} } /:H (e — ) dG(e)

*

*

5+/E (e —e)dG (g)

€L

— L

Differentiate 7 and evaluate the derivative at the €* that solves T (¢*) = 0 to obtain

i e+ (e —)dG(e) i i
T’(E ):—L{m[l_G(g )]+G(E )} SO,
with “=” only if « = 0. Hence, if there is a €* that satisfies T (¢*) = 0, it is unique. Notice that
T (em) = —tem, so T (eg) < 0 if and only if 0 < ¢. Also,

T (") = {a+(1_a) [1+(1—L>01_AAH/: (e — ) dG(e)
—L[é—i—/an(e"—s)dG(a)],

eL
so 0 < T (e") if and only if ¢ < 7(A). Thus, if 0 < ¢ < i(\), there exists a unique £* that
satisfies T (¢*) = 0, and &* € [e",ey) (with ¢* = " only if « =i (A\)). Given &%, x;; € [0,1] is
given by (129) and ¢ is given by (131]). Finally, given €* and ¢, (128 implies Z. m

Lemma 15 The real asset price in the RME is higher than the real asset price in the RNE,
i.e.,

(i) If i (A\) < v <T(XN), then

*

0<[a+(1—a)(1—0)]/€ (e —e)dG (e) < — ™. (132)

€L
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(ii) If 0 < v < (), then

*

€
0<[a—|—(1—a)(1—0)]/ (6" — ) dG () < o — ™. (133)
er
Moreover, in any RME, ¢ < ep, with “=" only if 1 = 0.

Proof. (i) If 1(X\) < ¢ <7 ()), (132) is immediate from (36]). (i) If 0 < ¢ < i(\), use (32)
and the expression for ¢ in part (ii) of Proposition [2 to write

go—gonza/E (e —¢)dG (¢)

€L
*

—|—(1—oz)/€ (5*—5)dG(5)+(1—a)0)\/aH(e—s*)dG(s)

. =)
en A €l
—(1-a)f {/ (" —e)dG(e) + —— (5—5”)dG(s)} .
. 1= Jon
Define
x A €H
T (x) = / (x —e)dG(e) + T—x (e —x)dG(e) (134)
er T
and notice that for all z € [e",ex],
T (z) =G (z) — % [1—G(z)] >0, with “=" only if x = &". (135)

Thus, since 0 < ¢ < 7 (A) implies €™ < £*, we have

*

p-za [ (=96

€L
*

+(1—a)/8 (5*—5)dG(6)+(1—a)&l_)\)\/jH(e—s*)dG(s)
* e

_(1—04)9[/‘E (5*—6)dG(6)+ﬁ ) (e —€")dG(e)

9

which implies (133)).
To show that ¢ < e, we again consider two cases. First, suppose i (A) < ¢ < 7(A). In this

case,

gp—eH:oz[/e (5*—5)dG(5)—(5H—5)]

€L

+(1-a)

07 (=) + (1— 0) / (" — ) dG (e) — (eqr — 5)]

€L

< 0.
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Second, suppose 0 < ¢ < i(A). In this case,

gp—eH:a[/E (s*—z—:)dG(e)—(sH—é)]

* eH

+(1-a) [/ (5*—5)dG(e)+0% T e—e)dG ()~ (en —2)

ga[/s (e"—e)dG(e)—(eg—28) |+ (1 —a)[Y (") — (eg — &)]

€L

<0.

To conclude, notice the last inequality is strict unless ¢ — 0, which implies £* — ey, and

therefore p — cy. m

Proof of Proposition |3} Part (i) is an immediate corollary of Lemma For part (i), we
consider two cases in turn.
If 2 (A) <t <7(N), then

de* 8Ta(f*)

=—0 = — <0,
e T() —{l-a)f+[a+ (1)1 =01 -G ()] +:G (")}

where T (+) is the equilibrium map defined in part (i) of the proof of Proposition Then, from

(136).
" »

L~ o+ (1-a)1-0)G() — <o.

If 0 <t <i(A), then

% oT (e*
A — “0
di T’ (e*) §+I;L* (e —e)dG(e) ] )
-t fEE*H (e—£")dG(e) [1 - G(E )] + G(S*)

where T (-) is the equilibrium map defined in part (ii) of the proof of Proposition Then,
differentiating the expression for ¢ in part (i7) of the statement of Proposition

de*
div’

% o) -a-aet e
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Notice that

0= {G (") — % 1-G (s”)]]

A

<foe)-250-0e)

<GE) (-0 -G ),

where the first inequality follows because G (x) — ﬁ [1 — G (z)] is increasing in z, and ™ < &*

for all 0 < ¢ <7 (). Hence, dp/dt < 0. m

D.7 Cashless limits

Proof of Proposition [d. Without loss of generality, we compute the relevant limits along
a trajectory starting from any economy indexed by the (A, ¢) such that ¢ € [ (N\),7(N\)]. As
A — 1, the mapping T defined in part (i) of the proof of Proposition [2| converges uniformly to
the mapping Th—1 defined by

TAZl(ac)E(1—a)@(eH—x)—I-[a—i—(l—a)(l—9)]/EH(5—x)dG(5)

—L{E‘—I—[a+(1—a)(l—9)]/I(m—6)dG(s)—I—(l—a)@(eH—E)}.

€L

(This follows from the fact that limy 1 115 [5F (€ — ") dG () = limy G,ﬁgi)) = 0.) Differ-

entiate Th—; and evaluate the derivative at = ¢* to obtain
T () =—{1-a)0+[a+(1—a)(1-0)]{[1-G(E")]+.G(")}} <O0.
Hence, if there is a e* that satisfies T'(¢*) = 0, it is unique. Notice that
Tr=i(er) =E+ (1 —a)f(en —2)] e (1) — 4],
s0 0 < T (er) if and only if + <7(1). Also,
Ta=1(en) = —tenu

so T (eg) < 0 if and only if 0 < ¢. Thus, if 0 < ¢ < 7(1), there exists a unique ¢* that satisfies

Th=1 (¢*) = 0 (or equivalently, (42))), and £* € [EL,E g]. The limiting expressions and .
are immediate from and . Finally, is the limit of the upper branch of . ]
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Proof of Proposition Without loss of generality, we compute the relevant limits along a
trajectory starting from any economy indexed by the (A,¢) such that ¢ € [i(\),7(N\)]. From
part (i) of the proof of Proposition [2| we know that ¢* — e, as ¢ — 7 (), so implies (4F)),
implies , and the top branch of implies (44). m

Proof of Proposition |§|. The expression for velocity, , can be written as

V=21 (at+i=2)G(E)1-G(e) (136)

1—X\ . < ~
aG(e)+ =5 [Ge) A if0<e<5(a).

First, notice that ¢ (a) < ¢ (a) for all « € [0,1], with “=" only if A = 0. Hereafter, assume
A > 0, and fix some ¢ € (0,7(0)).
(i) For ¢ € (¢(0),5(0)) and o small enough, part (¢) of Proposition [2] implies the monetary

equilibrium is a vector (£*,e™, p, Z), where

¢_5+{(1—a)0[/€ (aha)dG(aHﬁ iH(E—E”)dG(s)
+[a+(1—a)(1—9)]/5 (5*—s)dG(€)} (137)

B aG (%)
Z= a[l—G(a*)]-ﬁ-l—a%

(138)

*k

e = and €* is the unique €* € (e1,e") that satisfies T (¢*;a) = 0, where for any * €

en,
ler,en], T (-; @) is a real-valued function defined by

*

T(e*;a)E(1—a)&(s"—e*)—k[a+(1—a)(1—9)]/€H (e —€*)dG(e)

L(1—a) 9% /EH (e — &™) dG(e)

n

—L{?—F[(X—G—(l—a)(l—@)]/a* (" — £)dG (¢)

€L
€H

—1—(1—04)6[/6 (5”—5)dG(6)+% ) (5—gn)da(e)”.
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As o — 0, the function T (-; ) converges uniformly to

T(e0) = 0(" — ) + (1— 0) /H (e — ) dG(e) + 9% /H (e — ") dG(e)

—L{z+(1—e)/€ (" — £) dG (¢)

em A €H
+0 / (" —¢e)dG () + —— (e—e")dG (e)| ¢-
. 1- A )
Then is equivalent to T (¢*;0) = 0, while , , and (49) are obtained from (138,

(1136)), and ([137)), respectively, by taking the limit as o — 0.
(i) For ¢ € (0,5 (0)] and « small enough, part (i) of Proposition [2] implies the monetary

equilibrium is a vector (e*, x, ¢, £) that satisfies y = ﬁ lai(f)*),
e* by €H
g0:€+/ (5*—5)dG(5)+(1—a)9/ (e —€")dG (g) (139)
. 1 /).
G+ (1—a) =[G () - A
_96(E) 00 6N "

1= G ()] |a+(1-a)

[ E—

koK

and ¢* = &, where ¢* € [¢",epy) (with ¢* = " only if « = < (0)) is the unique solution to

T (¢*;a) = 0, where for any €* € [ep,en], T (-;a) is a real-valued function defined by

T (e%a) = {a+ (1-a) [1 +(1— L)el_x} } /:H (e — ) dG(e)

*

*

g—+/8 (c* — ) dG ()

€L

— 0

As a — 0, the function T (-; &) converges uniformly to

*

54—/8 (e —€)dG (¢)

€L

F(e*0) = {1 +(1- L)el_x] /H (e — ") dG(e) — 1

Then is equivalent to 72(5*;0) = 0, while while , , and are obtained from
(1140), (136)), and (139)), respectively, by taking the limit as & — 0. m

D.8 Capital accumulation

Definition 6 A sequential nonmonetary equilibrium for the economy with investment is an

allocation {Xt,Afﬂ}ZO and a sequence of prices, {e, ¢F, 912, that satisfy: ¢; = etys + o5,
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the law of motion for the capital stock,
Al =n(Af+Xy),
the market-clearing condition for bonds

1:[1—G<">]¢t¢ vt

and the individual optimality conditions

X = Xt (¢)

and

R
o; = 577Et{5yt+1 +¢iq+(1—a)b [/ (g1 — €) Ye+1dG(e)

o

Notice that the structure of the equilibrium conditions in Definition [6] is recursive, i.e.,

N _A% / . (e — £741) Yer1dG(e)
Pr1 = APiy1 Jep,,

one can solve for {e}', ¢{}72, independently of { X, f+1}tooo, and then given {¢;}7°, one gets
{Xi}20 = {Xe (6)}:2, and given {X;};°, {A; +1}t o follows from the law of motion for the
capital stock. Moreover, notice the equations that characterize {e}', ¢; }? in this economy with
endogenous capital accumulation are identical to the conditions that characterize {7, ¢;}7°,

in the baseline economy that assumes A7 = A° for all ¢.

Definition 7 A sequential monetary equilibrium for the economy with investment is an allo-
cation {Xt, §+1}zo and a sequence of prices, {e}, ", e, qt, O, ¢; }i2, that satisfy: e* =

(p tq—t — qbt)— ef = (ped* — &3) i, xX11 = x (1,1) € [0,1], the law of motion for capital,
Al =n(A7 + X)),

the market clearing conditions for equity and bonds,

A" + peAj A" + piAf

———— 4+ (1-a)[1 -G (")) +——+
o (1-a)] (1t)]1)l_/\cm)f

kok Aq ; kok
0= 1~ Tgapny (1 = x0)] G (67") — 22 1 G (),
t

0=all-G(s)] iy
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and the individual optimality conditions,
Xy = X (67)

and

9" = BEt{qﬁﬁl +(1—a)d (

qt+1

- o )
NI N CEEMPREERE

.
€41

1 e
+ 1—a)b 5 / c — E** y dG(e }
( ) DPt+1 — >\qt+1¢t+1 8:11 ( t+1) t+1 ( )

¢; = ﬁnEt{éytH + @5 +la+ (1—a)(1-0) / (et — )y dG ()

€L

Ejj_l kok Aq ¢S o Kk
Fa-a | [t - md6 @)+ O [ g G )
. Pre1 = Aqet1@ii Jepr,

b

Notice that the structure of the equilibrium conditions in Definition [7] is recursive, i.e., one
can solve for prices and marginal valuations independently of {Xt, A7 +1}z0’ and then given
{07120, one gets {X;}.2, = {X¢ (6])}2, and given {X;};2,, {Af+1}z0 follows from the law

of motion for the capital stock.

Example 1 Suppose
ft (n) = wn? (141)

for o € (0,1). Then the optimal amount of general goods that the investor devotes to the

production of capital goods is
1
9: (%) = (owgf) 17 (142)
and the quantity of new capital created by an individual investor is

o

2 (6) = 0T mE T (6)757 | (143)

Assume
wy = (oy) 7. (144)
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1) Consider the baseline discrete-time formulation. Given ¢ = ¢y, (149) and (143) with
t

imply

( )=( ) (145)

(ii) Consider the generalized discrete-time economy with period length A. Given the asset price

is ®F (A) = ®° (A) g A, and with imply

gt (B (A)) = o [3° (A) A] 77 y,
(85 (A)) = [@° (A) A]T7

and therefore, since lima_,o ®° (A) A = ¢°,

lim g, (8] (A)) =0 (677w (146)
Jim (B} (A)) = ()77 . (147)

Thus, in the continuous-time approximation, @ and are the effort rate devoted to

vestment, and the investment rate, respectively.

Proof of Proposition [7] Notice the equations that characterize prices and marginal valua-
tions in Definitions [ and [7] are identical to the conditions that characterize prices and marginal
valuations in the baseline economy that assumes A = A® for all £. Hence, the conditions that
characterize prices and marginal valuations in the recursive equilibrium, and in the recursive
equilibrium with A — 0, are also the same in the economy with endogenous capital accumu-
lation as in the economy that assumes A = A° for all . Given the production function (141

with ([144)), the aggregate investment rate is immediate from ((147)). m

D.9 Unsecured credit

In this section we develop the model with unsecured credit outlined in Section
The bargaining solutions for investors without access to credit are as before. The bargaining

solutions for investors with access to credit are summarized in the following two results.
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Lemma 16 Consider the economy with no money. If the investor contacts a credit broker, the

post-trade portfolio is

i (at,2) = x(efse) (af + 2% ) (148)
t
@ (ah.e) = 5 [a = x(ee) (a + 5 )| (149)
t

and the intermediation fee for the broker is

teat2) = (1=0) (e =) [ e2) (o + 2 ) — . (150)

Proof. In a nonmonetary economy, (2) implies [a; (af, ), @’ (af,€) , ki (af,€)] is the solution
to

0
max |(ey+ 67) (@ — a}) +af — k| b}
(a3 ,ke)€R? @b eR

s.t. gia; +al = éya; (151)
-B, <a. (152)

Notice that the first-order condition with respect to k; implies (103]), so the bargaining solution
can be found by solving the following auxiliary problem

max (eyr + ¢7) (@i — ai) + Eﬂ s.t. (151)), and (152]).

a;€R,,aleR

Since (151)) implies @ = ¢;(a — a;),

By

s _ ny —=s —s —s s

a; (aj,e) = argr%zsix(a —ef)a; s.t. 0 <@ and @; < aj + —.
t

t

The solution is given by (148). Given @} (af,¢), @’ (af,e) = ¢; [a; — @ (af,€)] as in (149)), and
ki (af,e) is given by (103]), or equivalently, (150). m

Lemma 17 Consider the economy with money, and let * = max (e},&;*), where

1 s
pto- — ¢
er=—2 Tt (153)
Ye
and €} is as defined in . Consider an investor who enters the OTC round of period t with

portfolio a; and valuation € in an economy with money. If the investor contacts a credit broker,
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the post-trade portfolio is
a;" (at,€) = {H{1<qt¢?} [H{s@;‘*} + H{e:é;*}X (5:*75)}

+ Liguor=13Te<ery X (097", 1) } (a" + prai + q:By)

+ ]I{qm?:l}]l{s:?:;‘*}&;n (154)
a; (ai,e) = {H{z;*<a} + (1= Tggmo1y] Tre—zry X (5‘?{*75)} [af + plt (af" + q:Bt)

+ H{qm;”:l}]l{s:é;*}df (155)
@lar,) =~ {[a7 (@) — o) + pr [ ar,2) — afl} (156)

where
@, a;) € {R2 : @ +paf < af + peai + @B},
and the intermediation fee is
ki (@, e) = (1= 0) { (e + ¢}) [@ (ar,€) — @i (ar,€)]

+ ¢ [@) (at, €) — )" (at, )] + @ (as,€) }- (157)

Proof. With , can be written as

%
max A (ey+ o)) (@ — ai(ar, )] + 67" (@ — a7 an,9)] +af — ke ki
(@ ,a; kt)€RY @l eR
s.t. @ + pa; + qay = a” + paj (158)
-B, <@. (159)

Notice that the first-order condition with respect to k; implies so the bargaining solution

can be found by solving the following auxiliary problem

max  { (e + 00) a7 - ai(an,9)) + 0" ()" — " (ar, )] + @ )
(ay,a;)eR% @l eR

s.t. (I58), and (T59).

Once the solution @/ (ay, €), @ (a¢, ), and @ (a¢, ) to this problem has been found, k; (ay, <) is
given by . If we use (158) to substitute for Eg, the auxiliary problem is equivalent to

max [<6yt + ¢f — qltpt) a; + <¢52” - 1> a;”] (160)

(@ a;) eR2 a
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s.t. — @B < af' =" +pi(af — @) . (161)

The Lagrangian corresponding to the auxiliary problem (160)) is

1 1
L= <€yt +¢F — pt) a; + <¢?1 - > a”
qt qt

+ & [af — @ + pi (af — @) + @By] + £ma)" + &5,

where £°, €™, and £° are the multipliers on the constraints (161)), 0 < ay*, and 0 < @}, respec-

tively. The first-order conditions are

1
eyt + ¢F — Ept+§S—Pt§b:0
t
1

o — —+gm =g =0.
4t

There are eight possible binding patterns for the multipliers (fb,ﬁm,ﬁs). Case 1. Assume
0<E™ 0<E,0<E Then @ =a; =0 and a + piaj + ¢ By = 0. Since 0 < By, this kind of
solution has @’ = 0 and is only possible if a* = a™ = B; = 0. Case 2. Assume 0 < £™, 0 < £,
€ = 0. Then @ = @ = 0, ga = a + peaf, € = [(% —¢;§) 1 —5] yr, and €™ = L — g,
This kind of solution is only possible if ¢:¢;" < 1 and ey; < q%pt — ¢i. Case 3. Assume 0 < &™,
€ =0,0< £ Then a' =0, a; =aj + p% (QtBt + a;"), @ = —By, Pl = ey + o; — q—ltpt, and
€™ = ey + ¢f — pe@py*. This kind of solution is only possible if max (¢:¢;", 1) %pt — ¢} < eyy.
Case 4. Assume £" =0, 0 < &%, 0 < £°. Then ar = a + pal + @By, @ = 0, @l = —By,
&% = pdyt — i —eyy, and et = (g — 1) q—ltpt. This kind of solution is only possible if 1 < ¢;¢;"
and ey; < pid* — ¢f. Case 5. Assume 0 < €™, £5 =0, €2 = 0. Then a* = 0, £™ = ==,
and (@, a}) is any pair that satisfies (@, a}) € [0, 00) x [-By, 00) and ga} + pia; = af* + pa;.
This kind of solution is only possible if ¢:¢;* < 1 and ey = q—ltpt — ¢;. Case 6. Assume
" =0,8=0,0< ¢ Then pt® = (¢}" — 1) =pr = eye + ¢} — =i, (@, @) is any pair
that satisfies (a*,@;) € [0,00) x [0,00) and a® — @ + p; (af —@;) + ¢;B; = 0, and @’ = —B,.
This kind of solution is only possible if 1 < q¢;" and ey = pipy* — ¢;. Case 7. Assume
€™ =0,0< &, & =0. Then a; =0, & = ipt — ¢f — ey, and (62”,6?) is any pair that
satisfies (aj",a}) € [0,00) x [~ By, 00) and @ + q;a; = a}" + pai. This kind of solution is only
possible if ¢:¢" = 1 and ey < ipt — ¢5. Case 8. Assume £™ = 0, & = 0, £ = 0. Then
(@, @, a}) € [0,00) x [0,00) X [~ By, 00) is any triple that satisfies @ + p,a; + g:a} = a}" + pya;.
This kind of solution is only possible if ¢;¢;" = 1 and ey = ipt —¢;. By collecting the solutions
along with the inequality restrictions implied by the eight cases, we obtain —. [
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Next, we derive the market-clearing conditions for equity and bonds in the OTC round, in

a nonmonetary economy (Lemma , and in a monetary economy (Lemma .

Lemma 18 In a nonmonetary equilibrium, the market-clearing condition for equity, flf + A5 =

A® (or bonds, A? =0) in the OTC round is:

N; B,
1=[1-G () (1 + _S> (162)
a1+ S
where
At = N]Bt. (163)

Proof. The investors’ aggregate post-trade holdings of equity in the OTC round of period

t are

At = (1= ) N1 [ @i €)dHifan2) = (1 = o) [1 = G (e7) (AS T N?)

t

A5 = oy [ di(on )b, ) = 0

and the investors’ aggregate post-trade holdings of bonds in the OTC round of period ¢ are

L=@1-a)N /ag(at,s)dHt(at,e) —(1-a)¢ [AS -G (EY) <A5 + Né?)] .

Lemma 19 In a monetary equilibrium, the market-clearing conditions for equity, flf—l—/_lf = A%,

and bonds, AY =0, in the OTC round are, respectively:

APl AS Am A5 N B
Oza[l_G(gi)]ﬁim—i-(l—a)[l—G(E:*)} t tDPtA” + qeVy b gs

Dt Dt .

A" + prA® + ¢ N By

0={GE") [M<qory + Laop=1yx (@0}, )] +1- G ()}

m
— (A5+At) .
bt

Proof. The investors’ aggregate post-trade holdings of equity in the OTC round of period

bt

t are

_ 1 _
A} =(1-a)N; /af(at,e)dHt(at,e) =1-a)[1 -GE)] A+ o (A" + N1 By)

AT+ pA®

At = oy [ di(an2)dHila2) = all - G &) .
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and the investors’ aggregate post-trade holdings of bonds in the OTC round of period t are

/Ilt) = (1 — Oé) N] /af(at,s)dHt(at,s) = —% (1 — Oé) {{G (5:*) [H{1<Qt¢¥"} + H{quﬁ;”:l}x (qtgbgn, 1)]

Am A N;B Am
#1-G e ARl t—<A5+t>}.
Dt Dt

The following result states that the credit market would be inactive if the net nominal

interest rate on bonds, " = ﬁ — 1, were negative.
t

Lemma 20 Consider a monetary equilibrium. If the bond market is active in period t, then
qdy" < 1.

Proof. In an equilibrium with 1 < ¢;¢;", the bond-market clearing condition in Lemma
becomes
S 1 m D, s A;n
0= A+ — (A + @NiBy) | — [ A°+ = ).
bt bt
This condition can only hold if B; = 0, i.e., if the bond market is inactive at all dates. The
condition 1 < q;¢;" implies bond demand is nil, so the bond market can only clear with no

trade. m

In what follows, we focus on monetary equilibria with an active credit market, i.e., equilibria
with ¢:¢;" < 1. Notice this implies £* = &;* for all ¢ in any monetary equilibrium.
Next, we derive an investor’s value function in a nonmonetary economy (Lemma [21)), and

in a monetary economy (Lemma .

Lemma 21 Consider an economy without money. The value function of an investor who enters

the OTC round of period t with equity holding ai and valuation € s

Vi(aie) = |ey + 65 + (1= @) 0lpeccyy (=7 — ) ] @} + Wi ). (164)
where
) ] B
Wt (E) = Wt + (1 - a) 0H{€;L<€} (E — & ) yt?
t
W; = max I:_¢§df+l + BE¢ / Vit [nagy + (1 —n) A ] dG(&T)} :
at+1€R+
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Proof. With (114), and Lemma [16] reduces to

Vi(aj,e) = Wi+ (eye + 67) af

B
(l—a)f(e— ) [H{5g<a} ( n ¢) - ] ,

t

which can be written as (164]). =

Lemma 22 Consider an economy with money. The value function of an investor who enters

the OTC round of period t with portfolio a; and valuation € is
Vi (ar,e) = vfy () af" + vj, (e) af + Wi (e) (165)
where

1
vie (6) = ¢ +la+ (1 =) (1 =0l lepey (e =D e
1

+(1—a)d(e—¢&") ytﬂ{5¥*<5};t
1 m =%k
+(1-a)f o by {H{qt¢{”<1} + Ticqropylie=ery [1 — 2X (& a5)]}
v (e) =ey+ i Hla+ (1 —a) (1 =0)] (e — &) yilfecery
+ (1 — Ol) 0 (g‘z{* - 8) ytﬂ{€<éz«*}
1 kk
=)0 (= 08 ) TcamTisiny [~ 202
T T *x 1
Wi(e) =W+ (1 —«) 9{ (e — & )ytﬂ{g;*g};t

m ]' —%% D,
+ <¢t - qt> H{1<qt¢§”} {1 + H{a:é;‘*} [2x (Ef",e) — 1]} }QtBt-
Proof. With , the value function becomes ([110]), which after substituting k; (at,€)
and @ (ay,¢) (using (157) and (156)), respectively), becomes
Vi(as,e) = Wi + (e + ¢7) ai + 67" af”
+ o+ 1 —a) (1 =0)]{(eye + 87) [ai (ar, €) — ai] + " [a]" (ar, €) — a;"]}
1 1
=)0 (net ot ) o o) ail + (o7 = ) ol (ane) — )}

qt
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Then replace the post-trade allocations @ (at, ) and a}* (at, ) (using Lemma [2), and af (ay, €),

and a}" (a;, ) (using Lemma [17), and rearrange terms to arrive at (165). m

Next, we derive the Euler equations that characterize the investor’s optimal portfolio choices

in the second subperiod, in a nonmonetary economy (Lemma[23]) and in a nonmonetary economy

(Lemma [24)).

Lemma 23 Consider an economy with no money. Let aj,,, denote equity holding chosen by

an investor in the second subperiod of period t. Then aj,, , is optimal if and only if it satisfies

€11
¢ > Bk, |:§yt+1 + i+ (11— 9/ (1 —¢) ?/t+1dG(5):| with “= 7" 1f afyyq > 0.
eL

Proof. With (164)), the portfolio problem of an investor in the second subperiod (i.e., the
maximization on the right side of ) can be written as
S = S 6?-’_1 n ~S
_Jnax {—¢t + Bk, [ﬁytﬂ + ¢+ (1—0a) 9/ (eth1 —¢) ?/t+1dG(5)} } Apyq-
aiyq eR4 €L

Lemma 24 Consider an economy with money. Let (dﬁ+1,d§t+l) denote the portfolio choice
of an investor in the second subperiod of period t. The portfolio (dﬁﬂ, Eﬁtﬂ) s optimal if and

only if it satisfies

(07" — BT} 1) afiq = 0 < ¢ — BE, D7}y (166)
(CZ)%S - BﬁEt@?tH) &§t+1 =0< ¢f - BnEm?Hp (167)
where
—m m H * 1
Or = 0+ lat (L-a)(1-0) [ 7 (e~ ci) padGle)
e Pt+1
1 oH — k%
+(1-a)f— (5 - 5t+1) Yi+1dG(e)
De+1 Jepy,
1 m
+(1-a)b <Qt+1 - ¢t+l) H{Qt+1¢ﬁ1<1}
and

€11
U1 = EYes1 + 07 +[a+ (1 —a) (1—0)] / (et41 — €) Ye+1dG (e)

€L

=k

€1
+(1—-a) 9/ (E5%) - ©) yes1dG (e).
£

L
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Proof. With (165)), the portfolio problem of an equity broker in the second subperiod (i.e.,
the maximization on the right side of ) can be written as

omax [—¢"aty — ¢iayy + BE (Uit + 007448841)]
a1 €ERY

where 0§, = [vf, | (€)dG(e) for k € {m,s}. =

Next, we define sequential nonmonetary equilibrium and monetary equilibrium (with an

active credit market).

Definition 8 A (sequential) nonmonetary equilibrium is a sequence {eX, ¢, b, 132, that satis-

fies

N;B, )
0=[1-G (A + 120 ) — 4
| ()] ( ELYt + O
HR
¢; = Bk l:gyt-&-l + i+ (1-a) 9/ (g1 =€) Ye+1dG(e)
er

o; = ety + 6.

The first condition in Definition [§] is the bond-market clearing condition ((162), the second
is the investor’s Euler equation from Lemma and the last is the definition of €} (8).

Definition 9 A (sequential) monetary equilibrium is a sequence {e;,e;*, pt, qt, &1, ¢; 152, that
satisfy < = (k — 6L, ef = (o — 1) L, xF = x(1,1) € [0,1], the market clearing
conditions,
A 4 p A8 wery AT+ AS + ;N1 B

t Pt +(1—Oé)[1—G(€t )] t Dt qeiVT t_

bt bt
*x Kk A + ptAs + qtNIBt

0={G (ef") [p<qep) + Lgsp=yxL] +[1 = G ()]} —

Dbt
_ <A5+‘4t>7
bt

0=all—G () A
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the FEuler equations,

€H

oi" = BEt{(ﬁ?}rl +la+(1—-a)1-0) / (e —eit1) yt+1dG(5)L

ey Pt+1

1 fen
H-ao [T e et pad6(e)

1 m
+(1-a)b <Qt+1 - ¢t+1> H{qt+1¢ﬁ1<1}}

#; = BnEt{éytH + o5+ [a+ (1—a) (1 0)] / (et — ) mndG (2)

er

i1 s
+(1—-a) 0/ (6751 — &) Ye+1dG (€) .
eL

Next, we define RNE and RME (with an active credit market). To this end, hereafter we
assume By is as defined in . As before, a RNE is a nonmonetary equilibrium in which
real equity prices (general goods per equity share) are time-invariant linear functions of the
aggregate dividend, i.e., ¢ = ¢y, and ¢, = ¢’y; for some ¢° ¢° € R,. Hence in a RNE,
ey = (q?)f — gbf) i = ¢° — ¢* = ". Similarly, a RME is a monetary equilibrium in which:
(i) real equity prices (general goods per equity share) are time-invariant linear functions of
the aggregate dividend, Le., ¢ = ¢°y, pd}" = doy = Oy, and pi/as = Gy = Gy for
some ¢°, @, ¢, € Ry; and (ii) real money balances are a constant proportion of output, i.e.,
QAT = Z APy, for some Z € Ri;. Hence in a RME, ef = (p1¢]" — ¢7) i = ¢, — ¢ = ¢,
e = (/o — ) & = 6y — 0" = p = ELAE gt = Z4 and g is given by -

Definition 10 A recursive nonmonetary equilibrium of the economy with borrowing limit (@,

is a triple (", ¢%,¢°), that satisfies ¢° = €™ + ¢°,

0=[1-GE)(1+A)-1

n

lgfnqﬁszs—i—(l—a)&/; (e —¢e)dG(e).

Definition 11 A recursive monetary equilibrium of the economy with borrowing limit (@, 18
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a vector (e*,**,¢°, Z,xP) that satisfies x? € [0,1], and

0=all -G () <1+5*+Z¢s) +(1—a)[l—G (™) (1+A+E*+Z¢s> 1

A
0={G (") [eceyxT + [ = G ()]} (1 +A+ W)
A
(1 =1s)
1 fen
P =lat(1=a)(1=0) s [ =G
1 €y fok ok
IR - / (e — ) dG(e) + (1 - ) Gﬁﬂ{a*@}

*

I_an—é « —« — ) ¥ —¢ € —« - e —¢ €
P =z +la+(1-a) (1 e)]/q( )dG (e) + (1 w/q( )dG ().

In a nonmonetary equilibrium, p;/q; = ¢; = elys + ¢§, and therefore the borrowing limit

(72)) becomes
. (efye + o) A°
Bi= A
t N

In a monetary equilibrium, p:/q: = "y + ¢;, and therefore the borrowing limit becomes

(e ye + ¢7) A®

(168)

By=A N, (169)
In the discrete-time economy with period length equal to A, generalizes to
PRNIC IS TEVEL 170)
and generalizes to
B, = Al A+ 27 (A)] A (171)

Nr
In a RNE, ¢} =¢" and @} (A) = ®" (A) y:A, so (170]) specializes to

Bi(a) = A TLELL,

In a RME, ef* = ¢* and ®; (A) = ®° (A) y:A, so (L71]) specializes to

B - [5** + (I)s (A)] As
By (A) =A N; Y

(A

A

Next, we report the equilibrium conditions for the continuous-time limiting economy as A — 0.

105



Lemma 25 Consider the limiting economy (as A — 0) with borrowing limit (@ A recursive

nonmonetary equilibrium is a pair (", @) that satisfies
A

1+A

+(1—-a) 0/ (e" —e)dG(e).
e

G (") =
p==¢€

Proof. The first equilibrium condition is immediate from the first condition in Definition
The second condition is obtained by recognizing that, in a discrete-time economy with

period length A, the second condition in Definition [10]is

n

@s(A)Aza—i—(l—a)H/e (" — &) dG(e)

€L

r+4d—g+giA
(1+gA)(1—-0A)

and letting A - 0. =

Lemma 26 Consider the limiting economy (as A — 0) with borrowing limit (@ A recursive

monetary equilibrium is a vector (*,e**, ¢, Z,Xf) that satisfies Xf € [0,1], and

0=all—G ) (1+Z> =) [1—G (™) (1+A+Z> 1

v ¢
0={G () [ermexf +[1 - G ()]} (1 + A+ i) — <1 + i)
wp=la+(1—a)(-0) /H (e — %) dG(e)

€H

ex*

(e —¢€™) dG(a)]

*

- 6+[0¢+(1—a)(1—0)]/5 (5*—5)dG(8)+(1—a)0/5 (e — &) dG (e).

er
Proof. In a discrete-time economy with period length A, the equilibrium conditions in

Definition [11] generalize to

0=all -G () <1+

Z(A)A
A+ O (A)A)

+(1—a)[l =G (™) [l A g*Angf ?A)A} -
0={G (") Iz —eryxf +[1 = G (£™)]} [1 A Miﬁﬁ im}

- (1 * e*Ai(gz (AA) A)
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€H

Tesaya A4 {[a+(1—a)(1—9)]/ (e — ) dG(e)

A+ 05 (A)A .

eH

+ (1 - OZ) 0 |:(5** - 5*) H{8*<€**} + /

ex*

(e —&™) dG(s)] }

*

@S(A)A—€+[a—|—(1—a)(1—9)]/6 (e —¢)dG (g)

€L

r+0—g+ géA
(14+gA)(1-04)

sk

+(1oz)9/6 (e —&)dG ().

€L

Take the limit as A — 0 to obtain the conditions in the statement of the lemma. m

Proof of Proposition As a — 0, the equilibrium conditions in Lemma [26] become

*k Z
0=[1-G (e )]<1+A+¢>—1 (172)
Z Z
0={GE™) [foeeyxP + [1 — G ()]} <1 + A+ (p) - (1 + s0> (173)
vo = (1—0) /*H (e — ) dG(e) + e/H (e — &) dG(e)
1™ — ) Loy (174)
o=+ (1 —9)/5 (e —5)dG(5)+9/8 (e — &) dG (o) (175)

where X € [0, 1]. These are four equations in four unknowns. The unknowns are (¢*,£**, ¢*, Z)
if e* < ™, or (e*, Xf, ¢°, Z) if e = ™. We consider each case in turn.

(i) Suppose €* < £**. In this case, and imply % = 0 and €** = ¢". Combined,
conditions and imply a single equation in the unknown £* that can be written as
T (¢*) = 0, where
em

T(x)z@(e"—x)—i—(l—&)/

x

(e — 2)dG(2) + 0 / :H (c — &™) dG(e)
—L[E—l—(l—9)/€j(:p—€)dG(€)+9/Ein (6”—5)dG(5)}

Differentiate T and evaluate the derivative at x = €* to obtain

T () = —{0+(1—0)[1 -G () +.1G ()]} < 0.
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Hence, if there is a €* that satisfies T'(¢*) = 0, it is unique. Notice that
en
T(ep) = 0(" —ep) + (1—0) G —e1) +9/ (e — ") dG(e)
- [54—9/ (5"—5)dG(5)] ,
erL

so 0 < T'(er,) if and only if ¢ < o. Also,
€H em
T(e") = / (e—€")dG(e) — ¢ {54—/ (e" —¢) dG(s)] ,
en €L
so T (e™) < 0 if and only if <o < ¢. Thus, if o < ¢ < Jp, there exists a unique £* that satisfies
T (e*) =0, and €* € (e1,e™). Given £* and £**, ¢ is given by (172]).
(i) Suppose €* = ¢**. In this case, (172)-(175) become

. z
0=[1-Gl )](1+A+(p>—1 (176)
* % z Z
0={G@E)XxF+[1-G(M)]} <1+A+¢>—<1+@> (177)
w_/* (e — ) dG(e) (178)
gO:E—i-/a* (e —€)dG (). (179)

Combined, conditions ((178]) and (179) imply a single equation in the unknown £* that can be

written as 7 (¢*) = 0, where

EH T
T(x)z/ (s—x)dG(s)—L[§+/ (x—z-:)dG(s)].
x €L
Differentiate 7 and evaluate the derivative at x = £* to obtain

T'(e) = —[1—G () +:G ()] < 0.

Hence, if there is a €* that satisfies 7 (¢*) = 0, it is unique. Notice that

£l en

T(s”):/ (5—5")dG(5)—L[é+/ (e" —¢€)dG (e)],
en €L

s0 0 < T (e™) if and only if ¢ < . Also,

T (eg) = —teg <0, with “ =" only if ¢ = 0.
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Thus, if 0 < ¢ < &g, there exists a unique £* that satisfies 7 (¢*) = 0, and ¢* € [e",ep) (with
e* =¢e" only if t = ¢p). Given €*, ¢ is given by (179). Given £* and ¢, (176)) implies
GE)—[1-G((M)]A

Z =
1 -G (%)
Finally, given, ¢*, ¢, and Z, (177)) implies
1-G (%)
B
=1- A.
. ey

D.10 Efficiency

Proof of Proposition @. The constraint must bind for every ¢ at an optimum, so the

planner’s problem is equivalent to

00 el
max EOZBt/ eysal (de) Ny
t=0 £L

{‘3{+1vaf}?io

€H
s.t. (74), (77), and al (de) < al.
€L

Then clearly,

[e.e]

W (yo) < enA® (Eo Zﬁ@t) : (180)
t=0

The allocation consisting of @] = A®/N7 and the Dirac measure a} (E) = ]‘:‘,—jﬂ{s qep) defined in

the statement of the proposition achieve the value on the right side of (180]) and therefore solve

the planner’s problem. Notice that Eg Y .2 Blyy = %yg, SO

W* (y0) = —— e A%y,

1-p
Hence, in the discrete-time economy with period of length A, welfare is
14+ gA
W* Yo) = 7€HAsy0A.
(v0) (r—g)A

Rearrange this expression and take the limit as A — 0 to arrive at ((78). m

Proof of Proposition The constraint must bind for every ¢ at an optimum, so the

planner’s problem is equivalent to

= o I
max Eo Z»Bt [/ eyray (de) — oy | Ni
t=0 €L

I =1 pl
{@i41,88 05, X372
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en
s.t. (91)), (92), (93), and al (de) < al.
L

Clearly,

W™ (A§,yo) < e Eo Y B (euAfys — haeNr) st Afyy =n[A7 + fi (hy) Ni] . (181)
2tJt=0 t=0

Once {hét}zo has been found, we can use to get Xy = fi (h%t) Ny, and at equality to

get al 1= Af;IXt. Let W* (A, y0) denote the value of the right side of (181)); it satisfies

W™ (A}, p) = max e Afye — hNT + BEW™ (Afiq, yer1) ] (182)
s.t. Afyy =n[Af + fi (h) Ni] .

It is easy to show the optimal value function that satisfies (182) is W* (A$,y:) = (BA; + C) yt,

where

B=_"
1—pn
— 1
1 B e
C = —(1—0 < = 5H> NI-
1-p ( - Bn
The decision rule implied by (182) is
— 1
T
n) = (17 en) (183
1—pn
and the implied aggregate investment is
_(_Bn =
ft [h (yt)] N[ = =—CcH N[. (184)
1—pn
Hence,
_ 1
T7* €H 1 577 =
W™ (A7 = — A7 = (1 — = N . 185
(45.m) (1_577 g e (2 en) 1>yt (185)

The OTC-market allocation consisting of the Dirac measure a} (E) = ]’%H{E qepy defined in the
statement of the proposition along with the decision rules and achieve the value on
the right side of and therefore solve the planner’s problem, i.e., W* (A$ y;) = W* (A3, ys).

Next consider the generalization to a time period of length A. In this case, becomes

W* (Af, yt) = 1’613})1( [EHAfytA - AhN] + ,BEtV_V* (Af—‘,-A’ ytJrA)] (186)

st. AJ A =n[A] + Afi (h) Npl,
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where y;, h, and f; (h) are now the per-unit-time dividend, effort, and output, respectively. It is
easy to verify that the optimal value function is still W* (A$,y;) = (BA; + C) y; (proportional
to the dividend rate), but with

1 1 1+7rA
B= 1 —BngHA - (1+9ﬁ27(11A*5A) eni = r+5—g—|—5gA€H
_ 1 1
1 Bn 1-o 1+7rA (1+gA)(1—-0A) T-o
= —(1-— = A NiA = 1-— Nj.
¢ 1fﬁ( J)<1ﬁnsH > ! r—g ( J)[T+5—g+g<m A !

_ 1
The decision rule for the effort rate is h (y;) = o (BnB) 1-o 9, and the implied aggregate invest-
ment rate is fi [h (y,)] N; = (BnB)%, or explicitly,

1

(1+gA)(1—6A) |Te

h =

(yt) U[T‘—g—I—é—l—géA em| W

(1+gA)(1—6A) 77
Ny.

r—g+0+giA

Fo [ ()] N7 = [

Hence,

1+7rA 1+7rA

1
(1+gA)(1-0A) T—o
A+ ——(1— N .
R N ¢+ p— ( G)[r+5—g+géA €H I

W* (A;?) yt) = {
Take the limit as A — 0 and let W* (A3, y;) = lima_y0 W* (43, 1) to arrive at (96)). m

Proof of Proposition From Proposition [2| we know that e* = e™ — e, and ¢ — e as

t—0.m

D.11 Equilibrium welfare

The following result characterizes equilibrium welfare for the economy with exogenous capital.

Lemma 27 Consider the limiting economy as A — 0 with exogenous capital. Along the path
of the recursive equilibrium, we have:

(i) If the equilibrium is nonmonetary, the welfare function is
al
" = —A° 187
V™ (ye) P gy (187)

with . .
gp’fza+(1—a)[/ (En—é)dG(é“)-i-% (e—=e")dG (¢)] .

€L en
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(i) If the equilibrium is monetary, the welfare function is

1 Z
m(z — 2= 4z S] A 188
V ( 7,%) r—g <ulg0 +6+U1) Yt, ( )
where
EH 1 €H
uj = a/ (e—e")dG()+ (1 —a) [5** —e* 4+ T (e —€™) dG(s)]
e* - ex*

ek

ufza/s*(a*—e)dG(€)+(l—a) l/ (=) dG @)+ —— [ (c—emydae)] .

er er 1_>\ E**

Proof. (i) Consider an economy with no money. From (112)), the beginning-of-period
expected discounted utility of an investor along a recursive equilibrium where he holds a®

equity shares at the beginning of every period is

/Vt (a®,e)dG () = {a +(1-a)f [5" le+_¢:) & /:H (e—e")dG () — (E— 6")] } a’y

+ BE; / Viet (a°,2) dG(e).

Notice we can write [V (a®,€)dG (g) =V (a®) yt, where V (a®) is given by

n

(1-B)V(a®) = {5+(1—a)9[/6/(5"—8)dG(6)

€L

)\gbn €H n s
tara e L, € ”G(E)]}a‘ .

E"L

Since there are Ny investors, along a recursive equilibrium path each investor is holding a®* =
A% /Ny, and the sum of expected utility across all investors is N;V (A%/Nj)y, = V (A4%) y;.

The expected discounted utility of a broker at the beginning of a period is given by (111J),
ie.,

VB _ of / ke (af, €) dH, (af, ) + BEVE,. (190)

Since there are N bond brokers, the sum of expected utility across all bond brokers is
NpVP = OéBNB/kt (af,e)dHy (af,€) + BENpVE,

= (1 — Oé) N[/kt (af,e) dH; (af,g) + 5EtNBV;§1.
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From , Ny [kt (af,e) dHe (af,€) = = (A®) yg, where
_ e Ap™ o
EA)=(1-46 / " —¢€ dGe—l—n/ e—¢€")dG (g)| A°. 191
@)=(-0)| [ =960 + oo [ e enic (101)
Hence, we can write NgV,” = VP (A%) y, and therefore (190) implies
(192)

(1-B) VB (4%) = (1- ) 2(4%).

Along a RNE path, total welfare can be written as V; = >, (B.1} VE (A®) y; (equity brokers
earn no fees so their utility is zero and they contribute nothing to welfare). Combine (189)) and

/ M e— e (a)] } Ay,

(1192) to obtain
1 e A"
Vi=——1<984+(1— " —¢)dG e TS
=g {er - | [ @ awe s it
In the discrete-time economy with time-period of length A, the expression for V; generalizes to
1+7rA e
o {5+(1a) [/ (" — £)dG ()
er

R

AP (A)

en+ (1 —-X)d" (A) /6 (e —¢e")dG (5)] }Asytﬁ-

n

Take the limit as A — 0 and let V" (y¢) = lima_0 V; to arrive at (187)).
(ii) Consider a monetary economy. From ([109), the beginning-of-period expected welfare

of an investor along a recursive equilibrium where he holds portfolio (a}*,a®) at the beginning
(193)

of every period is
[ Vi (@246 (©) = oy + v + W

where W/ is given by lb and v7; and v}, are defined in Lemma [5| and can be written as
1
o = ’l_)z*yt
It ;

=8 __ =8
Ve = VY,
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where

VV=e"+¢"+(1—a)f (e —£)

Fla+(1—a)(1-0) /H (e — &) dG(e)
F(-a)0; f;*_d’;) 5/ e o) (194)

*

vszs+¢s+[a+(1—a)(1—0)]/€ (e* —e)dG (e)

+(1—a)9[/; (5**—5)dG(€)+6**+()\1¢i)\)¢8/;H(a—e**)dG(a)

. (195)

Along the path of a recursive equilibrium an individual investor is holding portfolio (a}?, a*) =
(Aﬁl/NI, AS/NI) at the end of period ¢ (and at the beginning of period ¢ + 1). Therefore,

At
Ny

_ A5
Wi =T, - op S - g2 + o / Vi, (AT /N7, A° /Ny, €) dG(e). (196)

Substitute 1) into 1) and use the government budget constraint, N;T; = ¢;" (A?}H — A;”),
to get the sum of expected utility across all investors
1
N; / Vi (A]"/N1, ANy, €) dG (e) = @Z;Al”yt + 0y A® — @M A — ¢f A
¢
+ BE:N; / Vi1 (A4 /N, A% /Ny, €) dG(e).

. . . T *+p%) A
Then, since in a recursive equilibrium, p; = % and @' A" = Z A%y, we have
272
¥+ ¢°

+5EtN1/th+1( " /N1, A*/Np,€) dG(e).

Np [V (A N1, AN ) d ) = ( - 1) ZAy, + (0" — 6°) A%y,

Hence, we can write Ny [ Vi/ (A7*/Ny, A*/Ny,e) dG (¢) = VI (Z, A®) y;, and therefore

1 s\ __ ﬂz_g*_qbs =S IS s el vdi s
V(Z,A)_<6*+¢s Z+0 ¢>A + BV (Z,A%)
SO
2\ 171 s\ __ u? - s s
(1-8)V (Z,A)_<€*+¢SZ+5+U>A, (197)
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where

z

u® =0 — (" + ¢°) (198)
u® =0° — (4 ¢°), (199)

with 9% and ©° given by (194)) and ((195).

The expected welfare of a broker at the beginning of a period is given by , ie.,
VB =adP / kt (at,€) dHy (as,€) + BEVE . (200)
Since there are Np bond brokers, the sum of expected utility across all bond brokers is
NpVP =aPNg / ki (a¢,€) dHy (ay, ) + BENpVY,

= (1 — Oé) N[ / k’t (at,s) dHt (at,e) + BEtNB‘/tEI'
From ,

N[/k?t (at,e) dHt (at,s) = (1 — 9) [pt_p;\qtgi)f /851{ (8 - 5:*) dG (5)

%k*
1
bt

eH
e - / (e — 1) dG () | = (AT + prA*) .
er

In a recursive equilibrium, Ny [ k; (a;,€) dH; (a,€) = E(Z, A®) y;, where

. / Te—emdae)

e+ (1—N)¢°
Z s

Hence, we can write NgV,® = VB (Z, A%)y; and therefore (200) implies

[th

(Z,A%)=(1-0)

*k

—i—(a**—&?*)—/aH (e — £)dG (¢)

*

(1-B)VE(Z,4%) = (1-a)E(Z,A%). (202)

Notice that (201)) can be used to write (198) and (199) as

[1]1

g o . (

uw® = e —¢e")dG(e 1—«)f 203
/5* e+ o) (1-0) (L5 + A7) (203)

v — / (" — ) dG (2) + (1 — a) f— =2 A% (204)
x (1-6) (E*fd)s +As)
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Along a RNE, total welfare is V; = Zke{B,I} Vk(Z, A®) yy. With || and 1} we obtain
1 u? _
v [<6*+¢SZ+5+“8

=13 )AS—F(I—a)E(Z,AS)]yt

and substituting (201]), (203)) and (204)), we arrive at

1 Z
V — _ ~Z = ~S AS
t -3 <u1€*+¢8+5+u1> Yt
with

*

EH *k S
ﬁfza/ (e—€")dG(e)+ (1 —a) [5**—5* T Ao

e [ e
af Ea/gi (e —¢e)dG (¢)

+(1-a) [/ G Lo r—"

. e** o (1 o )\) ¢s /a** (6 - 5**) dG (E)
to

For the discrete-time formulation with time-period of length A, the expression for V; generalizes

A)

Z
@A) e* —1—(5

1+7rA
Vi= —m— |0}

' (T—Q)A[
with

S(A)+§+ﬂ‘1§ (A)] AsyA
&f(A)Ea/;H (e —€")dG(e)

+(1-a) [5**—5* Ty / (5—5**)dG(5)}
ﬂ{(A)Ea/e (" —£)dG (¢)

€L

+(1-a) [ / (e —¢e)dG (e) + ADT(A)

. et (1= \)®° (A) / (&= ™) dG(e)

Take the limit as A — 0 and let V™ (Z,y;) = lima_0 V; to arrive at (188). m

e** 4+ Ps (A)

The following result characterizes equilibrium welfare for the economy with capital accu-
mulation with production technology given by .

Lemma 28 Consider the limiting economy (as A — 0) with capital accumulation. Along the
path of the recursive equilibrium:
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(i) If the equilibrium is nonmonetary, the welfare function is

1
n 1 n n\ 1—-o
Ay L (50)(2) N,] " (209

V" (A y) = r g \on P

with ¢t as defined in part (i) of Lemma .

(i) If the equilibrium is monetary, the welfare function is

1 u? Z =
VI(Z AL y) = r_g{(;wﬁg) [<r—g>Af+(j> M]

o <*;) = Nl}yt (206)

with ¢ = & +ui and uf and u as defined in part (i) of Lemma [27

Proof. (i) Consider an economy with no money. From (112)), the sum of expected dis-
counted utility across all investors at the beginning of period ¢ along a recursive equilibrium

where each investor holds Af/N; equity shares, is

€L

NI/VtI(Af/Nf,e)dG(E):N1{§+¢"+(1—a)9[/5 (e" —€)dG (e)

At A e
A _n 2t N
+€n+(1_)\)¢n/an (5 € )dG(g):|}NIyt+ IWta

where

WtI = max [anytft (h2t) - h2t]
hot€R4

+ _max [—gb”ytde + BE; / Vi (0af41.€) dG(g)] :

af+1 eRy

_1
Along a RNE path with ¢f = ¢"y, we have hoy = g4 (¢F) = 0 (¢"™)T=7 yt, fi (hat) = x (¢}) =
(gb”)ﬁ, ai,, = (A} + Xy) /N1, and Xy = Nyxi (¢7), as described in Section (where as in
Section , SO

Wi == oo + oyt o Vi [o (4284 0075 o] dGee)

Also, along a recursive equilibrium where each investor holds A /N equity shares at the begin-

ning of each period ¢, the sum of expected utility across all bond brokers in any given period is
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NpaB= (A§/Np)y: = N; (1 — a) Z(A$/Nr) yi, with Z(-) as defined in (191). Hence in a RNE,

total welfare (the sum of expected utility across all investors and bond brokers), V (A7, ),

satisfies the following recursion
€7L
V (A7, yt) = Ni 5+¢"+(1a)0[/ (" —e)dG (¢)
er
M d 2t
€n+(1_)\)¢n/€n (5 5) G(S)]}let

_ 1 As
TN (L — o) E(AY/Np) g — [a (") + ¢>N} Nig:
+ BEV 1 (A7 +(6")77 Np) sy -

Substitute the expression for = (A$/N;)y; to obtain

V(AL ye) = {E‘Jr(l—a) [/; (e" — &) dG (e)

Ag" / o (e — ") dG (e)] }Afyt
(207)

+(1_)\)¢n en
- U(ﬁbn)ﬁ Nrye + PEV [77 (Af + (") T NI) ,yt+1] :
It is easy to show V (A7, y;) = (BA; + C) y, where
B en AG" EH
(1-Bn)B=e+(1-a) [/EL (e" —€)dG (g) + €n+(1¢_)\)¢n /5” (5—5”)dG(5)}
N ) B o
(1—5)0—{1_677{54—(1 a)[/q (" —¢)dG (e)

Q™ €H N NI L
+sz/gn (S—E)dG(@H(QW o (") }Nz.
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Hence,

(1-B)V( f,ya—f_‘g?{em—a) [ o

A(an EH N 5
+Wln (8—8 )dG(€):|}Atyt

S It

i M /H (e —emdG <e>} } ()77 — o (¢")7 }ytzv[_

In the economy where the period length is A, the recursion (207)) generalizes to

n

V (Af,y) = {6+(1—oz) [/6 (e —¢e)dG (¢)

€L

A" (A) o n s
e+ (1—\) o (A) /E O )dG(E):|}AtytA

— 0 (0" (8) A)T7 NyyeA + BBV [n (4] + (@" (8) A) 77 NiA ) ira

1 o
where o (®" (A) A)T-7 y, is the individual effort rate devoted to investment, and (" (A) A)T-7
is the individual investment rate. It is easy to show that the value function for this problem is

V (Af,y:) = [B(A) A7 + C (A)] y¢ (proportional to the dividend rate, y;), with

= 1—A,377 {E—i—(l—a) [/En(g”—a)dc;(aw€n+a¢j§%n(m /;H(e—e”)dG(e)]}

€L

B(A)

0(8) = 2 [BrB(@" (2)8)7% — o (@7 (8) )77 | Ny

I

Notice that

lim B(A) = “L
A—0 P

1
n n 1—0c
lim C'(A) = (‘pl —a> <*0 ) Ny
A—0 r—g \p" P

Hence, the limiting expression V (Af, y;) = lima_,0 V (A7, y¢) is as in (205)).
(i1) Consider a monetary economy. From (109)), the sum of expected discounted utility across

all investors at the beginning of period ¢ along a recursive equilibrium where each investor holds
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A7 /N dollars and A7 /N equity shares, is
AP A7 1 AP Af
d =N; (" =y~ + 0L ) + N 2
w v (e ) G =N (v Lyl v o) e vl o)
where v* and v° are given in and ( -, and
Wl =T 2 fi (hat) — h
¢ =Tt max [ fi (hat) — hat]

+ _max [—¢tat+1 +5Et/‘/}i1 (att1,¢€) dG@)]-

~ 2
Qi1 €R+

1
Along a RME path, we have ¢]" A" = ZAjy, ¢f = O°yr, har = g¢ (9]) = 0 (¢°)T=7 y4, fi (hoy) =
ze (¢7) = (Qﬂﬁv aiy, = A?;Lrl/NIa ajy = (Af + X¢) /N;, and Xy = Nz (¢;), as described in
Section Also, the government budget constraint is N;T; = ¢;" (Aﬁl — A;”) Hence,

L2,

Wt = |:0— (¢S)l% N[

+ BB [ Vi [ AT /N1 (4N + (675 ) ] dGe). (209)

Substitute (209) into (208]) and use the fact that p; = % to get

v v (B ALY do o = (S22 24w -6 ) =0 077 N

Am
womy Vi |5 (540075 ) ] acte

Also, along a recursive equilibrium where each investor holds portfolio (Ay"/Ny, Af/Ny) at

the beginning of each period t, the sum of expected utility across all bond brokers in any
given period is NpaPZ (ZA5 /Ny, A3 /N7)y: = N; (1 — o) E(ZA; /Ny, A3 /Np) y, with Z(-,-) as
defined in . Hence in a RME, total welfare (the sum of expected utility across all investors
and bond brokers), denoted V (Z A7, A7, y:), satisfies the following recursion

viza ) = (TS5 50z - o) At

+ N7 (1—a)E(ZA3 /N1, A /N1) y — 0 (6°) ™ Nry,

+ BV (20 (4 + (6)77 Np) on (43 + (69)757 N1 ) g -
Substitute the expression for = (ZA$ /Ny, A{ /N;) to obtain

o s V7 —e* — ¢°
V(ZAtht7yt) = <1€*_+_¢s

— 0 (6°)77 Niye + BEV | Zn (A7 + ()77 Np ) om (A7 + ()77 Np) g |

Z+ﬁ—w>£w
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where

€H

vfze*—i—qﬁs—i-a/ (e — ) dG(e)

*

kk * 6**+¢S = %k
+(1—a) [5 —€ +E**+(1_)\)¢s/€** (e—e¢ )dG(e)}

*

S
17f£§+¢8+0z/ (e —¢)dG (¢)
L

/ (e —e)dG () + —2F / M e = e dG (o)

+ (1 - Oé) . e | (1 — A) ¢s ”

It is easy to show V (Z A7, Af,y:) = (BA; + C) yi, where

@z—E*—¢S

(1—-pn)B= 15*+¢S 7470 —¢°
(-5 C= 2 (B gt o] ()75 Nr -0 ()77 Ny
Hence,
_ 1_7 ~2 ok __ 4S8
(1-B)V (245, f,y)—l_gn [”lg*i¢5¢ Z+@f—¢s} Ay,
By o= =6, o ] e
+1—5n[ e+ ¢° Z+Ul_¢}(¢) Ny

1
— 0 (¢°)1=2 Niy:.

In the discrete-time economy where the period length is A, this value function generalizes to

r-9)4
1+7A
- { [612 (&) —e" — e (4) (r—g)A

Z(A) 475 (A) — % (A) | A b — T2 A3
Dz @) ket @) - ot (@) }{ng% ;

(14 gA) (1 — 6A)
(r+6—g+gsA)A

— 0 [0° (A) AT NpgiA,

[@°(A) AT ANI}
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with

5 (A) = & + 0 (A) +a /H (e — ) dG(e)

*% * g** + o° (A) =1 *ok
+(1-a) [5 —€ +E**+(1—)\)(I)S(A)/€ (e—¢ )dG(s)]

ok

*

5?(A)E§+<I>5(A)+a/a (" — £)dG (&)

‘ sk )\@s(A) o Hk
/gL (e —s)dG(e)+8**+(1_/\)¢)5(A)/6” (e — &) dG (¢)

+(1—«)

As usual, o (®* (A) A)ﬁ y¢ is the individual effort rate devoted to investment (so the effort
accumulated over a period of length A is o (9% (A) A)ﬁ yA), and (P° (A) A)ﬁ is the in-
dividual investment rate (so (®°(A) A)ﬁ A is the investment accumulated over a period of
length A). Notice that lima_,q [07 (A) —* — ®° (A)] = uf, lima_o [0] (A) — * (A)] = ¢
(with uf and ¢; as defined in part (i) of Lemma , and lima 0 % = %, so taking the

limit as A — 0 and letting V (2, A, y:) = lima_0 V (Z (A) AA7, Af, yi), we arrive at (206]). m

Proof of Corollary [1, The fact that V" (y;) < V™ (2, ), with “=” only if « = 7()) is
immediate from part (i) of Proposition[3|and the fact that 0 < Z. To show V™ (Z,y;) < W* (1),
use to rewrite V" (Z,y,) as follows

1 Z
Vm (37%) = r—g |:€* + (1 + gp) UT:| Asyt.

Then substitute to get

vz =+ (142) {a/:H (e =) dGe)

Asy, 72 .

1 [en

+(1-a) {g** —e it L =) dG(s)] }

Next we consider two cases. Case 1: If i (A) < ¢ < Z()), then Z/¢ is given by (37), and e** = ™,
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and therefore

The last inequality follows from (134)) and (135 that imply

/ (=) dG(e) + % iH (e — ") dG(e) < en — & (210)

Case 2: If 0 < ¢ <7 ()), then Z/¢p is given by the expression in part (ii) of Proposition |2, and

e* = g™, and therefore

_ 1 EH
r ng (Z,y) =" + / (e —€")dG(e)

1 en
<t - I
<e +1—G(5*)/5* (eg — %) dG(e)
o _T'—g *
=E&H = Asth (yt)v

where the inequality is strict unless ¢« = 0 (which implies €* = cp). m

Proof of Corollary [3| First, note that

m s n s 1 r—g zZ n s
=V (2 At -V Aran)] =T (6 ) 4

WE + g
() (5)
1
n n\ 1—g
- (‘p}l —a> <‘P> Ny (211)
¢ p

The first term is strictly positive unless ¢ =7 () (because ¢} < ¢, by Proposition and 0 < Z,
and both inequalities are strict unless ¢ = 7 (A)). Hence, to show V" (A7, y:) < V™ (Z, Af, yr),
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it is sufficient to show that the sum of the last two terms in (211)) is nonnegative (and positive
unless ¢ = 7(\) and § = 1). Define

Notice

<i> o0 (212)
|

1 o . :
_ ) g <£> "7 > 0if and only if x < y. (213)
P

Then

The second inequality follows from and the fact that ¢ < ¢;. The third inequality
follows from and the fact that ¢ < ¢ < ¢;. Thus, V" (Af,y;) < V™ (Z, A}, y:), with
equality only if ¢ =7(\) and 6 = 1 (since in this case, Z =0 and ¢ = p; = " = ¢}).

To show that V™ (Z, A7, y;) < W* (Af, ), proceed as follows. From and (98),

(r— g) V™ (2, A5, 5) — W* (A5, 5)] —

Yt
r— Z
_T9 (UTJF% —sH) A3
p 0

" K“Z;@_a) <S;)11"N1—<1_a> <5)NI] (214)

We first show the first term in (214)) is nonpositive (strictly negative unless ¢ = 0). To this
end, we consider two cases in turn. First, if i (\) < ¢ < 7(\), then Z/¢ is given by (37), and
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e** = ¢&", and therefore

L2 . @ cH _
u1¢+(p1€+{[1—G(8*)]a+1—a/ (e —&)dG(e)

e*

l-a S A o[eH .
+[1—G(€*)]a+1—a[/ (" —e)dG &) T3 (5—5)dG(5)}}

€L en

_ [1-G(())a _
§€+{H—G@ma+1—a@H_@

+ [1—G(§*iz+l—a [/En (en—s)dG(E)Jrﬁ N (€—€")dG(€)] }

€L en

< é€H,

where the last inequality follows from ((134) and (135]) that imply (210)). Hence, the first term
in (214) is negative if 7 (A) < ¢ < 7(A). Second, if 0 < ¢ < i (\), then Z/yp is given by the

expression in part (i) of Proposition [2, and e* = ¢**, and therefore

Z 1 €H
ufs0+<p1:€*+/ (e — %) dG(e)

1 -G (e*) J
_ " dG
<e +1G(5*)/€* (eg — ") dG(e) = eq,

where the inequality is strict unless ¢« = 0 (which implies ¢* = ). Hence, regardless of whether
t(A) <e<t(N)or0<e<i(A),wehave u{% + p; < ep (with “=" only if ¢« = 0), so to show
V" (Z, A7, y) < W*(Af,y:) it is sufficient to show the second term in (214) is nonpositive.

This can be shown as follows

(%0_) (8)7 —a-0 ()7 =0 (0niZ +i) - 2emen)
¢ p P i

v,en) —Q(en,enm)

EH,SH) —Q(e’:‘H,é‘H) =0.

The first inequality follows from 1D and uf% +¢; < ep. The second inequality follows from
(213) and ¢ < eg. Thus, V" (Z,Af,y:) < W* (A7, y), with “=" only if + = 0 (since in this

case uf% +p,=p=cy). N
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D.12 Effects of monetary policy

Proof of Proposition (i) The condition that characterizes €* in part (i) of Proposition
2 can be written as

en
pr=(1-a)fE"—")+[a+(1—-a)(1 —0)]/ (e — ") dG(e)

e*

+(1—a) 9% /H (e — &) dG(e).

Totally differentiate this condition with respect to ¢ to get

d de*
Pl =—{1-a)b+la+(1-a) (101G} — (215)
Totally differentiate with respect to ¢ to get
dy de*
— = 1— 1-40 * . 21
Lol (1-a)(1-0)G () (216)
Together, (215 and (216]) imply
do L
Tdip (I=a)b+[a+(1—a)(1-0)][1-G(e*)] *
A (S V(= o
(i) The condition that characterizes * in part (i7) of Proposition [2[ can be written as
A cH
oL = [a—i—(l—a) (1—}—91_/\)] / (e —e")dG(e).
Totally differentiate this condition to get
dp A Y o
Totally differentiate the expression for ¢ in part (ii) of Proposition [2| to get
dy . A N I o
dL—{G(e)—(l—oz)Ql_)\[l—G(e)]} o (218)
Combine (217) and (218) to get
doe _ '
oo [at(1—a) (14025 | 1-G(e*)]

G(e*)—(1-a)0 25 [1-G(e*)]

This concludes the proof. m

126



E Quantitative robustness

In this section we assess the robustness of the quantitative results of Section [5] to alternative
calibration strategies. In our baseline, the parameters «, 6, and Y. are calibrated so that,
given the rest of the parametrization, the model is consistent with the following three facts:
(a) the real asset price falls by about 11 basis points in response to a 1 basis point increase
in the nominal policy rate, as in the high-frequency empirical estimates in |[Lagos and Zhang
(2019b)); (b) transaction velocity of money is 25 per day, which is the average daily number of
times a dollar turns over in CHIPS (Clearing House Interbank Payments System); and (¢) the
median spread on margin loans is about 2.3%, which is the current spread (over the fed funds
rate) that a typical prime broker charges a large investor. This procedure delivers a = .0406,
f = .1612, and X, = 2.0784. Below, we report results for three alternative calibrations that
consider alternative target values for the spread on margin loans and/or velocity.

In the first alternative calibration, denoted (AC1), a, 6, and X, are calibrated so that, given
the rest of the parametrization, the model is consistent with the following targets: (a) the real
asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal
policy rate; (b) transaction velocity of money is 25 per day; and (¢) the median spread on
margin loans is about 1.20%. This procedure delivers o = .0389, § = .2979, and X. = 2.3653.
Figure [10]reports S for economies indexed by (a, A) € [0,1] x {.50,.75,.90,.99}. The calibration
ensures that S = 11 for a = .0389 and A = .75. As in the baseline calibration, the response of
the asset price to nominal rate shocks is sizable for a wide range of values of a and A, and it is
significant even in the pure-credit limiting economy that obtains as a — 0. Figure [IT] reports S
for economies indexed by (o, ) € [0, 1] x {.10,.30,.70,.99}. The calibration ensures that S = 11
for a = .0389 and 6 = .2979. As in the baseline calibration, the response of the asset price to
nominal rate shocks is sizable for a wide range of values of a and 6, and it is significant even
in the pure-credit limiting economy that obtains as a — 0. Figure [12] reports S for economies
indexed by (a, pP) € [0,1] x {.03,.04,.0447,.05}. The calibration ensures that S = 11 for
a = .0389 and pP = .0447. This exercise shows that for every level of «, the asset price response
is significant, and tends to be larger in environments with a lower background nominal policy
rate. Figures and offer a comprehensive summary of the magnitude of the effects
of monetary policy in limiting economies with o — 0. For a wide range of economies indexed

by a pair p? and A, Figure reports the value of § in the pure-credit limit that obtains as
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a — 0. The level sets in the right panel show it is not easy to find reasonable parametrizations
that imply a value of S below 5. Figures [14] and [15] tell a similar story. Figure for example,
shows that, as predicted by the theory, & = 0 in the pure-credit cashless limit of economies
with no credit-market frictions or markups, i.e., economies with A = § = 1. In contrast, S is
positive and sizable in the pure-credit cashless limit of economies with 6 < 1, even if 1 — @ is
relatively small.

In the second alternative calibration, denoted (AC2), «, 6, and 3. are calibrated so that,
given the rest of the parametrization, the model is consistent with the following targets: (a) the
real asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal
policy rate; (b) transaction velocity of money is about 6 per day; and (¢) the median spread
on margin loans is about 25 basis points. This procedure delivers @ = .0966, § = .8337, and
Y. = 2.6429. Figure [16|reports S for economies indexed by (o, A) € [0, 1] x {.50,.75,.90,.99}.
The calibration ensures that S = 11 for a = .0966 and A = .75. As in the baseline calibration,
the response of the asset price to nominal rate shocks is sizable for a wide range of values of
a and A, and it is significant even in the pure-credit limiting economy that obtains as o — 0.
Figure[L7 reports S for economies indexed by (a, 8) € [0,1] x {.10,.25, .83,.99}. The calibration
ensures that § = 11 for o = .0966 and ¢ = .8337. As in the baseline calibration, the response
of the asset price to nominal rate shocks is sizable for a wide range of values of v and 6, and it
is significant even in the pure-credit limiting economy that obtains as o — 0. Figure [L8|reports
S for economies indexed by (a, pP) € [0,1] x {.03,.04,.0447,.05}. The calibration ensures that
S =11 for a = .0966 and pP? = .0447. This exercise shows that for every level of «, the asset
price response is significant, and tends to be larger in environments with a lower background
nominal policy rate. Figures and [21] offer a comprehensive summary of the magnitude of
the effects of monetary policy in limiting economies with o — 0. For a wide range of economies
indexed by a pair pP and A, Figure reports the value of S in the pure-credit limit that
obtains as & — 0. The level sets in the right panel show it is not easy to find reasonable
parametrizations that imply a value of § below 5. Figures [20|and [21] tell a similar story. Figure
[20] for example, shows that, as predicted by the theory, & = 0 in the pure-credit cashless limit
of economies with no credit-market frictions or markups, i.e., economies with A = 6 = 1. In
contrast, S is positive and sizable in the pure-credit cashless limit of economies with 6 < 1,
even if 1 — 0 is relatively small.

In the third alternative calibration, denoted (AC3), we set o = 0, and A, 0, and X, are
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calibrated so that, given the rest of the parametrization, the model is consistent with: (a) the
real asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal
policy rate; (b) transaction velocity of money is about 25 per day; and (¢) the median spread
on margin loans is about 25 basis points. This procedure delivers A = .9159, § = .8080, and
Y. = 3.0886. Figure [22[ reports S for economies indexed by (o, A) € [0, 1] x {.50,.75,.90,.99}.
The calibration ensures that S = 11 for &« = 0 and A = .9159. As in the baseline calibration,
the response of the asset price to nominal rate shocks is sizable for a wide range of values of
a and A, and it is significant even in the pure-credit limiting economy that obtains as o — 0.
Figure[23|reports S for economies indexed by (a, 8) € [0,1] x {.10,.25, .80,.99}. The calibration
ensures that S = 11 for « = 0 and 6 = .8080. As in the baseline calibration, the response of
the asset price to nominal rate shocks is sizable for a wide range of values of o and 6, and it is
significant even in the pure-credit limiting economy that obtains as o — 0. Figure [24] reports
S for economies indexed by (a, pP) € [0, 1] x {.03,.04,.0447,.05}. The calibration ensures that
S =11 for @ = 0 and pP = .0447. This exercise shows that for every level of a, the asset price
response is significant, and tends to be larger in environments with a lower background nominal
policy rate. Figures and offer a comprehensive summary of the magnitude of the
effects of monetary policy in limiting economies with a — 0. For a wide range of economies
indexed by a pair pP and A, Figure reports the value of S in the pure-credit limit that
obtains as &« — 0. The level sets in the right panel show it is not easy to find reasonable
parametrizations that imply a value of § below 5. Figures [26| and [27] tell a similar story. Figure
[26], for example, shows that, as predicted by the theory, & = 0 in the pure-credit cashless limit
of economies with no credit-market frictions or markups, i.e., economies with A = 6 = 1. In
contrast, S is positive and sizable in the pure-credit cashless limit of economies with 6 < 1,

even if 1 — 0 is relatively small.
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Figure 13: Calibration (AC1): Semi-elasticity of the asset price with respect to the nominal policy rate as functions of A
money balances are zero for parametrizations that lie above the dashed line).
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money balances are zero for parametrizations that lie above the dashed line).



*(our] paysep o131 Jo JYSLI oY) 0} O Jel[} sUoIjezLIPMWRIRd I0] 0I0Z dIR SIOUR[R( ADUOUI
[eal1) pued 901 o) 0} SUIPUOdSOIIOD § I0J $39S [9A] ) sMOys [oued JYSLI OYJ, () <— © [IIM SOIWOUODd SUTIIWI] Ul ¢ pur
Y Jo suorpouny se ojel Aorjod [euruou o) 03 300dsor Yim oo1xd josse o1} Jo A}dryse[o-Tuag :(gHV) uoneIqi[e)) (g oIngig

60 80 L0 90 S0 0 €0 20 1’0 0
LT T T T T T T T T 0
o .\
M 7
r / 140
Hz0
Je0
H{vo
150 @
190
40
He0
= ‘ Y 160
Y Lo
7_4/ © \/ ¢
o S Ly . \ . . .

140



10

10
15
20

0
15
20

o>

~~2p
25
30

\35N

0.05
0.045
0.04
0.035 |-
0.03
0.025 |-

141

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ith respect to the nominal policy rate as functions of

1ce W

Semi-elasticity of the asset pr

(AC2)

0n
g economies w

Calibrat

and pP in limit

Figure 21

to the left panel (real

ing

ith &« — 0. The right panel shows the level sets for S correspond

money balances are zero for parametrizations that lie above the dashed line).



0 — T “UPOID 0] SS900R PUR ‘Y ‘OFRIOAJ[ JO S[OAS] JUISHIP [[IIM
SOTUIOU00d 10§ 9jel Ad1[0d Teururou o1} 03 109dsel Yimm 9oLId josse o) Jo AJrisep-Tweg :(g)V) UoRIqIR)) :gg 9IS

-1

142



SOIUIOU099

0 — T “UPAID 0] $S900R PUR ‘P — T ‘SIOOI( JO IoM0od JoyIRW JUSISHIP (1M
10] oyerx Aorjod [eurwou oY) 03 309dser yym 2ouId josse oY) Jo A)Ise[e-TwRg :(gHY) UOHRIqIR)) :¢g 9INSI]

-1
I 80 90 70 ¢'0 0

143



0 — T “UPAID 0] SS$900R PUR ‘0 ‘SouIBel AIRjoUOW JUSISPIP [IIm
SOTIOU00d 10§ el Ad1[0d Teuruou o1} 03 10adsel Yim 9o1Id josse o) Jo AJIise-Tweg :(g)V) UojRIqIR)) :fg 9IS

0-1
I 80 90 ¥0  T0 0

144



20
25
30
0.7

10
15
20

0.3

0.1

T T T
—_ !

£

~15
—20

0.05
0.045
0.04 -
0.035
0.03

=T
005p—3—0
_
35
1 1 1
0.4 05 06 .

145

and pP in limiting economies with & — 0. The right panel shows the level sets for S corresponding to the left panel (real

Figure 25: Calibration (AC3): Semi-elasticity of the asset price with respect to the nominal policy rate as functions of A
money balances are zero for parametrizations that lie above the dashed line).
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